Acessibilidade / Reportar erro

Collagen cross-linking agents + dimethyl sulfoxide improving the adhesive properties of erosive lesion dentin

Abstract

To investigate the effect of the dimethyl sulfoxide combined with cross-linking agents on microtensile bond strength, silver nitrate penetration and in situ degree of conversion analysis of adhesives to the erosive dentin treatment with Cola-based soft drink. One hundred and sixty-six molars were assigned to 20 groups: (1) Treatment: Sound dentin; Erosive dentin; Erosive dentin treated with primer of dimethyl sulfoxide; Erosive dentin treated with DMSO primer containing proanthocyanidin and rivoflavin; (2) Adhesive systems: iBond Universal and Scotchbond Universal; and (3) adhesive strategy: etch-and-rinse or self-etch strategy. After restoration, specimens were sectioned into sticks to be tested. The data from microtensile bond strength (MPa), silver nitrate penetration (%) and in situ degree of conversion (%) were analyzed by (three- and two-factor ANOVA; Tukey's test α=5%). The application of dimethyl sulfoxide combined of not with cross-linkers improved all properties evaluated when compared to only erosive dentin treatment with Cola-based soft drink. However, only when dimethyl sulfoxide was combined to cross-linkers, the values of the microtensile bond strength, silver nitrate penetration and in situ degree of conversion in erosive dentin treatment with Cola-based soft drink was similar to sound dentin, for both adhesives and adhesive strategies. The application of dimethyl sulfoxide combined with the collagen cross-linking agent contributed to increasing the bond strength and degree of conversion in erosive lesion dentin, at the same time that significantly reduction of nanoleakage in this substrate.

Key Words:
Erosive tooth wear; Microtensile bond strength, Nanoleakage; Cross-linking agents, DMSO

Fundação Odontológica de Ribeirão Preto Av. do Café, S/N, 14040-904 Ribeirão Preto SP Brasil, Tel.: (55 16) 3602-3982, Fax: (55 16) 3633-0999 - Ribeirão Preto - SP - Brazil
E-mail: bdj@forp.usp.br