Acessibilidade / Reportar erro

Osteocalcin Immunohistochemical Expression During Repair of Critical-Sized Bone Defects Treated with Subcutaneous Adipose Tissue in Rat and Rabbit Animal Model

The aim of this study was to evaluate the osteocalcin immunoexpression during the bone repair treated with subcutaneous adipose tissue in rats and rabbits. Fourteen rats and 14 rabbits were used in the study. A critical-sized calvarial defect was created in each animal. The animals were divided into 4 experimental groups: RC (rat control), RbC (rabbit control), RAT (rat adipose tissue), RbAT (rabbit adipose tissue). In the groups RC and RbC the defect was filled with a blood clot. In groups RAT and RbAT, the defect was filled with macerated subcutaneous adipose tissue. The euthanasia was performed at 30 days (RC and RAT) and 40 days (RbC and RbAT). Histological analysis and immunohistochemical analysis of osteocalcin protein expression were performed. Data were submitted to descriptive statistical analysis (mode). Osteocalcin immunoexpression was detected in the experimental models. Notwithstanding, RbAT showed higher positivity, especially in the adipocytes, than the group RAT group. In groups RC and RbC, the surgical wound was filled by collagen fibers. In Group RAT, the defect was composed by collagen fibers and adipocytes in the reparative sites. Similarly, in RbAT, the defect also was partially filled by collagen fibers and presence of adipocytes dispersed among the fibers. Additionally, chronic inflammatory process and areas of bone matrix deposition were observed. It may be concluded that in both animal models the adipose tissue demonstrated low osteogenic capacity. However, the rabbit animal model exhibited a more evident osteocalcin immunoexpression and a greater amount of newly formed bone matrix.

abdominal fat; subcutaneous fat; stem cells; rabbits; bone regeneration; osteocalcin


Fundação Odontológica de Ribeirão Preto Av. do Café, S/N, 14040-904 Ribeirão Preto SP Brasil, Tel.: (55 16) 3602-3982, Fax: (55 16) 3633-0999 - Ribeirão Preto - SP - Brazil
E-mail: bdj@forp.usp.br