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ABSTRACT

The entomopathogenic fungus Nomuraea rileyi (Farlow) Samson produced a peptide active against Anticarsia
gemmatalis 3" instar larvae. To produce this peptide, N. rileyi was cultivated aerobically in Saboraud, maltose,
yeast-extract broth at 26 + I°C for 12 days, after which the medium was filtered and separated in a liquid/liquid
extractor, concentrated and the peptide purified chromatographically. The crystals obtained were kept refrigerated
until needed for LCsy analysis. The LCs, of this peptide against A. gemmatalis 3" instar larvae was determined in
triplicate experiments using solutions containing 1.0, 0.2, 0.1, 0.01, 0.001 and 0.0001 mg/ml ofN. rileyi peptide.
The results of these experiments were used to calculate a linear equation in which Y = 6,81176 + 1,01382 * LOGx
giving a LCsyvalue of 0.0163 mg/ml.
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INTRODUCTION

Many fungi produce secondary metabolites, which
act on other organisms, sometimes causing
inhibition of growth, disease and even death.
Examples of such metabolites include the
aflatoxins produced by some Aspergillus flavus
strains (Diener and Davis, 1969), ochratoxin
produced by A. ochraceus (Myokey et al., 1969;
Kodaira, 1969) and the toxins and antibiotics

* Author for correspondence

produced by members of the genus Penicillium.
Some entomopathogenic fungi  produce
metabolites, which can affect other
microorganisms and insects (Onofre, et al., 1999),
e.g. the fungus Metarhizium anisopliae produces
an insecticidal cyclodepsipeptide called destruxin,
which inhibits the growth of various bacterial
strains (Kodaira, 1962; Kaijiang and Roberts,
1986; Dumas et al., 1995; Jegorov et al., 1995).

Fungi such as Beauveria bassiana, Paecilomyces
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fumosoroseus and Fusarium moniliforme also
produce cyclodepsipeptides, including be auvericin
and the enniatin complex (Kucera and
Sansinakova 1968; West and Buggs, 1968; Hamil
et al., 1969; Richard et al., 1995; Logrieco et al.,
1996). Studies have reported that the fungus
Nomuraea rileyi produces metabolites active
against insects (Ignoffo et al., 1976; Wasti and
Hartmann, 1978; Kucera and Sansinakova 1968;
Mohamed and Nelson, 1984; Ye et al., 1993),
including some metabolites showing toxic activity
against the larvae of Heliothis zea, H. virescens
(Mohamed and Nelson, 1984) and Bombyx mori
(YE et al., 1993).

Defoliating caterpillars are important pests of
Brazilian soybeans and beans, and among these
Anticarsia gemmatalis (the soybean caterpillar)
being the most important (Costa, 1958; Redaelli,
1960; Bertels and Ferreira, 1973; Corseuil et al.,
1974). This pest can be controlled using chemical
insecticides and biological agents such as virus,
bacteria and fungi (Ignoffo et al., 1976) and it has

been shown that N. rileyi can be used for the
biological control of A. gemmatalis when applied
during the first stages of larval development
(Ignoffo et al., 1976). The aim of the present work
was to isolate and purify a peptide produced by N.
riley and to study the effect of this peptide on
insect mortality.

MATERIALS AND METHODS

Fungal Strain: Nomuraea rileyi (Farlow) Samson
strain SA-86101 (Biological Control Division,
Biotechnology Institute, University of Caxias do
Sul, Grande do Sul, Brazil) was isolated from
Anticarsia gemmatalis (Lep.: Noctuidae).

Media: Saboraud, maltose, yeast-extract (SMY)
broth (4% maltose, 1% peptone and 0.5% yeast
extract, pH 6.0) was autoclaved, cooled and
inoculated as shown in Fig. 1.
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Figure 1 - NR-tox; peptide isolation and purification procedure.
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Peptide production and isolation: N. rileyi strain
SA-86101 was grown in SMY medium as
described by Ignoffo et al. (1976) and used to
produce a conidial suspension containing about
2.4x10° conidia/ml, which was inoculated into
vessels containing 12 liters of SMY broth.
Incubation was at 26 + 1°C for 12 days with
constant aeration, after which the culture medium
was filtered to remove mycelia and passed through
several successive Whatman N° 1 filter papers.
NR-tox; was separated in a liquid/liquid extractor
using filtered culture medium : dichlorometane
(10:1) and concentrated in a rotary evaporator at
35°C, the final fractions containing about 135mg/I
of fungal metabolites and other residual material.
Metabolites were isolated using G silica Gel
(0.063 to 0.20 mm) column chromatography with
a solvent (chloroform :methanol : ethyl acetate,
18:1:1) ratio of 100:1 (w/w), Sml fractions being
collected and analyzed wusing thin layer
chromatography (TLC). Similar fractions were
mixed and analyzed by infrared spectroscopy (IR).
After successive purification, crystals were
obtained, which were maintained at 20°C until
needed for chemical and biological analysis.

Bioassays: The peptide described above was
diluted in distilled water to produce solutions
containing 1.0, 0.2, 0.1, 0.01, 0.001 and 0.0001
mg/ml and sprayed onto soybean leaves at
application rates of 100, 20, 10, 1 and 0.1 pg/cm’.
The leaves were dried in trays for 30 min in a
laminar flow chamber, each tray containing a
different peptide concentration and application
rate. For the bioassay 50, A. gemmatalis 3™ instar
larva were placed in each tray and incubated at
~25°C under a 12h photoperiod. The mortality
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rates were observed each day. Control
experiments were conducted as above except that
leaves were sprayed with distilled water instead of
protein solution. Three replicates were made for
each treatment and the larvae were kept until they
either died or pupated. Data were analyzed using
Probit analysis (Sokal, 1958; Finney, 1971) and
LCs values calculated.

RESULTS AND DISCUSSION

Chemical analysis showed that the N. rileyi
metabolite (NR-tox,) active against A. gemmatalis
had a positive ninhidrin reaction, a melting point
of 244.4°C and was soluble in water, ethanol and
methanol. Infrared and ultraviolet spectral data
(Figures 2 and 3) coincided with those expected
for an oligopeptide.

Table 1 and Fig. 4 show the insecticidal activity of
the isolated peptide on A. gemmatalis 3™ instar
larvae. The highest mortality rates varied between
82.66% and 80.00 for the 1.0, 0.2, and 0.1 mg/ml
peptide concentrations, with no statistically
significant differences between them (Table 1),
although they were all significantly different to the
other concentrations (0.01, 0.001 and 0.0001
mg/ml) which gave significantly lower mortality
rates. The 40% mortality rate given by the 0.01
mg/ml concentration was significantly different to
the 0.001 and 0.0001 mg/ml concentrations, but
significantly lower than the mortality rate given by
the higher concentrations.
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Figure 2 - Infrared spectrograph of a peptide (NR-tox;) produced by entomopathogenic Nomuraea

rileyi active against Anticarsia gemmatalis.
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Figure 3. Ultraviolet spectrograph of a peptide (NR-fox;) produced by entomopathogenic Nomuraea

rileyi active against Anticarsia gemmatalis.

Mortality data submitted to linear regression
resulted in the equation: Y = 6,81176 + 1,01382 *
LOGx which gave the estimated LCs, value as
0.0163 mg/ml with a 95% confidence interval of
0.0100 to 0.0266 (p=5%) These results for the N.
riley peptide agree with those reported by YE, et
al., (1993) who demonstrated that purified

peptides extracted from fungal culture media
showed insecticidal activity against B. mori,
Prodenra litura and Pieris rapae larvae.
Mohamed and Nelson (1984) reported that N. riley
crude extracts caused 42, 48 and 72 h mortality
rates of 23.3, 44.5 and 68.9% for H. virensens
larvae and 28.7; 53.8 and 78.3% for H. zea larvae.

Table 1 - Percentage mortality and mean lethal time for 4. gemmatalis 3™ instar larvae exposed to different

concentrations of (NR-tox;) peptide.

(IVR-tox;) peptide % Mortality Lethal time
(mg/ml) (0= SD)' (days)
1.0 82.6 +9.2a° 6.8
0.2 81.0+6.3a 7.7
0.1 80.0 + 8.4a 7.8
0.01 40.0+3.5b 8.8
0.001 10.0 +1.5¢ 9.1
0.0001 2.0+ 0.4c 10.0

"Mean + Standard deviation

2 Numbers followed by the same latter present no statistical differences (Duncan’s test, P < 0,05).

The insecticidal activity of the N. rileyi peptide
described in this paper demonstrated similar
toxicity to that of other metabolites produced by
entomopathogenic fungi such as B. bassiana,
which produced beauvericin and the enniatin
complex, both of which were effective against
Calliphora erythrocephala and Aedes aeggypti
larvae (Grove and Pople, 1980). In a study on the
effect of beauvericin on Spodoptera exigua larvae,
Boucias et al. (1994) showed that 86% of treated

larvae exhibited tetanic paralysis within 6 hours of
treatment and mortality rates of about 26% after
24h, 45% after 36h and 73% after 72h. The
entomopathogenic fungus M. anisopliae also
produced toxins, known as destruxins, which have
been shown to be toxic to the larvae of 4. aegypti,
Galleria mellonella, Delia antiqua, Cetonia
aurata, Oryctes rhinoceros, Choristoneura
fumiferana, Schistocerca gregaria, Periplaneta
americana and Aedes albopictus (Crisan, 1971;
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Poprawski et al., 1995; Fargues, et al., 1985;

Kopecky et al., 1995; James et al, 1995;

Fargues et al., 1986; Huxman et al., 1989; Brousseau et al., 1996).
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Figure 4 - Mortality of the soybean caterpillar A. gemmatalis as a function of peptide concentration (mg/ml).

antimicrobial and insecticidal
activity of N. riley metabolites is well
documented, the chemical structure and
mechanism of action of these metabolites are as
yet undefined. Such metabolites are important
potential instruments to encourage the use of
entomopathogenic fungi in pest control, p romoting
an integrated approach to pest control. These
metabolites could be used as insecticides or
antibiotics, with some having the potential for
large-scale production for insect control in the
field. However, perhaps the most important use of
insecticidal metabolites of entomopatho -genic
fungi is in the investigation of insect mortality
genes and the use of this knowledge to produce
more virulent fungal strains. Insertion into plants
of genes for insecticidal metabolites, generating
plants less susceptible to insect attack, is an
important area for future research.

Although the
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RESUMO

Este trabalho objetivou determinar a CL sy de um
peptideo produzido pelo fungo N. rileyi, para larvas
de 3° instar de 4. gemmatalis. O peptideo foi
produzido através de fermentagdo aerada, em meio
SMY, sob condigdes controladas por 12 dias. O
metabolito foi purificado, utilizando -se de sistemas
de cromatografia. Os cristais obtidos foram entio
armazenados a baixa temperatura para posterior
analise da atividade biologica. Os experimentos
foram conduzidos em 3 repetigdes, com tratamentos
que consistiram de solu¢des com 0,0001; 0,001;
0,01; 0,1; 0,2 e 1,0 mg/mL. Através de analise de
regressdo chegou-se a equagdo da reta Y = 6,81176
+1,01382 * LOGx e um valor para CL 5, de 0,0163
mg/mL.
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