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Abstract: Diatoms are the major group of microalgae which have been utilized by the potential applications 

as food industries, aquatic feeds, cosmetics, biofuels, and pharmaceuticals. In this study, current approaches 

were made in order to determine growth rate, biomass productivity, protein, carbohydrate, lipid and fatty acid 

composition for Nanofrustulum shiloi cultures using both aeration and mixing conditions in flat-plate 

photobioreactor (PBR). Physical (the intensity of aeration, mixing, light intensity etc.) and chemical (nutritional 

materials) factors are affecting the growth and bioproduct contents of a diatom. Biomass and lipid 

productivities of N. shiloi were measured as 31.29 and 36.9622±0.0598 mg L-1 day-1 in flat-plate PBR having 

the combination of aeration and stirring system, respectively. A slightly higher amount of saturated fatty acids 

was detected in PBR having only bubbling system while the increase of mono- and poly- unsaturated fatty 

acids were found in PBR having the combination of aeration and stirring system. Flat-plate PBR design was 

also investigated for improving not only biomass but also the lipid productivity of N. shiloi.  

Keywords: biochemical concentration; diatom; fatty acid profiles; flat-plate photobioreactor; Nanofrustulum 

shiloi  

 
  

HIGHLIGHTS 
 

 Growth and lipid profile determined using both aeration and mixing conditions. 

 Higher lipid productivity found in PBR using only bubbling system. 

 Fatty acids increased in PBR using the combination of bubbling and stirring system. 
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INTRODUCTION 

Microalgae have been produced for a human and animal consumption as high valuable chemicals [1].  

The fresh and marine microalgae biomass provides rich sources of protein, fatty acids, polysaccharides, 

carotenoids, amino acids [2], which has an encouraging future in food, feed, medicine and biotechnological 

applications.  

Light intensity, mixing, temperature, CO2, dissolved oxygen, nutrient supply, and pH are the most 

important growth factors of algae. The two different systems of microalgae cultivation can be performed in 

open (raceway ponds, tank and pond) and closed systems (bubble columns, airlift, flat-plate, stirred tank, 

tubular, conical, and torus photobioreactors-PBR) [3]. Open systems are low capital and cost efficient but 

bring about various problems such as very low cell concentration, low mass productivity, contamination, 

susceptibility to climate as rain, and increases rate of vaporization. On the contrary, PBR provides an 

enclosed growing condition for algae growth parameters such as light distribution, light intensity, temperature, 

mixing, mass transfer and pH. PBR design of geometry is to get an efficient availability of light. Apart from 

light, the hydrodynamics perform the most important operations in the development of a PBR. A gassed fluid 

transfer depends to bubbling size as well as liquid circulation velocity is important bioprocessing parameters. 

Mixing is also one of the most important roles in PBR performance such as eliminating gradients of 

concentration, temperature and other properties. Mixing can not only enhance biomass productivity in fluid 

by enhancing mass transfer, ensuring light intensity distribution, sufficient CO2 transfer and maintaining 

uniform pH but also prevent sedimentation in a PBR [4-7].  

Flat-plate PBR provides a large illumination surface area due to their provided from either one or both 

sides of the reactor. The PBR has the advantage that it can be lower power consumption, high mass transfer 

capacity and long lifespan when compared the closed system PBRs. Challenges of PBR including possible 

damage to cells based on high light intensities can be caused photo-inhibition and can be also difficult to 

control of aeration in the system [4-8].  

The aim of this study is to investigate the only bubbling system and the combination of bubbling and 

stirring system using a magnetic stirrer in a flat-plate photobioreactor for the increase of biomass productivity, 

protein, total sugar, lipid concentration and fatty acids components of Nanofrustulum shiloi.  

MATERIAL AND METHODS 

Morphological observations and molecular identification 

Benthic diatom was isolated from Aegean Sea in Turkey and identified by morphological characteristics 

on the basis of observations under bright field (Olympus BX53, Japan 60X) and by scanning electron 

microscopy (SEM- Philips XL-30S FEG). For DNA extraction, the cultured strain (500 μL) was harvested by 

centrifugation at 10,000×g for 2 min and the cell pellet was used in the DNA Kits (Zymo Research) and stored 

at -20 °C. PCR primers targeted to link 18S rDNA (AT-F, 5’-YACCTGGTTGATCCTGCCAGTAG-3’ and AT-

R, 5’-GCTTGATCCTTCTGCAGGTTCACC-3’). PCR protocol was performed with the following conditions: 

94 °C for 2 min, following 35 cycles of 94 °C for 20 s, 55 °C for 30 s, and 72 °C for 2 min, and a final extension 

at 72° C for 5 min. PCR products were viewed in an agarose gel with stained under a UV light. In the DNA 

sequencing step, dye-terminator sequencing was done using the primers and the nucleotide chromatograms 

were determined by DNA sequencer (Applied Biosystems 3130XL).  

The sequences obtained in this study were deposited in NCBI GenBank and the accession numbers of 

KR149459.  
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Nanofrustulum shiloi (J.J.Lee, Reimer & McEnery) Round, Hallsteinsen & Paasche (EGEMACC 47) was 

added in the Microalgae Culture Collection of Ege University, Izmir-Turkey (http://www.egemacc.com) for 

safe storage The sample was grown in aired sterile bottle (1 L), containing 900 mL of BG-11 medium including 

20 g/L sea salt at 20±2 °C  under the continuous light supplied by cool-white fluorescent. The cells were used 

as inoculant with the concentration of 10% (v/v) for flat-plate photobioreactors experiments.  

Flat-plate photobioreactor design 

The characterization of a 7 L flat- plate PBR composed of Plexiglas enclosed in a rigid metal frame with 

the dimension of 0.34 m height, 0.145 m length and 0.082 m width with a working volume of 6 L was equipped 

with an online controller (Biosis, Pikolab, Turkey). A temperature-dissolved oxygen probes and pH probe 

were located in the upper part of the PBR. The culture pH and dissolved oxygen was measured by a sensor 

and the temperature was maintained at 22±2 °C in the temperature-controlled incubator.  Additionally, the 

ratio of illuminated surface area to reactor volume of the flat-plate PBR was calculated as 12.19 m−1 [9]. PBR 

made of stainless steel was autoclaved at 121 °C for 15 min prior to use. Two different mixing systems were 

used in flat-plate. In the first PBR, only air bubbling-U type aeration system (Figure 1A) was used with the 

aeration rate of 4 L min−1 controlled using flow meter (RST electronic Ltd, LZM-6T Turkey). The other PBR 

was used both air bubbling-L type aeration system and magnetic stirrer (IKA) (Figure 1B) with the aeration 

rate of 4 L min−1at a mixing rate of 150 rpm. Illumination was provided under a 16:8 h light:dark cycle on the 

frontal plate by light emitting diodes lamp (LED-Cata 10W CT-5254) with a light intensity of 50 μmol photons 

m−2s−1.  

KLa, the final steady dissolved oxygen concentration ČAL, can be estimated using two points from several 

values of (CAL1, t1) and (CAL2, t2). When In(ČAL − CAL1
ČAL − CAL2
⁄ ) is plotted against (t2- t1), the slope is 

KLa. 

 
Figure 1. Schematic diagram of bioreactor geometries used for phototrophic diatom cultivation A: air bubbling system 

(U-type airing), B: combination of air bubbling and stirring system (L-type airing) 

Analytic procedure 

Samples were taken at two days intervals in the batch culture period of 20 days and the following growth 

parameters (the cell number, turbidity, chlorophyll-a, -c and fucoxanthin concentration) were measured.  

The cell concentration was determined by counting duplicate samples in a Neubauer hemocytometer. 

Dry weight was determined in duplicate by filtering a 5-mL culture sample through preweighed filters 

(Macherey-Nagel MN GF-3) and weighed after drying the cell mass at 65 °C for overnight. The optical density 

of the culture was evaluated by using a spectrophotometer (Ultraspec 1100 pro, Amersham), at λ=600 and 

680 nm.  

The specific growth rate (µ) of the cells was calculated from the initial logarithmic phase of growth for at 

least 72 h, as µ = (ln X2− ln X1)/dt, where X2 is the final cell concentration, X1 is the initial cell concentration 

and dt is the time required for the increase in concentration from X1 to X2. Doubling time (Dt) was also 

calculated as Dt = ln 2/µ.  

For the chlorophyll-a, -c and fucoxanthin measurement, cells were harvested at 5500 rpm for 5 min. 

Pigments in the cells was extracted with aceton:methanol:H2O (3:1:1) for 30 min at 30 °C in sonic bath (Hydra, 

Ultrasonic, Turkey) under total darkness. The amount of chlorophyll-a (Equation 1), -c (Equation 2) and 

fucoxanthin (Equation 3) was determined spectrophotometrically by measuring the light absorption at 
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different wavelengths (664, 631, 581, and 470 nm) [10]. The pigment contents were calculated by using the 

following equation: 

Chlorophyll a = A664/73.6                                                                                        (1) 

Chlorophyll c = (A631 + A581 - 0.3A664)/62.2                                                             (2) 

Fucoxanthin= (A470 - 1.239(A631+ A581- 0.3A664) -0.0275A664)/141                          (3) 

Total lipid was extracted by a modified method of Bligh and Dyer which is reported in Sahin and coauthors 

[11]. The carbohydrate and protein contents of N. shiloi cells were determined by the phenol-sulfuric acid [12] 

and modified Lowry methods [13], respectively. Fatty acids composition were analyzed by GC-FID (Typical 

Agilent 6890 GC Gas Chromatograph FID System) using the Turkish standard methods TS EN ISO 12966–

2:2017 and TS EN ISO 12966-4:2015. 

Results from tracing duplicate samples are presented in figures and tables, and the data for 

each experiment were averaged. The experimental data were analyzed by one-way ANOVA. A probability of 

p-value is less than 0.05 level was considered to outcome a statistically significant. 

RESULTS AND DISCUSSION 

Photobioreactor (PBR) has to be considerable reactor types for the biomass cultivation of photosynthetic 

microalgae. The flat-panel PBR owns a lot of good properties such as a high ratio of illuminated surface area 

to reactor volume, temperature control, low energy consumption, a high gassed liquid transfer rate and high 

photosynthetic efficient [5-8]. In this study, only bubbling system and both magnetic stirring and bubbling 

system in flat-plate PBR was investigated for benthic diatoms, Nanofrustulum shiloi, isolated from the sea 

sand of Aegean Sea in Izmir-Turkey.  

 

Figure 2. Light microscopy observation (63 x magnification) for N. shiloi (A) and identification of diatom with SEM image 
(50000x) (B-C) 

Nanofrustulum shiloi (J.J.Lee, Reimer & McEnery) Round, Hallsteinsen & Paasche Figure 1; N. shiloi is 

not easy to identify under light microscopy based on due to its tiny oval valve for many araphid diatoms [14]. 

As seen in Figure 2 A, Cells unit in short chains, bound with interlocking marginal head spines. Valves are 

circular to partially oval nearly 2.7-3.9 µm diameter. Valve surface flat is mantle curved or vertical. Frustules 

are rectangular, forming chains linked by interlocking marginal spines. The valves observed were circular, as 

are centric diatoms, but with the sternum central (SEM Figure) or slightly eccentric (Figure 2 B-C). Marginal 

head spines were contained peripherally across the rows of areolae (Figure 2 B-C).  

In general, the advantages of flat-plate PBR are high biomass productivity and uniform distribution of 

light on the plate side. Aeration rate is a major parameter that improving the growth of microalgal cells. Gas 

aeration is supplied to the cell growth and to control of pH, reduce nutrients gradient in the medium, avoid 

cell sedimentation, emergence of dead zones, clumping of cells, and fouling in the PBR, as well as increase 

the photosynthesis [15]. However, high liquid velocities and turbulence of too much mixing may be produce 

damage of shear-selective cells [16,17]. 

N. shiloi comprised of shorter chain forms in the combination of bubbling and stirring system of PBR (L 

type airing) but rigid long chain forms produced in only bubbling system of flat-plate PBR (U type airing). 

Fragmentation cells of short chain diatom increased cell number while decreased specific growth rate in U 

type aeration reactor, as shown in Table 1, Figure 3A. Because fragmentation of chain diatoms is intrinsically 

sink faster than elongation of chain diatoms. PBR having the combination of air bubbling and stirring system 

reached the highest specific growth rate (0.4573 day-1) with the biomass productivity of 31.29 mg L-1 day-1 

A B C 
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due to the increase of the volumetric mass transfer coefficient (KLa) enhanced photosynthesis especially for 

chlorophyll-a (1.3179±0.0136 mg L-1) and fucoxanthin concentration (23.0263±0.0124  mg L-1 ) (Table 2).  

Furthermore, chain length affects the sinking rate of diatoms so as to longer chain stand buoyancy for longer 

times in the light absorption and nutrient uptake [18]. Takabayashi and coauthors [19] reported that the 

sinking rate of long chain forming diatom Skeletonema costatum was related to suspended in upper water 

column and so likely achieve the chemical and physical conditions for growth.  However, chain formation may 

be important for biotechnological applications due to the simple collection of biomass in bioreactors. Thanks 

to the manipulation of chain form in photobioreactor could enhance biomass gathering and easily separation 

form the medium using sedimentation.  

 

 
Figure 3. Optic density and cell number of N. shiloi growth in flat-plate PBR using U (only bubbling)-A and L type airing 

(combination of bubbling and stirring)-B 

Table 1. Specific growth rate, doubling time and biomass productivity of Nanofrustulum shiloi 

 KLa  
(s-1)  

Specific growth 
rate (day-1) 

Doubling time 
(day) 

Biomass productivity 
(mg L-1 day-1)     

U type airing (only bubbling) 0.0078 0.2816   2.4620 19.095 

L type airing (combination of 
bubbling and stirring) 

0.0194 0.4573  1.5157 31.29 

 

N. shiloi was selected microorganism because of its explicit fast growth and highest biomass amount in 

culture, generally considered as feed to aquatic animals. Kiron, 2012 stated that about general composition 

of Nanofrustulum evaluated to include ash 530.7, protein 118.9, lipid 31.4, moisture 31.5 (dry weight, g kg-1) 

for utilize in fishmeal for Atlantic salmon, common carp and whiteleg shrimp. Atlantic salmon can be tolerated 

at 17% of lipid-extracted Nanofrustulum mass in the diet [20, 21]. Furthermore, Nuzzo and coauthors [22] 

reported that N. shiloi included significant level of sterol sulfates as brassicasterol sulfate (24 β-methyl-22-

dehydrocholesterol) (5.94±1.0 µg mg-1) and fucosterol sulfate (24‐ethylidene cholesterol) (60.69±7.3              

µg mg-1). Fucosterol as a phytosterol can be found in cyanobacteria, algae, seaweeds and diatoms. 

Fucosterol has various biological therapeutics activities such as anti-cancer, anti-diabetic, anti-oxidant, 

cholesterol lowering, blood vessel thrombosis preventive [23]. In this study, maximum lipid content was found 

as 26.3226±0.0357% dry cell biomass in flat-plate PBR (only bubbling system) using U type airing, whereas 

maximum lipid productivity was obtained in flat-plate PBR using L type airing (combination of bubbling and 

stirring) in this study. The higher lipid productivity was attained in PBR having only bubbling system.  At the 

end of the production the dry weight was obtained as 0.38 g L-1 and 0.6258 g L-1 in PBR having only bubbling 

system and having the combination of bubbling and stirring system, respectively. Effective mixing was 

achieved in PBR having the combination of bubbling and stirring system, therefore biomass productivity was 

higher than PBR having the only bubbling system. In this reason, lipid productivity per biomass has been 

detected higher in PBR having only bubbling system. Also, the highest KLa of 0.0194 s-1 was found in PBR 

having the combination of bubbling and stirring system indicated that effective mixing is occurred. The lower 

mixing in PBR using U type airing (only bubbling system) may be reduced the photosynthetic efficiency 

(0.8673±0.0408 mg L-1 chlorophyll-a and 18.4070±0.1372 mg L-1 fucoxanthin concentration) (Table 2). 
  

A B 
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Table 2. Maximum protein, carbohydrate and lipid concentration of Nanofrustulum shiloi 

 U type airing 
(only bubbling) 

L type airing (combination 
of bubbling and stirring) 

Max. protein concentration 

(mg mL-1) 
0.0858±0.0035 0.2551±0.0037 

Max. carbohydrate 

concentration 

(mg mL-1) 

0.1139±0.0039 0.0831±0.0013 

Lipid content 

(%) dry cell biomass 
26.3226±0.0357 23.6025±0.0490 

Total lipid productivity  

(mg L-1 day-1) 
25.1312±0.0588 36.9622±0.0598 

Max. chlorophyll-a 

(mg L-1) 
0.8673±0.0408 1.3179±0.0136 

Max. fucoxanthin 

(mg L-1) 
18.4070±0.0137 23.0263±0.0124 

 

This was related to biomass formation during the cultivation. Generally, diatoms have been reported to 

have high contents of the myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1) and 

eicosapentaenoic acid (C20:5), with only trace contents of C18 fatty acids [24, 25]. However, N. shiloi 

contained palmitic acid (C16:0); tricosanoic acid (C23:0); palmitoleic acid (C16:1) and cis-5,8,11,14,17-

eicosapentaenoic acid (C20:5) as major fatty acid profiles, while minor amount of arachidic acid (C20:0) and 

cis-13,16-docasadienoic acid (C22:2). In fatty acid components, diatoms are involved both short/middle-chain 

fatty acids and very long chain-polyunsaturated fatty acids. Middle chain fatty acids are preferred the biodiesel 

production for less viscous whereas long chain fatty acids as omega 3 fatty acids (eicosapentaenoic acid and 

docosahexaenoic acid) with application in pharmaceutical and nutraceutical industries [26,27]. Fatty acid 

composition is also shown to be highly variable by diatoms depending on the species and growth conditions 

such as chemical composition, light intensity and temperature fluctuate [11,28,29]. The lower growth rate 

found in PBR using U type airing led to higher proportion of saturated fatty acids, whereas the higher growth 

rate found in PBR using L type airing resulted in higher fractions of unsaturated fatty acids. Furthermore, this 

work emphasized that the chain form composing diatoms was important effect for mixing and/or bubbling 

changes on lipid, protein and carbohydrate concentrations. 

Table 3. Fatty acids profiles of Nanofrustulum shiloi (n=1) 

Fatty acids compositions U type airing L type airing 

Sum of Saturated (%) 45.178 41.791 
Myristic Acid (C14:0) 1.387 1.420 
Pentadecanoic Acid (C15:0) 0.649 0.560 
Palmitic Acid (C16:0) 33.95 28.26 
Heptadecanoic Acid (C17:0) 0.500 0.429 
Stearic Acid (C18:0) 3.226 3.789 
Arachidic Acid (C20:0) - 0.089 
Behenic Acid (C22:0) 0.888 0.957 
Tricosanoic Acid (C23:0) 4.578 6.287 
Sum of Mono-unsaturated (%) 44.961 45.578 
Palmitoleic Acid (C16:1) 41.46 41.93 
Trans Oleic Acid (C18:1n9t) 2.574 2.769 
Erucic Acid (C22:1n9) 0.819 0.793 
Nervonic Acid (C24:1) 0.108 0.086 
Sum of Poly-unsaturated (%) 9.769 12.619 
Linoleic Acid (C18:2n6c) 2.843 3.045 
Trans Linolenic Acid (C18:3n6) 2.308 2.438 
cis-8,11,14-Eicosatrienoic Acid (C20:3n6) 0.166 0.134 
cis-13,16-Docasadienoic Acid (C22:2) 0.052 0.033 
cis-5,8,11,14,17-Eicosapentaenoic Acid (C20:5) 4.400 6.969 

 

The sum of saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated fatty acids (PUFA) of N. 

shiloi cultivated in U type airing flat-plate PBR (only bubbling) were 45.178%, 44.961% and 9.769% of the 

total fatty acids whereas the values were 41.791%, 45.578% and 12.619%, in L type airing flat-plate PBR 
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(combination of bubbling and stirring), respectively. Sahin and coautohrs [11] reported that N. shiloi cultivated 

in 2 L sterile bottle at the temperature of 22±2 °C with the aeration of 2 L min-1 was found in standard BG-11 

with the SFA, MUFA and PUFA proportions of 64.79%, 29.85% and 5.35%, respectively. In flat-plate PBR 

having the combination bubbling and stirring system, the content of unsaturated fatty acids was observed 

higher than in PBR having the only bubbling system. 

CONCLUSIONS 

The marine benthic diatom Nanofrustulum shiloi, was produced in a flat-plate photobioreactor for 

screening both aeration and mixing conditions included growth rate, lipid, protein and fatty acid composition. 

The results showed that the growth rate and fatty acid composition increased in PBR having the combination 

bubbling and stirring system. To further increase the lipid production, future investigations should focus on 

the augmentation of unsaturated fatty acids for utilization of these metabolites in medical, food, feed and 

biofuel industries. The results of this study have demonstrated that flat-plate photobioreactors could operate 

at high efficiency for diatom cultivation. 
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