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Abstract: 

In this paper, we present a method for 3D mapping of indoor environments using RGB-D data. 
The contribution of our proposed method is two-fold. First, our method exploits a joint effort of 
the speed-up robust features (SURF) algorithm and a disparity-to-plane model for a coarse-to-
fine registration procedure. Once the coarse-to-fine registration task accumulates errors, the 
same features can appear in two different locations of the map. This is known as the loop 
closure problem. Then, the variance-covariance matrix that describes the uncertainty of 
transformation parameters (3D rotation and 3D translation) for view-based loop closure 
detection followed by a graph-based optimization are proposed to achieve a 3D consistent 
indoor map. To demonstrate and evaluate the effectiveness of the proposed method, 
experimental datasets obtained in three indoor environments with different levels of details are 
used. The experimental results shown that the proposed framework can create 3D indoor maps 
with an error of 11,97 cm into object space that corresponds to a positional imprecision around 
1,5% at the distance of 9 m travelled by sensor. 

Keywords: RGB-D data; SURF algorithm; Disparity-to-plane model; Loop closure; Graph 
optimization. 

 

 

 

 

 



A joint effort of speeded-up…                                                                                                                                                    352 

Bulletin of Geodetic Sciences, 24(3): 351-366, Jul-Sept, 2018 

Resumo:  

Neste trabalho é apresentado um método para mapeamento 3D de ambientes internos usando 
dados RGB-D. Há basicamente dois aspectos importantes a serem discutidos neste trabalho: 1) o 
método explora um esforço conjunto entre o algoritmo SURF e um modelo matemático baseado 
em uma abordagem disparidade-a-plano para registo de nuvens de pontos. Uma vez que a 
tarefa de registro das nuvens de pontos acumula erros, ocorrem erros de fechamento; 2) A 
matriz de variância-covariância que descreve a incerteza dos parâmetros de transformação 
(rotação 3D e translação 3D) é usada para a deteção de erro de fechamento na tarefa de 
otimização baseada em grafos. Para demonstrar e avaliar a eficácia do método proposto foram  
usados conjuntos de dados experimentais obtidos em três ambientes internos com diferentes 
níveis de detalhes. Os resultados experimentais mostram que o método proposto pode criar 
mapas 3D com um erro de 11,97 cm que corresponde a uma acurácia posicional em torno de 
1,5% da distância de 9 m percorrida pelo sensor. 

Palavras-chave: Dados RGB-D; algoritmo SURF; Modelo de disparidade; Erro de fechamento; 
Otimização por grafos. 

 

1. Introduction 

 

3D mapping of indoor environments is an important task in many engineering applications, such 
as, simultaneous localization and mapping systems (SLAM), surveillance and emergency 
managements, navigation, positioning, robotics, forensics, virtual tours, crisis management, 
modeling, infrastructure inspections, urban design and others. Basically, the most important 
existing 3D mapping of indoor environments method using RGB-D data is based on three main 
steps (Henry et al, 2012): 1) pairwise registration; 2) loop closure detection; 3) global 
optimization. The pairwise registration task aims to estimate the transformation parameters 
between pairs of point clouds. The most popular approach to registering point clouds is the 
iterative closest point (ICP) algorithm (Besl and McKay, 1992). Pairwise registration task is prone 
to error due to the random error of individual points, leading to incorrectness in the 3D map, as 
described by Khoshelham et al. (2013). To handle with registration errors the loop closure 
detection should be used (Du et al., 2011). Loop closure corresponds to the global adjustemnt 
for simultaneous refinement of all the transformation parameters in a sequence. Once 
transformation parameters from registration task give us some constraints (poses between point 
clouds, adjacents or not), we can represent these constraints using a graph structure. Basically, 
there are three main graph optimization approaches proposed in the literature: tree-based 
network optimizer (TORO), idealized by Grisetti et al. (2007); general framework for graph-based 
optimization (G2O), proposed by Kümmerle et al. (2011); and sparse bundle adjustment (SBA), 
proposed by Lourakis and Argyros (2009). In this paper, the graph optimization of the complete 
data sequence is performed using the graph-based optimization to minimize the registration 
errors.  

Nowadays, RGB-D sensors are quite useful solution to build colored 3D indoor maps because it 
can exploit both the visual and the depth information. Its advantages compared with LASER 
scanning sensors are the lightweight, the low cost and it is much more flexible (Dos Santos et al., 
2016). In this paper we propose a method for 3D indoor mapping using RGB-D data. The 
contribution of our proposed method is two-fold. First, we propose a joint effort of speed-up 



353                                                                                                                                                         Basso, M. and Santos, D.R. 

Bulletin of Geodetic Sciences, 24(3): 351-366, Jul-Sept, 2018 

robust features (Bay et al., 2008) and a disparity-based model (Dos Santos et al., 2016) to include 
additional constraints in the graph describing the coarse-to-fine registration between RGB-D 
data. Second, we investigate the variance-covariance matrix that describes the uncertainty of 
the transformation parameters (3D rotation and 3D translation) to weight the graph-based 
optimization.   

The paper proceeds with the related work in the Section 2. In Section 3, the proposed method 
for 3D indoor mapping is described. Experimental evaluation of the method is presented in 
Section 4. The paper concludes with a discussion in Section 5. 

  

2. Related Work  

 

Basically, 3D indoor mapping method is based on two key problems: pairwise registration and 
global registration with loop closure.  

 

Table 1: Summarized description of the advantages and disadvantages of both the pairwise 
registration and graph optimization methods. 

Method Advantages Disadvantages 

Point cloud 
registration 

This approach uses salient 
feature surfaces, such as: 
points; planes; lines or free-
form surfaces. 

The method requires an accurate initial 
transformation and high overlap area 
between the point clouds and in the 
most situations it is time-consuming. 

Combined depth 
and intensity 
values 

This method integrates both 
the depth and the intensity 
information in 3D registration. 

Low resolution of intensity images 
delivered by both LASER scanning. Range 
devices provide inaccurate feature 
location and it is highly time-consuming. 

Global registration 
with loop closure 

Loop closure ensures that new 
constraints can be inserted in 
the graph optimization. The 
global registration minimizes 
the registration errors. 

In most cases the uncertainty of the 
transformation parameters is not 
employed to weight the optimization 
process. Usually, the refinement of the 
pairwise registration not always held. 

 

We will cover the main related work about the techniques in our study by grouping them into 
three main different categories: (1) point cloud registration: One of the most popular method is 
the ICP (iterative closest point) algorithm for registration of 3D shapes developed by Besl and 
McKay (1992). According Henry et al. (2012) “ICP has been shown to be effective when the two 
point clouds are already nearly aligned”. (2) Combined depth and intensity values: There are 
many combined depth and intensity extraction algorithms proposed in recent years. Al-Manasir 
and Fraser (2006) presented a method that uses bundle adjustment of images taken by a digital 
camera to register the LASER point cloud data rather than ICP algorithm. Another interesting 
method was given in Barnea and Filin (2008) which suggested the integration of both the depth 
values and the intensity information in pairwise registration process. (3) Global registration with 
loop closure: Loop closure is a technique used to recognize when the sensor has returned to a 
previously visited location. It is useful to insert constraints into graph optimization task. Henry et 
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al. (2012) used a subset of the registered frames to keep the graph relatively sparse. The loop 
closure is detected based on the number of visual features stablished. In other words, a loop 
closure is detected if sufficient amount of correspondences is correctly determined. This is done, 
by means of a joint effort between RGB-D data and the ICP algorithm. Once loop closure is 
detected, the tree-based network optimizer is activated. In Chow et al. (2014) the ICP algorithm 
is carried out in a model-to-scene fashion to handle the loop closure problem. The authors used 
the sparse bundle adjustment to obtain a consistent 3D indoor map. A summarized description 
of the advantages and disadvantages of the before mentioned methods is presented in Table 1. 
Note that our objective is both the pairwise registration and the global registration tasks. We 
first propose a coarse-to-fine registration task using a joint optimization algorithm combining 
visual features to carry out a coarse registration and a disparity-based model to realize the fine 
registration step, instead of only apply a coarse registration step as done by Henry et al. (2012). 
Second, we use the variance-covariance matrix that describes the uncertainty of the 
transformation parameters to weight the graph-based optimization task. In our method, the 
variance-covariance matrix is obtained by minimizing disparity-to-plane distances using iterative 
least-squares estimator, instead of accept it as identity matrix or using the Cholesky solver such 
as introduced by Kümmerle et al. (2011).   

 

3. Method 

 

This section explains the proposed method for 3D mapping of indoor environments using RGB-D 
data. In particular it combines a speed-up robust features algorithm with a disparity-to-plane 
model to find refined transformation parameters. Then, new constraints are inserted using the 
loop closure procedure and the registration errors are minimized using a graph-based optimizer. 
The result of this framework is a globaly consistent 3D indoor map. The Figure 1 presents the 
generic structure of our proposed method.  

 

Figure 1: Generic structure of the proposed method. 
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Figure 1 shows the proposed method for 3D mapping of indoor environments using RGB-D data. 
Our method is divided in three main parts: 1) pairwise registration; 2) loop closure detection; 3) 
global registration. Given RGB-D data is obtained with Kinect sensor. The before mentioned tasks 
are described, as follows. 

 

3.1 Pairwise registration 

 

In this work, pairwise registration problem aims to estimate the transformation parameters 
between pairs of RGB-D frames. As before mentioned, a coarse-to-fine registration task using a 
joint optimization algorithm combining visual features to compute initial approximation of the 
transformation parameters (3D rotation and 3D translation) and a disparity-based model to 
realize the fine registration step is proposed. Herein, the main idea is performing the pairwise 
registration using RGB-D data. This task is separated in six steps, as shows Figure 1. First, 
keypoints (visual features) should be detected and their correspondences obtained. The scale 
invariant feature transform (SIFT) algorithm, developed by Lowe (2004) is one of the most used 
feature point detection and feature descriptor algorithm. However, is relatively time consuming 
in terms of reliability and robustness (Wu et al., 2013). It is divided in three stages: a) keypoints 
extraction and detection; b) description; and 3) matching. The general framework of SURF 
algorithm can be found in Bay et al. (2008). Basically, the focus is producing a feature descriptor 
that allows quick and highly discriminatory assessments with other features. Second, the outliers 
are detected using the fundamental matrix (𝐹) and RANSAC algorithm. The RANSAC computes 𝐹 
using the selected the normalized eight-point algorithm (Hartley and Zisserman, 2003). Then, the 
fitness for all points putatively matched is computed. If the fitness is better than initial 𝐹, replace 
𝐹 with fitness and the number of random trials (𝑁) is updated for every iteration in the RANSAC 
algorithm (Fischler and Bolles, 1981). The results it is a set of matched keypoints. Third, in order 
to associate the keypoints with their corresponding depth values we used the method proposed 
by Dos Santos et al. (2016). Firstly, depth values are computed using the formulation introduced 
in Khoshelham and Elberink (2012), as follows: 

 

                                                                            𝑧𝑖 =
1

𝑐0+𝑐1𝑑
                                                                      (1) 

 

intercept of the line, respectively and 𝑑 the denormalized disparity value. After, the correct 
associated 3D point is search using the epipolar geometry concept. Assuming that the shift of 
the depth values is sufficient to align the depth image with the RGB frame, as described in Henry 
et al. (2012), 𝑥𝑖  and 𝑦𝑖 coordinates using RGB-D data are computed as follows (Khoshelham and 
Elberink, 2012): 

 

                                                                      𝑥𝑖 =
𝑧𝑖

𝑓
𝑥𝑖

𝐼𝑅 + 𝑥0 + 𝛿𝑥                                                          (2) 

 

                                                                       𝑦𝑖 =
𝑧𝑖

𝑓
𝑦𝑖

𝐼𝑅 + 𝑦0 + 𝛿𝑦                                                         (3) 
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where 𝑥𝑖, 𝑦𝑖  denotes coordinates for each point on surface, 𝑥0, 𝑦0 represents the principal point 

coordinates, 𝛿𝑥,  𝛿𝑦 denotes the lens distortion, 𝑥𝑖
𝐼𝑅, 𝑦𝑖

𝐼𝑅 are the 2D coordinates for each pixel in 

current infrared image (IR image) and 𝑓 denotes the calibrated focal distance of infrared camera 
(IR camera). The before mentioned task should be realized for each pair of RGB-D frame. The 
result is a set of corresponding 3D points.  

Fourth, to estimate the initial approximation of the transformation parameters for the fine 
registration task we propose a coarse point-based alignment procedure. Then, since exists a set 
of three or more corresponding 3D points, a 3D rigid transformation is used to carried out the 
coarse registration task. The single-cost function that represents the 3D rigid transformation, 
which minimize the point-to-point error (𝐞) is expressed as: 

 

                                                             𝐞 = ∑ ‖𝐗𝑖,𝑅𝑒𝑓 − 𝐑 ∙ 𝐗𝑖,𝑃𝑒𝑠𝑞 − 𝐭‖𝑛
𝑖=1                                            (4) 

 

where 𝐗𝑖,𝑅𝑒𝑓 , 𝐗𝑖,𝑃𝑒𝑠𝑞 denotes the 3D coordinates of point 𝑖 in reference RGB-D frame (𝑅𝑒𝑓)  and 

a search RGB-D frame (𝑃𝑒𝑠𝑞), respectively, 𝑛 denotes the number of corresponding 3D points 
used for each pair of RGB-D frame, 𝐑 denotes the 3D rotation matrix and 𝐭 is the 3D translation 
vector. The least-squares solution for 𝐑 and 𝐭 can be obtained: 𝒙̂ = (𝐀𝐓𝐀)−1𝐀T𝒘, where A 
represents the Jacobian of the equation with respect to the observations, w is obtained by the 
observation and the approximate values of the unknowns. This arrangement gives to the system 
an initial approximation for the fine registration task. In the fifth step of the proposed pairwise 
registration method, we segmented pairs of RGB images to associate the centroid of the 
segmented regions to the depth values extracted from Depth images. Figure 2 illustrates the 
main steps to associate the centroid of the segmented regions in the RGB images to the depth 
values extracted from Depth images.  

 

Figure 2: Description of the tasks to associate depth values with the centroid of the segmented region in 
the pair of RGB images. 
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According Khoshelham et al. (2013) the Kinect sensor captures Depth and colour (or RGB) 
images at a rate of 20~30 frames per second, which can be combined into a coloured point 
cloud, also referred to as RGB-D data (or frame). In Figure 2, the regions of interest (ROI) are 
segmented in a pair of RGB images using the simple linear iterative clustering (SLIC) algorithm 
proposed by Achanta et al. (2012). Basically, SLIC performs a local clustering of pixels in 5-D 
space defined by values of the nonlinear transformation of RGB frame. It samples 𝐾 regularly 
spaced cluster centers and moves them to seed locations corresponding to the lowest gradient 
position in a 3×3 neighbourhood. Each pixel in the image is associated with the nearest cluster 
centroid whose search area overlaps this pixel. For all the pixels associated with the nearest 
cluster centroid, a new centroid is computed as the average vector of all the pixels belonging to 
the cluster. At the end of this process, a few stray labels may remain. For each pair of RGB 

images the centroids 𝑝′(𝑥𝑓 , 𝑦𝑓)
𝑅𝑒𝑓 and 𝑝′(𝑥𝑓 , 𝑦𝑓)

𝑃𝑒𝑠𝑞  are computed by means of the average 

position of all the point in the segmented ROI for matching process. Thus, the correspondences 
are obtained using the approximate nearest neighbours (ANN) algorithm proposed by Muja and 
Lowe (2009). After, the 3D coordinates 𝑋𝑖 = [𝑥𝑖  𝑦𝑖 𝑧𝑖]

𝑇 for each segmented ROI is computed 
using Equations (1)-(3). Third, the segmented ROI from reference Depth frame (𝑅𝑒𝑓) are fitted 
to obtain the unit normal vector (𝐧). Once the plane is represented as a 3D point 𝑋𝑖 and 𝐧 
(normal vector), and the distance from a point 𝒑𝑞 ∈ ROI to the plane is defined as  𝜌𝑖 =

(𝒑𝑞 − 𝑋𝑖)𝐧. The solution for 𝐧 is given by analysing the eigenvalues and eigenvectors of the 

matrix 𝐶 ∈ ℝ3𝑥3 of ROI, as follows: 

 

                                              𝐶 = ∑ (𝒑𝑖 − 𝑋)𝑚
𝑖=1 (𝒑𝑖 − 𝑋)𝑇 , 𝐂𝑣𝑗 = λ𝑗𝑣𝑗 , 𝑗 ∈ {0,1,2}                          (5) 

 

For 𝐶 we determine its eigenvalues λ𝑗 ∈ ℝ and their corresponding eigenvectors 𝑣𝑗 . For 0 ≤

λ0 ≤ λ1 ≤ λ2 , the eigenvector 𝑣0  corresponding to the eigenvalue λ0  that represents an 

approximation of +𝐧 = {𝑛𝑥, 𝑛𝑦, 𝑛𝑧} or –𝐧. Then, the centroid 𝐜 = [𝑥𝑖
𝑘 𝑦𝑖

𝑘 𝑧𝑖
𝑘]T is obtained 

by means of the average position of all the points in each corresponding segmented ROI from 
search Depth frame (𝑃𝑒𝑠𝑞). Finally, 𝐜 is associated to the disparity value extracted from their 
corresponding depth value in the Depth search image. Note that the red surfaces denote 
segmented ROIs in the RGB images, green points denote the computed centroid from ROI in the 
RGB images and blue points represent the computed centroid from ROI in the Depth frames, 
which 3D points are determined using Equations (1)-(3). The depth values are extracted from 
Depth images and there is a centroid associated to them. Finally, we refine the transformation 
parameters (𝐑, 𝐭) using the disparity-to-plane model introduced by Dos Santos et al. (2016). Let 
𝐜𝑅𝑒𝑓 be the set of centroids from segmented ROI in the reference Depth frame and 𝐜𝑃𝑒𝑠𝑞 the set 

of centroids from segmented ROI in the search Depth frame, the 3D rigid transformation (𝐓) 
between them consists of a 3D rotation and a 3D translation (transformation parameters). 
Conveniently, these transformation parameters are combined in a transformation matrix 𝐓 of 
homogenous coordinates: 

 

                                                           𝐜𝑃𝑒𝑠𝑞 = 𝐓𝐜𝑅𝑒𝑓 = [
𝐑∗ 𝐭∗

0 1
] 𝐜𝑅𝑒𝑓                                                   (6) 
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where 𝐑∗ and 𝐭∗ denotes the refined 3D rotation and 3D translation, respectively, and  𝐜′ =
[𝑥𝑖

𝑘 𝑦𝑖
𝑘 𝑧𝑖

𝑘   1]𝑇 is the homogeneous representation of the centroid in 3D space.  

For a set of centroids that lie on a segmented ROI, the disparity-to-plane model used to refine 𝐑 
and 𝐭 can be written as: 

 

                                                                                 𝜋𝑇𝐜′ = 0                                                                     (7) 

 

where 𝜋 = (𝐧T, −𝜌)T is the homogeneous representation of the plane defined by a normal 
vector 𝐧 unit length and its perpendicular distance 𝜌 from origin. Substituting Equation (6) in (7) 
give us: 

 

                                                          [𝑛𝑥 𝑛𝑦 𝑛𝑧    − 𝜌]𝑇 [
𝐑∗ 𝐭∗

0 1
]

[
 
 
 
𝑥𝑖

𝑘

𝑦𝑖
𝑘

𝑧𝑖
𝑘

1 ]
 
 
 

= 0                                    (8) 

 

where 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 denote the unit normal vector. 

Substituting equations (1)-(3) in (8), the disparity-to-plane model can be expressed as (Dos 
Santos et al., 2016): 

 

                                                      [𝑛𝑥 𝑛𝑦 𝑛𝑧 − 𝜌]𝑇 [
𝐑∗ 𝒕∗

01𝑥3 1
]

[
 
 
 
 
 
 
𝑍𝑖

𝑘

𝑓
𝑥𝑖

𝑘′

𝑍𝑖
𝑘

𝑓
𝑦𝑖

𝑘′

1

𝑐0+𝑐1𝑑

1 ]
 
 
 
 
 
 

= 0                                  (9) 

 

where 𝑥𝑖
𝑘′ , 𝑦𝑖

𝑘′ represents the centroid coordinates for each segmented current images. 
Developing Equation (9) algebraically: 

 

([𝑛𝑥𝑟11 + 𝑛𝑦𝑟21 + 𝑛𝑧𝑟31]
𝑍𝑖

𝑘

𝑓
𝑥𝑖

𝑘′ + [𝑛𝑥𝑟12 + 𝑛𝑦𝑟22 + 𝑛𝑧𝑟32]
𝑍𝑖

𝑘

𝑓
𝑦𝑖

𝑘′ + [𝑛𝑥𝑟13 + 𝑛𝑦𝑟23 +

𝑛𝑧𝑟33]𝑓 + [𝑛𝑥𝑡𝑥 + 𝑛𝑦𝑡𝑦 + 𝑛𝑧𝑡𝑧 − 𝜌]𝑓(𝑐0 + 𝑐1𝑑)) = 0                                                                    (10)                               

 

where 𝑟11 …𝑟33 represent the elements of 𝐑∗and 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 are the elements of  𝐭∗. For a set of 

three or more non-parallel segmented ROI corresponding to the centroid 𝐜′  previously 
established, the solution for 𝐑∗and 𝐭∗ can be obtained by means of least-squares criteria: 𝒙̂ =
(𝐀𝐓𝐌−𝟏𝐀)−1𝐀T𝐌−𝟏𝒘, where 𝐌 = 𝐁𝐁𝑇, A represents the Jacobian of the condition equation 
with respect to the unknown parameters, B represents the Jacobian of the condition equation 
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with respect to the observations, w is obtained by evaluating the condition equation with the 
observation and the approximate values of the unknowns. Note that 𝐑 and 𝐭 are used as initial 
approximation to estimate 𝐑∗ and 𝐭∗  into fine registration task. Once the coarse-to-fine 
registration step accumulates errors, loop closure task should be actived. This task corresponds 
to the step seven of the proposed method, as shows Figure 1.  

 

3.2 Loop closure detection 
 

This task is formalized with the help of a graph-based optimizer. A graph is an ordered pair 
𝐺(𝑙, 𝑈) comprising a set 𝑙 of nodes together with a set 𝑈 of edges. In this work, nodes are 
parameterized by 3D rotation and 3D translation components, which corresponds to the refined 
transformation parameters 𝑙𝑖(𝐑𝑖

∗, 𝐭𝑖
∗) , for all 𝑖 ∈ [1, 𝑘] , and edges represents constraints 

between the nodes. Loop closure ensures that new constraints can be inserted in the graph 
optimization. As described, loop closure corresponds to the global adjustemnt for simultaneous 
refinement of all the transformation parameters in a sequence. In this work, we used the loop 
closure method proposed by Hogman (2012). According Hogman (2012), the loop closure aims 
to detect revisited locations checking if the key frames matches with some of the previous one. 
Then, a transformation can be estimated between the current frame and key frame. 
Consequently, a new constraint can be inserted from it. Finally, the cumulated error of 𝐺(𝑙, 𝑈) 
can be minimized. However, if the time required for check the similarities between the key 
frame and current frame is not fast, the loop closure detection task can be highly time 
consuming. In order to improve the computational loop closure detection cost it was used a slide 
windows strategy proposed by Hogman (2012).  

 

Figure 3: Slide window strategy proposed by Hogman (2012). (a) Loop closure detection between 
current frame and the old four frames. (b) Window slides step forward representation to check 

frames. (c) Loop closure detection process until no more key frames exist. 
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In Figure 3a, the detection of the loop closure is done by comparing the most recent frames (𝑃5) 
with the previous four frames (𝑃0, … , 𝑃3) belonging to the slide window, where the last frame 
(𝑃4) is ignored to improve the computational cost. The slide window is defined with a fixed size 
of four frames in the past. In other words, for the current frame 𝑃5, the frames 𝑃0 − 𝑃3 are 
checked. Then, the loop closure is inserted between 𝑃5 and the old frame with greater similarity. 
The similarity value is determined by a probability density function, as described in Hogman 
(2012). In this case, an edge (𝑈) should be added to the graph. Thus, the graph is optimized 
using G2O graph-based method. For the next frame 𝑃6, the window slides one step forward and 
the frames 𝑃1 − 𝑃4 are checked, as illustrated in Figure 3b. These tasks are successively executed 
until no more key frames exist, as depicted in Figure 3c. Then, whole pose graph can be 
optimized using a pose graph network optimizer as proposed by Grisseti et al. (2007). The graph 
to be optimized is written as: 

 

                                                                                  𝑙𝑖 = ∏ 𝐄𝑖−1
𝑖1

𝑖=𝑛 𝑙𝑗
𝑖                                                                    (11) 

 

where 𝑙𝑗
𝑖 represents the nodes formed by consecutive transformations and 𝐄𝑖−1

𝑖  denotes the 

edges created by relative transformations between the nodes. 

 

3.3 Graph optimization 

  

In this work, G2O graph-based optimizer is used for global adjustemnt of all the transformation 
parameters in a sequence. In G2O method, the directed edges are added in 𝐺 based on number 
of correct corresponding points and 𝑙𝑖(𝐑𝑖

∗, 𝐭𝑖
∗), such as described in Grisetti et al. (2007). To 

verify the consistency of the optimization problem an analyse of error function 𝑒(𝑙𝑖, 𝑙𝑗) should be 

executed, once an edge is characterized for both 𝑒(𝑙𝑖, 𝑙𝑗) and its variance-covariance matrix. 

According Khoshelham and Elberink (2012) the accuracy of depth image is not stable and also 
depends on the structure of the environment. For example, on some materials the reflection 
affects the measurement depth. Thus, is essential includes a metric to ensure that the constraint 
to be comprised in the loop closure detection task represents the real uncertainty of the 
transformation parameters. In Kümmerle et al. (2011) the variance-covariance matrix that 
describes the uncertainty of the transformation parameters to weight the graph-based 
optimization task is used as identity matrix or, usually, computed by Cholesky solver. The 
Cholesky solver only carried out the inverse of 𝐀𝐓𝐀, being 𝐀 the Jacobian of the condition 
equation with respect to the unknown parameters. Note that Cholesky solver ignores the 
posteriori variance factor (𝜎̂𝑜

2) and the number of redundant observations in the system (r). To 

compensate this deficiency, we introduced the variance-covariance matrix 𝐂̂𝑥 of the refined 

transformation parameters (𝐑𝑖
∗, 𝐭𝑖

∗)  in the graph optimization process. In this work, 𝐂̂𝑥  is 
obtained jointly with the fine registration task, as follows: 

 

                                                                      𝐂̂𝑥 = 𝜎̂0
2(𝐀𝐓𝐌−𝟏𝐀)−1                                                       (12) 
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where 𝜎̂0
2 =

𝐯𝑇𝐯

𝑟
, A represents the Jacobian of the condition equation with respect to the 

unknown parameters, 𝐌 = 𝐁𝐁𝑇 with B denoting the Jacobian of the condition equation with 
respect to the observations and 𝐯 represents the residual vector. Note that, we introduced 𝜎̂0

2 
computed with respect to the residual vector and the redundancy, as well as the Jacobian of the 
condition equation with respect to the observations.  

 

4. Experiments and Results 

 

To demonstrate and evaluate the effectiveness of our proposed method three experiments were 
conducted. Firstly, we calibrate the Kinect device using the Matlab camera calibration toolbox 
(Bouguet, 2004). The Bouguet’s method improved the technique originally proposed by Zhang 
(2000). Basically, the well-known photogrammetric bundle adjustment with self-calibration 
method is used to estimate the interior orientation parameters (IOPs), the relative translation 
and rotation between the RGB and IR sensors (∆𝑥,∆𝑦, ∆𝑧, ∆𝜔, ∆𝜑, ∆𝜅). The lens distortions are 
modeled using the Brown model (Brown, 1971). Table 2 presents the estimated IOPs and the 
relative translation and rotation between the IR and RGB sensors. Second, a sequence of 
handled data was captured in order to test the suitability of the devised method for 3D indoor 
mapping applications. A person carried the Kinect sensor by hand leaving a certain place, turned 
around and then returning to the same position. A total of three indoor scenarios were captured 
and processed. Table 3 summarizes the trajectory of the sensor obtained after the graph 
optimization, the number of nodes (𝑙𝑖) corresponding to the refined transformation parameters 
(𝐑𝑖

∗, 𝐭𝑖
∗) and the number of edges (𝑈) representing the constraints added in the graph by loop 

closure detection task.  

 

Table 2: Interior orientation parameters, boresight and lever arm misalignment. 
IOPs                        IR sensor                                     RGB sensor                    

𝑓𝑥                    5∙398 mm ±3∙5e−4 mm              4∙883 mm ±3∙ 7e−4 mm 

𝑥0                    0∙055 mm ±7∙0e−5 mm             -0∙033 mm ±7∙0e−5mm 

𝑦0                    0∙115 mm ±7∙0e−5 mm             -0∙158 mm ±7∙0e−5 mm 

𝑘1                   -3∙679e−4 ±8∙0e−6 mm−2          -9∙571e−3 ±8∙5e−6 mm−2 

𝑘2                    4∙265e−4 ±7∙5e−7 mm−4          -6∙111e−3 ±8∙0e−7 mm−4 

𝑘3                                   0∙0                                               0∙0 

𝑃1                    -1∙122e−3 ±8∙0e−6 mm−1         -5∙923𝑒−4 ±8∙0e−7 mm−1 

𝑃2                     1∙155e−3 ±8∙0e−6 mm−1                          0∙0 

∆𝑥 (mm)        ∆𝑦 (mm)        ∆𝑧 (mm)          ∆𝜔 (º)            ∆𝜑 (º)          ∆𝜅 (º) 

26∙1448          0∙3433           -2∙1776           0∙16713       0∙30770          0∙0966 

 

The initial estimative of 2,6 cm for the baseline distances between the IR camera and RGB 
camera are close to the initial approximations obtained manually with micrometer equipment. In 
Table 2, note that the magnitude of radial distortions is larger in the RGB images.  



A joint effort of speeded-up…                                                                                                                                                    362 

Bulletin of Geodetic Sciences, 24(3): 351-366, Jul-Sept, 2018 

Table 3: The number of nodes, edges and the trajectory of the sensor measured by the proposed 
method. 

Scenario nodes (𝒍𝒊(𝐑𝒊
∗, 𝐭𝒊

∗)) edges (𝑼) 
Trajectory of 

the sensor (m) 

A 62 65 9.73 
B 33 52 3.99 
C 101 131 9.77 

 
The graph optimization aims to minimize the coarse-to-fine registration errors. To verify the 
consistency of the optimization problem the error function 𝑒(𝑙𝑖, 𝑙𝑗) is analysed. According Grisseti 

et al. (2007) 𝑒 is a function that computes the difference between the relative position of the two 
nodes (𝑙𝑖 and 𝑙𝑗), that represents 𝑙𝑗 seen in the frame of 𝑙𝑖, and the ground observation (𝑔𝑖) 

manually measured using a tape. In practice, 𝑒(𝑙𝑖, 𝑙𝑗) is computed through the difference 

between the obtained trajectory of the sensor and 𝑔𝑖. Figure 4 shows 𝑒(𝑙𝑖, 𝑙𝑗) for scenarios A-C.  

In Figure 4, 𝑒(𝑙𝑖, 𝑙𝑗)  values closest to zero mean that the nodes 𝑙𝑖 and 𝑙𝑗 correspond to the 

ground observation. Note that, the largest magnitude of 𝑒(𝑙𝑖, 𝑙𝑗) was 15,9 cm found in the 

scenario B and the smallest magnitude of 𝑒(𝑙𝑖, 𝑙𝑗) was 2,7 cm for the scenario C. Once an edge is 

characterized for both 𝑒(𝑙𝑖, 𝑙𝑗) and the proposed 𝐂̂𝑥 matrix, when a loop closure is detected a 

constraint represented by 𝐂̂𝑥  between the nodes 𝑙𝑖  and 𝑙𝑗  is added to weight the graph 

optimization task. As expected, when a joint effort of SURF algorithm and disparity-based model 
is executed and the loop closure is detected small 𝑒(𝑙𝑖, 𝑙𝑗) values are achieved, as showed the 

scenario B. Usually, with textureless regions (scenarios A and C) the disparity-based model does 

not work appropriately and the 𝐂̂𝑥 cannot be computed. Then, the algorithm automatically 

attribute to 𝐂̂𝑥 the identity matrix. Consequently, are achieved high 𝑒(𝑙𝑖, 𝑙𝑗) values, as show the 

peaks in Figure 4.      

 

Figure 4: The 𝑒(𝑙𝑖, 𝑙𝑗) for scenario A (a), scenario B (b) and scenario C (c). 
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Third, in order to evaluate the global error of the graph optimization the root mean square 

(RMS) defined by √
𝑔𝑙𝑜𝑏𝑎𝑙 𝑒𝑟𝑟𝑜𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠
 is computed. The 𝑔𝑙𝑜𝑏𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 is defined as the absolute 

difference between a horizontal ground distance and the corresponding distance measured in 
3D map after the graph optimization. The horizontal ground distance is measured with a tape 
and the corresponding distance is manually measured in the 3D indoor map obtained after graph 
optimization. The highest error was found for scenario A. Note that the error of the graph 
optimized corresponds to 1,5% over the distance travelled by the sensor in the experiments A 
and C. For example, an error of 11,97 cm in the graph corresponds to a positional imprecision 
around 1,5% at the distance of 9 m travelled by sensor.  The 3D indoor map generated with the 
proposed method for scenarios A and B are displayed in Figure 5 and Figure 6.  

 

Figure 5: 3D indoor map for scenario A. (a) Scenario A before graph optimization, (b) Scenario A 
after graph optimization, (c) top view of the Scenario A before graph optimization and (d) top 

view of the Scenario A after graph optimization. 
 

From Figure 5(c) a misalignment in the 3D indoor scenario before graph optimization can be 
observed (see the red curve projected in the kitchen wall). This effect is likely a result of the 
small local registration errors that are accumulated during the coarse-to-fine registration 
process. However, the misalignment and accumulated mapping errors are smoothed after the 
graph optimization task, as can be observed in Figure 5(d).  
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Figure 6: 3D indoor map for scenario B. (a) Scenario B before graph optimization, (b) Scenario B 
after graph optimization. 

 

As can be observed in Figure 6a, a laptop in the down left corner indicated by a red square box 
and all the stuffs in the living room are not adequately modeled before graph optimization. After 
graph optimization the scenario B is consistently optimized and the before mentioned stuffs can 
be clearly visualized, as presented in Figure 6b. The evaluated scenarios A and B are mainly 
composed of doors, kitchen and living room stuffs. However, we evaluated the proposed 
method for a rather extreme case, such as, the scenario C that is essentially composed of flat 
walls, as depicted in Figure 7. Note that after the graph optimization the accumulated errors (see 
black narrow region in Figure 7a) are practically attenuated achieving a consistent 3D indoor 
map, as visually verified in Figure 7b and Figure 7c.  

 

Figure 7: 3D indoor environment for scenario C. (a) top view of 3D scenario before graph 
optimization, (b) top view of 3D scenario after graph optimization and (c) a perspective view of 

3D indoor map. 
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5. Conclusions 

 

In this paper, a method for 3D mapping of indoor environments using RGB-D data is presented. 
For that purpose, a joint effort of the speed-up robust features algorithm and a disparity-to-
plane model for a coarse-to-fine registration procedure is exploited. This strategy avoids the 
solution of difficult convergence, once errors in RGB-D data association negatively affect the 
performance of the registration procedure. We also detect loop closures using a variance-
covariance matrix based on residual vector of the observations, redundancies and the Jacobian 
of the condition equation with respect to the observations. Thus, since loop closures are 
detected the uncertainty of the transformation parameters is carefully dealt in our method. 
These contributions have shown quite effective as can be observed when small 𝑒(𝑙𝑖, 𝑙𝑗) values 

are achieved. The coarse-to-fine registration and the weighting of the graph optimization using 
the mentioned strategy are the two main reasons that the method perform well in this work. 
Compared with point-based registration methods, plane-based approaches are more robust to 
outliers. In other words, outliers cannot have considerable impact on the correspondence 
model. In our method we joint a point-plane effort to appear sufficient. The graph is optimized 
using good approximations derived from proposed coarse-to-fine registration task combined 
with full MVC, as show the estimated global RMS. Limitations of the proposed method rely on 
high computational loop closure detection task and in the fact that the coarse-to-fine 
registration procedure cannot be used at indoor environments that contain only flat scenes. 
Their main disadvantages compared with LASER scanning sensors are lowest accuracy and it is 
not able to map outdoors environments. More sophisticated constraints to make it feasible to 
consider the full contribution will be the focus of the authors’ future work. 
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