Acessibilidade / Reportar erro

Fracture Resistance of Simulated Immature Teeth Reinforced with Different Mineral Aggregate-Based Materials

Abstract

This study assessed the fracture resistance of simulated immature teeth reinforced with calcium aluminate cement (CAC) or mineral trioxide aggregate (MTA) containing calcium carbonate nanoparticles (nano-CaCO3). The microstructural arrangement of the cements and their chemical constitution were also evaluated. Forty-eight canines simulating immature teeth were distributed into 6 groups (n=8): Negative control - no apical plug or root canal filling; CAC - apical plug with CAC; CAC/nano-CaCO3 - apical plug with CAC+5% nano-CaCO3; MTA - apical plug with MTA; MTA/nano-CaCO3 - apical plug with MTA+5% nano-CaCO3; and Positive control - root canal filling with MTA. The fracture resistance was evaluated in a universal testing machine. Samples of the cements were analyzed under Scanning Electron Microscope (SEM) to determine their microstructural arrangement. Chemical analysis of the cements was performed by Energy Dispersive X-ray Spectroscopy (EDS). The fracture resistance of CAC/nano-CaCO3 was significantly higher than the negative control (p<0.05). There was no significant difference among the other groups (p>0.05). Both cements had a more regular microstructure with the addition of nano-CaCO3. MTA samples had more calcium available in soluble forms than CAC. The addition of nano-CaCO3 to CAC increased the fracture resistance of teeth in comparison with the non-reinforced teeth. The microstructure of both cements containing nano-CaCO3 was similar, with a more homogeneous distribution of lamellar- and prismatic-shaped crystals. MTA had more calcium available in soluble forms than CAC.

Key Words:
Immature Teeth; Calcium Aluminate Cement; Silicate Cement; Calcium Carbonate; Fracture Resistance

Fundação Odontológica de Ribeirão Preto Av. do Café, S/N, 14040-904 Ribeirão Preto SP Brasil, Tel.: (55 16) 3602-3982, Fax: (55 16) 3633-0999 - Ribeirão Preto - SP - Brazil
E-mail: bdj@forp.usp.br