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Abstract:  

Technological accidents can be vast in scope and require a rapid response to evacuate the affected 
region. Access routes to nuclear power stations are essential for the preparation of emergency 
plans in the event of technological disasters. The Admiral Álvaro Alberto Nuclear Power Plant 
(Central Nuclear Almirante Álvaro Alberto - CNAAA) in Angra dos Reis, Brazil, is located in a region 
with high rainfall and rugged terrain. This article presents digital image processing and 
geoprocessing procedures for mapping landslide-susceptible areas and landslide scars associated 
with the CNAAA access routes. Digital Elevation Models and their derivations were used to identify 
landslide-susceptible areas, and LANDSAT images were used to map the land cover. The 
information was superimposed, and the hazard areas and potential landslide scars were mapped. 
Most of the study area is medium or high risk for landslide events. Landslides scars mapping 
achieved over 50% of accuracy representing a potential methodology for the risk assessment and 
landslides monitoring in the study area. The results demonstrate that further and detailed studies 
must be performed in the areas in order to maintain the access roads available for eventual 
evacuations in a technological disaster event. 
 
Keywords: Hazard; Landslides; Technological Accidents; Object Based Image Analysis. 

 

Resumo:  

Acidentes tecnológicos podem ter vasta abrangência e necessitam rápida resposta para evacuação 

da região afetada. As vias de acesso para centrais nucleares são fundamentais para elaboração de 

planos emergenciais em caso de desastres tecnológicos. Na Central Nuclear Almirante Álvaro 

Alberto (CNAAA) em Angra dos Reis (RJ), as vias de acesso e sua própria estrutura localizam-se em 
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região com altos índices de precipitação e relevo bastante acidentado. Este artigo visa apresentar 

procedimentos de processamento digital de imagens e geoprocessamento para o mapeamento 

de áreas de risco e de cicatrizes de deslizamento associadas às vias de acesso do CNAAA. Modelos 

Digitais de Elevação e suas derivações foram utilizados para a identificação de áreas de risco, por 

meio de classificação baseada em objeto. Imagens LANDSAT foram utilizadas para o mapeamento 

da cobertura do solo. As informações foram sobrepostas e as áreas de risco e as potenciais 

cicatrizes de deslizamento foram mapeadas. Os resultados apresentam um diagnóstico sobre a 

susceptibilidade à escorregamentos na área de estudo e das potenciais áreas de risco. As 

informações apresentadas sobre as áreas associadas às principais vias de acesso evidenciam o 

risco de ocorrência de escorregamentos que pode afetar a evacuação da região em caso de 

acidente tecnológico. 

Palavras-chave: Risco; Deslizamento; Acidentes Tecnológicos; Classificação baseada em objeto. 

 

 

1. Introduction 

 

Severe land movements are common in regions with high rainfall and rugged terrain. The 
construction of highways in these regions can increase the possibility of landslide occurrence 
(LARSEN & PARKS, 1997; DAI & LEE, 2001; JAISWAL, VAN WESTEN & JETTEN, 2011; PENNA et al., 
2013; DI MARTINO et al., 2014). The mapping and identification of hazard areas and landslide scars 
in regions with highways is important for the prevention and mitigation of severe events 
(MANCONI et al., 2014). However, mapping and monitoring these events is difficult because 
highways cross extensive areas, and large quantities of data are required to identify the 
characteristics and past events (GUZZETTI et al., 2012). The geomorphological characteristics of 
these regions also make access for in situ assessments difficult. 

Remote sensing techniques can be used as a viable alternative methodology to detect, monitor 
and classify landslides (AKSOY & ERCANOGLU, 2012). Several studies have used the diverse data 
and capabilities of the available satellites and advances in digital image processing technologies to 
assist in the mapping and prevention of landslides (HSIEH et al., 2014, DONG et al., 2014, 
ROESSNER et al., 2014). 

Several approaches and procedures have been used to predict areas susceptible to landslides; 
however, this type of forecast is difficult to perform because of the variety and complexity of 
factors that are related to landslide events, including the lithology, slope form and orientation, 
slope, drainage network, precipitation, vegetation cover, and anthropic factors, such as the road 
network, buildings, and deforestation (VIEIRA, 2007). 

Many authors have cited the relationships between the slope form, slope, and other 
geomorphological characteristics with the occurrence of landslides (TAROLLI, SOFIA & FONTANA, 
2013; DE VITA et al., 2013; PAULIN et al., 2014). The slope form plays an important role in the 
distribution of the water content in watersheds, which in turn influences the erosion process and 
the occurrence of landslides (CHRISTOFOLETTI, 1980). Convex slopes are associated with water 
dispersion, whereas concave slopes are associated with water accumulation and convergence 
(SESTINI, 1999) and are therefore the most susceptible to land movements since they are zones 
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of water flow convergence and contain material that is available for movement (greater quantities 
of deposited material) (MCKEAN, BUECHE &, GAYDOS, 1991, FERNANDES & AMARAL, 1996). The 
slope is the inclination of the terrain with respect to horizontal, and the mass transport velocity 
(solid or liquid) is directly related to it (SESTINI, 1999). Thus, the slope and slope form are 
important data for studies of landslide susceptibility. 

Numerous studies have used Digital Elevation Models (DEMs) from remote sensing data to define 
relief features. Camargo et al. (2012) classified relief forms based on different geomorphometric 
and textural attributes from ASTER/Terra DEM data and obtained a strong correlation between 
the classification and the reference map. Dragut and Eisank (2012) used Shuttle Radar Topography 
Mission (SRTM) data and object-based image analysis (OBIA) to classify the topography over the 
entire Earth’s land surface. The authors decomposed the terrestrial surface into homogeneous 
objects based on elevation data, and the classification criteria were based on the mean elevation 
values and their respective standard deviations. Their results showed regional scale discontinuity 
limits. The application of OBIA to a DEM and its derivations allows the segmentation and analysis 
of several variables in regions of homogeneous relief (EISANK, DRAGUT, BLASCHKE, 2011; 
DOLEIRE-OLTMANNS et al., 2013), which enables the construction of an automated relief 
classification model based on pre-defined parameters for the area being evaluated (CAMARGO et 
al., 2012; DRAGUT & EISANK, 2012). 

Remote sensing data have also been widely used to assess landslide susceptibility by developing 
landslide inventory maps (ALEXAKIS et al., 2014). The identification of landslide scars is 
fundamental to the hazard inventory for understanding the processes that trigger landslides and 
for interventions in the affected areas (PRADHAN & LEE, 2010). 

Several methodologies have been used to identify landslide scars through remote sensing; 
however, a major problem with this type of mapping in mountainous regions is the acquisition of 
high-quality data that allow the processing and identification of scars (BARLOW, MARTIN & 
FRANKLIN, 2003). Aerial photographs, which are commonly used for this type of evaluation 
(MCKEAN, BUECHEL & GAYDOS, 1991), can accurately identify landslides but have high financial 
and processing costs and are often unavailable for the most landslide-susceptible areas. Thus, 
satellite images have emerged as an alternative data source since they can provide a more 
economical evaluation of large landslide-affected areas and allow the analysis of the region 
surrounding such landslides, especially in terms of the land cover dynamics (AKSOY & ERCANOGLU, 
2012). 

Thus, the definition of procedures for mapping hazard areas on a regional scale (1:50,000) using 
free data and automated procedures that can be incorporated and used by public agencies 
responsible for monitoring hazard areas is extremely important for natural disaster management 
associated with important access routes. 

The objective of this article is to propose a strategy for mapping hazard areas and identifying 
landslide scars on a regional scale based on free satellite remote sensing data. The study area is 
the hydrographic basin in which the Admiral Álvaro Alberto Nuclear Power Plant is located in Angra 
dos Reis, Rio de Janeiro state (RJ). The study area contains important regional access routes for 
the power plant, which has the potential for technological accidents. 
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2. Methodology 

2.1 Study area  

 

The study area is the region surrounding the Admiral Álvaro Alberto Nuclear Power Plant (Central 
Nuclear Almirante Álvaro Alberto - CNAAA) in Angra dos Reis, RJ, southeastern Brazil (Figure 1). 
The nuclear power plant has two units in operation: Angra 1, which has operated since 1985, and 
Angra 2, which has operated since 2001 (LOUSADA & FARIAS, 2015). The addition of a third unit, 
Angra 3, is planned for the future. 

The CNAAA is located near Highway BR-101 (a segment of the Rio-Santos Highway), which is the 
main access route for the area. One of the major risk factors related to the CNAAA and its access 
routes are natural disasters such as landslides because of the geomorphological, presented in 
figure 2, and precipitation characteristics (average annual rainfall rate vary from 1,515 mm to 
2,200 mm) of the region (ARAÚJO & OLIVEIRA, 1988). The municipality of Angra dos Reis has a 
history of landslides (PINHEIRO & AGUIAR, 2015), such as the disasters that occurred in December 
2002 and January 2010, which were both associated with intense rainfall events that are typical 
of the tropical rainy season between the months of November and April. 

The region is located in the geomorphological domain of the Serra do Mar escarpments, which 
includes mountainous and rugged terrain. Because the region is covered by unconsolidated 
material, including talus deposits in the foothills (CPRM, 2007), road cuts make the bases of these 
escarpments highly unstable and susceptible to landslides. 
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Figure 1: Location of the study area. 

 

Figure 2: Digital Elevation Model of the study area. 



Landslide hazard mapping near the….                                                                                                                                                                  130 

Bulletin of Geodetic Sciences, 24(1): 125-141, Jan-Mar, 2018 

2.2 Digital Image Processing 

  

Freely available TOPODATA and LANDSAT data were used, and digital image processing and 
geoprocessing techniques were applied to map the landslide-susceptible areas and identify 
landslide scars associated with the main access roads of the CNAAA. Based on the TOPODATA data, 
the land relief was classified into three classes of landslide susceptibility: low, medium, and high. 
The LANDSAT imaging was used to classify the land cover to identify possible landslide scars. The 
results of the land relief and land cover classifications were analyzed together to provide a 
preliminary regional assessment and identify areas for additional analysis with more detailed 
methods. 

The landslide-susceptible areas were mapped using the relief classification obtained from the 
TOPODATA slope and vertical and horizontal slope curvature data. Landslide hazard levels were 
obtained by applying OBIA to the TOPODATA DEMs with a 30-meter interpolation of the SRTM 
data of the Brazilian territory (VALERIANO & ROSSETTI, 2012). According to Sestini (1999), this 
type of information provides the fundamental characteristics for the hazard analysis of a region. 
The following relief variables were used for the classification process: elevation, slope, drainage 
density, and horizontal and vertical curvatures.  

The Figure 3 flowchart summarizes the relief classification using OBIA. Elevation and Slope data 
were used for the segmentation step. In this process the objects are defined by areas that presents 
similar attributes (elevation and slope) in the pixel neighborhood, establishing homogeneous relief 
areas. The scale and shape parameters of the segmentation process were defined according to 
the method of Dragut and Eisank (2012), wherein the shape and compactness factors were set to 
zero, and the scale parameter was defined according to the difference between the local variances 
of the objects. Thus, a scale parameter of 50 was used, which is similar to the value used in Manfré 
et al. (2014). 

The relief classes were defined based on the slope and the vertical and horizontal curvatures. 
Based on Silva Junior, Silva and Pereira (2016), and IPT (2002), six slope intervals, two classes of 
vertical curvature, and two classes of horizontal curvature were defined. 

 

Figure 3. Flowchart of the relief classification process using OBIA. 
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Table 1 shows the susceptibility classes from the classification described above, which include low, 
medium, and high. The levels were defined based on theoretical studies (AZEVEDO, 2016; 
FLORENZANO, 2016; SILVA JUNIOR, SILVA & PEREIRA, 2016; LANGE FILHO, 2016; IPT, 2002 and 
1991) that describe the contributions of the slope and the vertical and horizontal curvatures. 

Table 1. Landslide susceptibility levels defined based on the combination of classes of slope and 
of the vertical and horizontal curvatures. 

  
Slope 
(degrees) 

Vertical 
concavity 

Vertical 
convexity 

Concave 
Horizontal 
Curvature 

0 to 06 Medium Low 

06 to 12 Medium Low 

12 to 20 Medium Medium 

20 to 30 High Medium 

30 to 45 High Medium 

>45 High High 

Convex 
Horizontal 
Curvature 

0 to 06 Low Low 

06 to 12 Low Low 

12 to 20 Medium Low 

20 to 30 Medium Low 

30 to 45 Medium Medium 

>45 High High 

  

The landslide scars were identified by means of a supervised classification of the land cover in the 
area of the watershed in question. The land cover classification used two images from the 
LANDSAT 8 satellite (orbit points 217-076 and 218-076 from August and September 2015, 
respectively) to cover the entire study area. In order to minimize topographic and radiometric 
influences on the classification process, the Level-1 Precision and Terrain Corrected Product (L1TP) 
was used. This product provides radiometric and geodetic accuracy by incorporating ground 
control points and employs Digital Elevation Models (DEM) for topographic displacement.  

The classification process was performed using the following bands: Blue, Green, Red, NIR, SWIR 
1 and SWIR 2. Normalized indexes, such as NDVI (Normalized Difference Vegetation Index), NDWI 
(Normalized Difference Water Index) and NDBI (Normalized Difference Built-up Index) were also 
used in order to minimize the effects of topographic shading (SABOL JR. et al. 2002). Besides, those 
help to enhance the classification accuracy, by providing extra dimensions of separability.  

Training areas for the defined land cover classes were selected in each image to identify bare soil 
areas, which were most representative of recent scars. The following land cover classes were 
defined: urban areas, bare soil, low vegetation (pasture and grasses), high vegetation (bushes and 
forests), and water.  

According to Mather (2003), the minimum number of training areas per class for the specifications 
of this study (8 discriminant bands and 5 classes) must at least 48. In this sense, one hundred 
training areas were collected for each class. The Support Vector Machine (SVM) classifier was used 
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with the radial basis function kernel (SHAFRI & RAMLE, 2009) and a gamma value of 0.5. The 
penalty parameter was 500, and the classification probability threshold was 0. 

To evaluate the accuracy of the resulting classification, validation samples, of 600 pixels for each 
class were collected adopting the stratified random sampling strategy (SMITS, DELLEPIANE & 
SCHOWENGERDT, 2010). 

The results of the relief and land cover classification were analyzed together by the spatial 
intersection of the two datasets. Thus, bare soil areas located in regions of medium or high 
landslide susceptibility were considered potential landslide scars. 

To evaluate the association of landslide scars and hazard areas with CNAAA access routes, a 500-
meter analysis zone was defined around the access routes (GROWLEY, 2008). Each of the potential 
landslide areas was evaluated individually by means of visual interpretation, assessing the spectral 
behavior, shape and topography, according to Jaboyedoff et al. (2009), which identified the areas 
that corresponded to landslide scars and were identifiable on the LANDSAT 8 images.  

 

3. Results 

 

The results of the supervised land cover classification are presented in Figure 4. The classification 
result accuracy evaluation had a kappa index of 0.79 and 86.86% of overall accuracy. The 
confusion matrix and the commission and omission errors, presented in Table 2, show the detailed 
accuracy assessment, and it is possible to notice that main misclassification were among the Bare 
Soil and Urban Areas classes. 

Table 2. Confusion Matrix and Commission and Omission Errors for the land cover classes. 

 Urban 
Areas 

High 
Vegetation 

Water 
Bare 
Soil 

Low 
Vegetation 

Total 
Commission 

Error 
Omission 

Error 

Urban 74.82 0 2.55 19.92 0.75 11.1 17.86 25.18 

High 
Vegetation 

3.49 95.41 6.57 10.83 5.6 53.88 5.37 4.59 

Water 0 4.15 75.2 0.19 0.12 13.51 16.63 24.8 

Bare Soil 0.12 0 0.39 59.38 0.37 0.85 13.79 40.62 

Low 
vegetation 

21.57 0.44 15.29 9.67 93.15 20.65 46.8 6.85 

Total 100 100 100 100 100 100 - - 

 

The high vegetation class is predominant in the study area. Bare soil occurs sparsely throughout 
the basin and in isolated areas. However, bare soil patches are also located in urban areas, 
especially in the northeast region of the basin. Small urban clusters and small patches of low 
vegetation are distributed along the coastline. 

Figure 5 shows the landslide susceptibility map of the study area. Areas of high landslide 
susceptibility are distributed throughout the study area. In addition, the eastern portion of the 
study area contains a greater concentration of areas classified with low and medium 
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susceptibilities. A comparative analysis of the two maps shows that this region has the largest 
amount of human development the study area, which is likely because of the favorable terrain.  

Table 3 shows the area (in hectares) and percentage of each land cover class and the landslide 
susceptibility level for the watershed and for the CNAAA access route zone. 

In the watershed, most bare soil and urban areas (57% and 62.50%, respectively) are located in 
regions with average landslide susceptibility. 

Table 3. Areas and percentages of land cover classes for the study watershed and for the access 
route zone by landslide susceptibility level. 

 Class Water 
Low 

Vegetation 
Bare soil Urban Areas High vegetation 

 
Susceptibility 

Area 
(ha) 

% 
Area 
(ha) 

% 
Area 
(ha) 

% 
Area 
(ha) 

% Area (ha) % 

St
u

d
y 

W
at

er
sh

ed
 

Low 1,350  18%  11,172  22% 660 37%  2,950  27%   50,915  18% 

Medium 4,310  56%  32,063  62% 1,106 62%  7,680  70%  135,314  46% 

High 1,991  26%  8,584  17% 22 1%  301  3%  105,366  36% 

Total 7,649  100%  51,819  100% 1,787 100%  10,930  100%  291,594  100% 

A
cc

es
s 

R
o

u
te

 
In

fl
u

en
ce

 Z
o

n
e Low 309  24%  2,745  19% 207  35%  1,272  25%    3,656  17% 

Medium 936  71%  10,544  72% 385  64%  3,716  73%   12,481  56% 

High 65  5%  1,370  9% 6  1%  128  3%    5,954  27% 

Total 1,309  100%  14,659  100% 598  100%  5,116  100%   22,089  100% 

 

The areas with high landslide susceptibility are mainly associated with the Serra do Mar 
escarpments because they have the most steeply sloping terrain. The predominant land cover 
class in these areas is high vegetation (36%), which corresponds to the Atlantic Forest. The class 
with the second highest percentage of high susceptibility area is water (26%), which is likely due 
to the confusion of the classifier because of shadows in areas of high vegetation. The class with 
the third highest percentage of high susceptibility area is low vegetation (17%), which is because 
it is more vulnerable to rainfall erosion and because it has less stable roots than the forest 
vegetation. These factors increase the instability of the slope and favor the occurrence of 
landslides (BIERMAN & MONTGOMERY, 2014). 

The CNAAA access route zone has a similar pattern to that of the basin study area; 63.8% of the 
urban areas and 57% of the bare soils are located in areas of medium susceptibility. The same land 
cover pattern is observed at the highest susceptibility level. 

The evaluation of bare soil areas in areas of medium or high landslide susceptibility identified 
217.05 hectares of landslide scars, which corresponds to 53.77% of these susceptibility zones. 
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Figure 4. Map of the land cover in the study area based on LANDSAT 8 images from August and 
September, 2015. 

 

 

Figure 5. Map of landslides susceptibility of the study area based on TOPODATA data. 
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4. Discussion 

 

The landslide susceptibility classification showed that the study area has high susceptibility along 
the whole watershed, exposing a critical situation for the landslide events occurrence. This 
characterization indicates that a detailed topographic inventory in a larger scale, around CNAAA, 
is paramount to define a preventive plan for the risk areas.  

The land cover classification showed a kappa index of 0.79, which is a very good classification 
according to Landis and Koch (1977). However, several classification errors occurred, especially 
between the water classes and high vegetation. The classification errors are due to the existence 
of shadows in sloping areas, which alter the spectral responses of the targets. This factor results 
in changes in the statistics of the land cover classes by level of landslide susceptibility. 

Confusion also occurred between the classifications of bare soil and urban area. According to 
Whitford, Ennos, and Handley (2001), classification errors between these two classes mainly occur 
due to roof tile materials, which produce a similar spectral behavior in urban areas and some types 
of bare soil. 

When analyzing the map shown in Figure 5, it is important to highlight that the CNAAA is located 
in a region with many areas classified as high landslide susceptibility. The watershed generally 
contains only small regions of low landslide susceptibility. This information is demonstrated by the 
results shown in Table 3. In general, the results provide an important preliminary characterization 
of the landslide susceptibility and hazards in the watershed in which Brazil’s only nuclear power 
plant is located. 

According to Dias & Herrmann (2006) and Piedade et al. (2011), landslide susceptibility and hazard 
mapping requires detailed information about the soils, lithology and climate of the studied region. 
However, these data are often not available at a scale suitable for regional studies. Therefore, the 
presented methodology allows the preliminary regional evaluation to identify areas that should 
be analyzed in more detail. 

The integrated assessment of the land cover map and the landslide susceptibility map provided 
important information about the pattern of occupancy and presence of hazard areas in the 
watershed since it is possible to identify urban areas in regions that are naturally susceptible to 
landslides. In addition, it revealed areas with the characteristics of scars from recent landslides 
(bare soil in areas with medium or high landslide susceptibility). This analysis provides an 
important characterization of the watershed and important indicators for preventive and 
mitigation actions in areas near the highways, especially considering the presence of a nuclear 
power plant in the region. 

According to Smith (2013), hazard management for natural disasters and technological disasters 
must be integrated since technological disasters may be related to and triggered by natural 
disasters. Kobiyama et al. (2006) notes that preliminary mapping of landslide hazard areas and 
areas that are naturally susceptible to landslides facilitates hazard management and is key to 
preventing extreme events. 

Considering the context of the CNAAA and the presence of few access and evacuation routes in 
the region, it is important that all hazard areas associated with highways be evaluated. Mitigation 
measures should be taken to maintain the integrity of roads that are essential for effective 
evacuation in the event of a technological disaster (RODRIGUES, 2014). In this way, both hazard 
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areas and the scars of landslides that have already occurred must be evaluated to guarantee road 
and traffic safety (GERMAN, ANDREY & KSENIA, 2015). 

The potential landslide scars in the area surrounding the main access roads were evaluated 
individually through visual interpretation of satellite images, and 53.77% of the area was evaluated 
as landslide scars. This percentage demonstrates the great potential of the procedures for 
identifying scars over large areas using satellite images since they reduce the area to be 
interpreted visually by the analyst and indicate candidate areas with greater potential of landslide 
occurrence. The features identified as “non-scars” are mainly due to errors in land cover 
classification (confusion between bare soil and urban areas). 

However, it is important to highlight that the exclusive use of the bare soil cover class restricts the 
landslide scars to those that occurred recently and excludes older scars that have already been 
covered by low vegetation. This evolution in land cover was noted by Walker Shields (2013), 
Walker and Del Moral (2003), and Joshi (1990) and complicates the process of identifying scars by 
remote sensing. 

It is important to emphasize that the procedures and results presented in this study do not 
eliminate the need for fieldwork for an effective evaluation. However, the results highlight the 
main areas that require more detailed surveys based on variables such as the soil type and geology 
(ANDRETTA et al., 2013). 

Traffic in the study area can also be interrupted by road safety issues, such as bad signaling, lack 
of road maintenance, and possible road drainage problems (MAZZETTO, 2015). Road safety 
assessments and simulations are important for managing the risk of technological disasters and 
ensuring the effectiveness of evacuation plans (LUCAS et al., 2013). 

In addition, it is important to carry out simulations of interruptions of access roads in the regions 
at greatest risk of landslides that would affect the roads to establish alternative evacuation plans 
for the CNAAA. However, to simulate the interruption of the road flow and design alternative 
routes, it is necessary to complement the road network by digitizing small roads that are not on 
the official maps, which would increase the value of the analysis and ensure the development of 
more efficient evacuation plans for the CNAAA. 

 

5. Conclusion 

 

This study provided a primary synthesis of the landslides risk on CNAAA watershed and on buffer 
of the access roads. The majority of the study area is medium or high risk for landslide events, 
representing a risk to execute the evacuation of the affected area in a technological disaster event. 
Besides, the potential of landslides scars mapping was assessed, achieving over 50% of accuracy. 
This is presented as a potential methodology for the risk assessment and landslides monitoring in 
the study area, in order to maintain the access roads available for eventual evacuations. 

The Admiral Álvaro Alberto Nuclear Power Plant in the city of Angra dos Reis, RJ, is an area of focus 
due to the potential for technological accidents, and it is located in a region with many historic 
landslides, which were generally associated with high intensity rainfall events. The presence of 
highways in these regions, which are naturally susceptible to landslides, may increase the 
likelihood of landslides. Therefore, mapping and identifying hazard areas and landslide scars have 
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become important for the prevention and mitigation of extreme events, maintaining the integrity 
of the access routes and designing emergency evacuation strategies. 

However, mapping and monitoring these areas are not trivial tasks because highways cross large 
areas, and the limited accessibility of the region make in situ assessments difficult. Therefore, 
remote sensing and geoprocessing techniques can be used as mapping tools. 

This study mapped areas susceptible to the occurrence of landslides by classifying relief features 
based on TOPODATA slope and vertical and horizontal curvature data. It used an object-based 
approach that yielded classes of low, medium, and high landslide susceptibility. In addition, this 
study identified landslide scars through land cover classification from LANDSAT images and the 
SVM supervised classification algorithm. Bare soil areas were considered most representative of 
recent scars. The results of this mapping procedure were evaluated through the kappa index and 
the confusion matrix. 

The integrated assessment of the land cover map and the landslide susceptibility map provided 
important information about the pattern of occupancy and the presence of hazard areas in the 
watershed, which allowed the identification of urban areas in landslide-susceptible areas. Despite 
being performed on a regional scale, the procedure allowed the identification of areas of the 
highest landslide susceptibility, which helped to select areas that require more detailed analyses. 

The procedures can easily be replicated by public agencies responsible for monitoring hazard areas 
because free data were used, and the results provided satisfactory identification of the areas most 
susceptible to landslides. Although, the results should be considered tentative at this stage, and 
further research is required to verify these preliminary findings and replicate them to a broader 
area. 

 

ACKNOWLEDGEMENT 

 

The authors acknowlege the research scholarship provided by CNPq, to the Escola Politécnica da 
Universidade de São Paulo and Laboratório de Geoprocessamento do Departamento de 
Engenharia de Transportes da EPUSP.  

 

REFERENCES 

Aksoy, B.; Ercanoglu, M. 2012. Landslide identification and classification by object-based image 
analysis and fuzzy logic: An example from the Azdavay region (Kastamonu, Turkey). Computers & 
Geosciences, v. 38, n.1, p. 87-98. 

Alexakis, D.D.; Agapiou, A.; Tzouvaras, M.; Themistocleous, K.; Neocleous, K.; Michaelides, S.; 
Hadjimitsis, D.G. 2014.  Integrated use of GIS and remote sensing for monitoring landslides in 
transportation pavements: the case study of Paphos area in Cyprus. Natural Hazards, v. 72, n. 1, 
p. 119-141. 

Andretta, E.R.; Ladeira, L.F.B.; Santos, J.M.; Lima, R.H.C. 2013. Mapeamento das Áreas de Risco no 
Bairro Gilberto Mestrinho, Zona leste de Manaus–AM. Estudos Geológicos, v. 23, n. 1, p. 3-11. 

Araújo, D. & Oliveira, R. 1988. Reserva Biológica Estadual da Praia do Sul (Ilha Grande, Estado do 
Rio de Janeiro): Lista preliminar de flora. Acta Botânica Brasileira, n. 1, p. 83-94. 



Landslide hazard mapping near the….                                                                                                                                                                  138 

Bulletin of Geodetic Sciences, 24(1): 125-141, Jan-Mar, 2018 

Azevedo, G.F. 2016. Sistema de análise quantitativa de risco por escorregamentos rasos 
deflagrados por chuvas em regiões tropicais. Tese (Doutorado) – Universidade de Brasília, Brasília. 

Barlow, J.; Martin, Y.; Franklin, S.E. 2003. Detecting translational landslide scars using 
segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains, British 
Columbia. Canadian Journal of Remote Sensing, v. 29, n. 4, p. 510-517. 

Bierman, P. R. and Montgomery, D. R. 2014. Hillslope. In: Key Concepts in Geomorphology. W. H. 
Freeman and Company Publishers New York, pp. 145-178. 

Camargo, F. F.; Almeida, C. M.; Florenzano, T. G.; Heipke, C.; Feitosa, R. Q.; Costa, G. A. O. P. 2012. 
ASTER/Terra imagery and a multilevel semantic network for semi-automated classification of 
landforms in a subtropical area. Photogrammetric Engineering & Remote Sensing, v. 77, n. 6, p. 
619-629. 

Christofoletti, A. 1980. Geomorfologia. 2 ed. São Paulo: Edgard Blücher, 1980. 

CPRM - Companhia de Pesquisa de recursos minerais/serviço geológico do Brasil. 2007. Programa 
Geologia do Brasil: Geologia da Folha Angra dos Reis. Disponível em: 
<http://www.cprm.gov.br/publique/media/rel_angra.pdf, 2007>. Acesso em: nov. 2016. 

Dai, F.C.; Lee, C.F. 2001. Frequency–volume relation and prediction of rainfall-induced landslides. 
Engineernig Geology, v. 59, p. 253–266. 

De Vita, P.; Napolitano, E.; Godt, J.W.; Baum, R.L. 2013. Deterministic estimation of hydrological 
thresholds for shallow landslide initiation and slope stability models: case study from the Somma-
Vesuvius area of southern Italy. Landslides, v.10, n. 6, p. 713-728. 

Di Martino, L.; Masciocco, L.; Ricca, G.; Toja, M. 2014. Relationships between landslides 
phenomena and road network: An example from hilly region of Asti Province (North-Western 
Italy). Engineering Geology for Society and Territory, v. 2, p. 1049-105. 

Dias, F. P.; Herrmann, M. L. de P. 2006.  Susceptibilidade a deslizamentos: estudo de caso no bairro 
Saco Grande, Florianópolis–SC. Caminhos de Geografia, v. 3, n. 6, p.57-73. 

Doleire-Oltmanns, S.; Eisank, C.; Dragut, L.; Blaschke, T. 2013. An object-based workflow to extract 
landforms at multiple scales from two distinct data types. IEEE Geoscience and Remote Sensing 
Letters, v. 10, n. 4, p. 947-951. 

Dong, J.; Lai, P.; Chang, C.; Yang, S.; Yeh, K.; Liao, J.; Pan, Y. 2014. Deriving landslide dam geometry 
from remote sensing images for the rapid assessment of critical parameters related to dam-breach 
hazards. Landslides, v.11, n. 1, p. 93-105. 

Drăguţ, L.; Eisank, C. 2012. Automated object-based classification of topography from SRTM data. 
Geomorphology, v. 141, p. 21-33. 

Eisank, C.; Drăguţ, L.; Blaschke, T. 2011. A generic procedure for semantics-oriented landform 
classification using object-based image analysis. Geomorphometry, p. 125-128. 

Fernandes, N. F.; Amaral, C. P. 1996. Movimentos de massa: uma abordagem geológico-
geomorfológica. In: GUERRA A.J.T.; CUNHA, S. (Org.). Geomorfologia e meio ambiente. 1 ed. Rio 
de Janeiro: Bertrand Brasil, cap. 3. p. 123-194. 

Florenzano, T.G. 2016. Geomorfologia: conceitos e tecnologias atuais. Oficina de Textos. 

http://www.cprm.gov.br/publique/media/rel_angra.pdf


139                                                                                                                                                                     Manfré, L.A.; et al. 

Bulletin of Geodetic Sciences, 24(1): 125-141, Jan-Mar, 2018 

German, Postoev; Andrey, Kazeev; Ksenia, Fedotova. 2015. About the Landslide Hazard Criteria 
for the Transportation Safety of the 2014 Sochi Olympics. In: Engineering Geology for Society and 
Territory-Volume 2. Springer International Publishing, p.1469-1472. 

Growley, B. 2008. Landslide Susceptibility Zonation GIS for the 2005 Kashmir Earthquake affected 
region. Dissertação (Mestrado) – University of Montana. 

Guzzetti, F.; Mondini, A. C. Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K-T. 2012. Landslide 
inventory maps: new tools for an old problem. Earth Science Reviews, v. 112, p. 42-66. 

Hsieh, Y.; Hou, C.; Chan, Y.; Hu, J.; Fei, L.; Chen, H.; Chiu, C. 2014. Detection and Volume Estimation 
of Large Landslides by Using Multi-temporal Remote Sensing Data. EGU General Assembly 
Conference Abstracts. v.16, p. 5725. 

IPT – Instituto de pesquisas tecnológicas do Estado de São Paulo S.A. 1991. Ocupação de encostas. 
Coord. de Cunha, M.A. São Paulo: Instituto de Pesquisas Tecnológicas, – Publicação IPT n.1831. 

IPT – Instituto de pesquisas tecnológicas do Estado de São Paulo S.A. 2002. Assessoria Técnica 
para a Estabilização de Encostas, Recuperação da Infra-estrutura Urbana e Reurbanização das 
Áreas de Risco Atingidas por Escorregamentos na Área Urbana do Município de Campos do Jordão, 
SP. Relatório Técnico 64.399, São Paulo. 

Jaboyedoff, M.; Demers, D.; Locat, J.; Locat, A.; Locat, P.; Oppikofer, Robitaille, D.; Turmel, D. 2009. 
Use of terrestrial laser scanning for the characterization  of retrogressive landslides in sensitive 
clay and rotational landslides in river banks. Canadian Geotechnical Journal, v. 46, n. 12, p. 1379-
1390. 

Jaiswal, P.; Van Westen, C. J.; Jetten, V. 2011. Quantitative assessment of landslide hazard along 
transportation lines using historical records. Landslides, v. 8, n. 3, p. 279-291. 

Joshi, M. 1990. A study on Soil and Vegetation Changes after landslide in Kumaun Himalaya. 
Proceedings of the Indian National Science Academy., n. 4, p. 351-360. 

Kobiyama, M.; Mendonça, M.; Moreno, D. A.; Marcelino, I.; Marcelino, E.; Gonçalves, E.; Brazetti, 
L.; Goerl, R.; Molleri, G.; Rudorff, F. 2006. Prevenção de desastres naturais: conceitos básicos. 
Curitiba: Organic Trading. 

Landis, J.R.; Koch, G.G. 1977. The measurement of observer agreement for categorical data, 
Biometrics, p. 159-174. 

Lange Filho, G. 2016. Caracterização e mapeamento dos modelados padrões e formas de relevo 
simbolizadas da bacia hidrográfica do Ribeirão Itoupava, Blumenau-SC. Dissertação (Mestrado) – 
Universidade Federal do Paraná, Curitiba. 

Larsen, M.C.; Parks, J.E. 1997. How wide is a road? The association of roads and mass-wasting in a 
forested montane environment. Earth Surface Processes and Landforms, v. 22, n. 9, p. 835-848. 

Lousada, G.; Farias, H. 2015. Desastres Ambientais, Prevenção e Mitigação: Um Estudo de Caso da 
Região de Angra dos Reis/RJ. Revista Continentes, v. 3, n. 5, p. 131-149. 

Lucas, F.R.; Russo, L.E.A.; Kawashima, R.S.; Figueira, A.C.; Larocca, A.P.C.; Kabbach JR.; F.I. 2013. 
Uso de simuladores de direção aplicado ao projeto de segurança viária. Boletim de Ciências 
Geodésicas, v. 19, n. 2, p.341-352. 

Manconi, A.; Casu, F.; Ardizzone, F.; Bonano, M.; Cardinali, M.; DE Luca, C.; Gueguen, E.; 
Marchesini, I.; Parise, M.; Vennari, C.; Lanari R.; Guzzetti, F. 2014. BRIEF Communication: Rapid 



Landslide hazard mapping near the….                                                                                                                                                                  140 

Bulletin of Geodetic Sciences, 24(1): 125-141, Jan-Mar, 2018 

mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Natural 
Hazards and Earth System Science, v. 14, n. 7, p. 1835-1841. 

Manfré, L.A.; Nóbrega, R.A.A.N.; Quintanilha, J.A. 2014. Regional and local topography subdivision 
and landform mapping using SRTM-derived data: a case study in southeastern Brazil. 
Environmental Earth Sciences, v. Online, p.1-19. 

Mather, P.M. 2003. Geoenvironmental mapping: methods, theory and practice. Victoria, Canada: 
Sage Publications, 143 p.. 

Mazzetto, L.F. 2015. Avaliação das condições de segurança em rodovias federais da região 
metropolitana de Curitiba. Universidade Federal Tecnológica do Paraná, Curitiba. Monografia 
(Especialização) – Universidade Tecnológica Federal do Paraná, Curitiba. 

Mckean, J.; Buechel, S.; Gaydos, L. 1991. Remote sensing and landslide hazard assessment. 
Photogrammetric Engineering & Remote Sensing, v. 57, n. 9, p.1185-1193. 

Paulín, G. L., Hubp, J. L.; Quesada, J. F. A. 2014. Assessing Landslide Frequency for Landform Hazard 
Zoning Purposes. In: Sassa, K.; Canuti, P.; Yin, Y. Landslide Science for a Safer Geoenvironment. 
Netherlands: Springer, v. 2, p. 129-134. 

Penna, D.; Borga, M.; Aronica, G. T.; Brigandì, G.; Tarolli, P. 2013. Predictive power of a shallow 
landslide model in a high resolution landscape: dissecting the effects of forest roads. Hydrology 
and Earth System Sciences Discussions, v. 10, n. 7, p. 9761-9798. 

Pinheiro, J.C.; Aguiar, P.R.R. 2015. Impacto da Construção da Base de Submarinos na Economia de 
Itaguaí-RJ. UNOPAR Científica Ciências Exatas e Tecnológicas, v. 11, n. 1, p.31-40. 

Pradhan, B.; Lee, S. 2010. Delineation of landslide hazard areas on Penang Island, Malaysia, by 
using frequency ratio, logistic regression, and artificial neural network models. Environmental 
Earth Sciences, v. 60, n. 5, p.1037-1054. 

Rodrigues, A.S. 2014. Método para elaboração de um plano de evacuação emergencial em uma 
usina nuclear utilizando microssimulação de tráfego. Dissertação (Mestrado em Engenharia Civil) 
– Universidade Federal de Santa Catarina, Florianópolis. 

Roessner, S.; Behling, R.; Segl, K.; Golovko, D.; Wetzel, H.; Kaufmann, H. 2014. Automated Remote 
Sensing Based Landslide Detection for Dynamic Landslide Inventories. In: Sassa, K.; Canuti, P.; Yin, 
Y. Landslide Science for a Safer Geoenvironment. Netherlands: Springer, v. 2, p.345-350. 

Sabol JR., D.E.; Gillespie, A.R.; Adams, J.B.; Smith, M.O.; Tucker, C.J. 2002. Structural stage in Pacific 
Northwest forest estimated using mixing models of multispectral images. Remote Sengin of 
Environment, v. 80, n. 1, p. 1-16. 

Sestini, M. F. 1999. Variáveis geomorfológico no estudo de escorregamentos em Caraguatatuba-
SP utilizando imagens TM-LANDSAT e SIG. Dissertação (Mestrado em Sensoriamento Remoto) – 
Instituto Nacional de Pesquisas Espaciais – INPE, São José dos Campos. 

Shafri, H.Z.M.; Ramle, F.S.H. 2009. A Comparison of Support Vector Machine and Decision Tree 
Classifications Using Satellite Data of Langkawi Island. Information Technology Journal, v. 8, n. 1, 
p. 64-70. 

Silva Junior, C.H.L.; Silva, F.B.; Pereira, D.C.A. 2016. Uso de lógica fuzzy e processo analítico 
hierárquico–ahp no zoneamento de áreas suscetíveis a deslizamento utilizando o operador fuzzy 
média ponderada ahp o caso da bacia hidrográfica do Rio Anil em São Luís–MA. Revista de 
Geografia-PPGEO-UFJF, v. 3, n. 2, p. 1-7. 



141                                                                                                                                                                     Manfré, L.A.; et al. 

Bulletin of Geodetic Sciences, 24(1): 125-141, Jan-Mar, 2018 

Smith, K. 2013. Environmental hazards: assessing risk and reducing disaster. Routledge. 

Smits, P.C.; Dellepiane, S.G.; Schowengerdt, R.A. 2010. Quality assessment of image classification 
algorithms for land-cover mapping: A review and a proposal for a cost-based approach. 
International Journal of Remote Sensing, v. 20, n. 8, p. 1461-1486. 

Tarolli, P.; Calligaro, S.; Cazorzi, F.; Dalla Fontana, G. 2013. Recognition of surface flow processes 
influenced by roads and trails in mountain areas using high-resolution topography. European 
Journal of Remote Sensing, v. 46, p.176-197. 

Piedade, A.; Zêzere, J. L; Garcia, R.; Oliveira, S. 2011. Modelos de susceptibilidade a deslizamentos 
superficiais translacionais na região a norte de Lisboa. Finisterra, v. 46, n. 91. 

Valeriano, M.M.; Rossetti, D.F. 2012. Topodata: Brazilian full coverage refinement of SRTM data. Applied 

Geography, v. 32, n. 2. 

Vieira, B. C. 2007. Previsão de escorregamentos translacionais rasos na Serra do Mar (SP) a partir 
de modelos matemáticos em bases físicas. Tese (Doutorado em Geografia) – Instituto de 
Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro. 

Walker, L.R.; Del Moral, R. 2003. Primary Sucession and Ecosystem Rehabilitation. Cambrige 
University Press, Reino Unido. 

Walker, L.R.; Shiels, A.B. 2013. Landslide Ecology. Cambridge University Press, 1ª Edição, New York, 
300 p. 

Whitford, V.; Ennos, A. R.; Handley, J. F. 2001. City form and natural process—indicators for the 
ecological performance of urban areas and their application to Merseyside, UK. Landscape and 
urban planning, v. 57, n. 2, p. 91-103. 

 


