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Abstract
The Llanquihue lake is included in the called Araucanian or Nord Patagonian lakes located between 38-41° S. These 
lakes are characterized by their oligo-mesotrophic status due to human intervention which takes to the increase in 
nutrients inputs from industries and towns. Effects on zooplankton assemblages are observed with marked increase of 
daphnids abundance. The aim of the present study is to analyze the trophic status and zooplankton relative abundance 
in different bays of Llanquihue lake. It was found direct associations between chlorophyll a with daphnids percentage, 
total dissolved nitrogen with reactive soluble phosphorus nitrogen/phosphorus molar radio with cyclopoids percentage, 
and an inverse relation between daphnids and calanoids percentages. The occurrence of three kinds of microcrustacean 
assemblages and environmental conditions was evidenced: the first one with high calanoids percentage, low species number 
and low chlorophyll and nutrients concentration, a second with moderate chlorophyll and nutrients concentration and 
moderate daphnids percentage; high species number and a third site with high chlorophyll and nutrients concentration, 
high daphnids percentage and high species number. Daphnids increase under mesotrophic status, agree with similar 
results observed for southern Argentinean and New Zealand lakes.

Keywords: zooplankton, trophic conditions, daphnids, calanoids.

Crustáceos planctónicos crustáceo em baías com estado trófico diferente no 
lago Llanquihue (41° S Chile)

Resumo
O lago Llanquihue está incluído nos chamados lagos araucana ou Nord Patagônia localizado entre 38-41° S. Estes 
lagos são caracterizados pela condicao oligo-mesotrofica debido a intervencao humana, com aumento da carga de 
nutrientes provenientes de industrias y areas urbanas com efeitos sobre as assembleias zooplantonicas sao observadas, 
com aumento acentuado de dafnideos. O objetivo do presente estudo é analisar o estado trófico a abundancia relative 
do zooplancton em diferentes compartimentos do lago Llanquihue. Foram encontradas associações diretas entre 
clorofila a com percentual de dafinídeos, nitrogênio total dissolvido com fósforo solúvel reativo molares razao molar 
nitrogênio / fósforo com percentual de ciclopóides, e uma relação inversa entre percentuais de dafinídeos e calanóides 
porcentagens. A ocorrência de três tipos de assembleias de microcrustáceos e as condições ambientais fora: a primeira 
com alta porcentais de calanóides, baixo número de espécies e baixa clorofila e a nutrientes, uma segunda com 
concentracoes moderadas de clorofila e nutrientes percentual moderado de daphnideos e alto número de espécies; 
e uma terceiro local com alta concentração de clorofila e nutrientes, alta abundância dafinídeos e número elevado de 
espécies. Resultados similares com aumento de dafnideos em condicoes mesotroficas também foram observados para 
lagos da Argentina e Nova Zelândia do sul.

Palavras-chave: zooplâncton, condições tróficas, dafinídeos, calanóides.
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1. Introduction

The called Araucanian or Nord Patagonian lakes are 
located in Argentina and Chile between 38-41° S, these 
lakes are characterized by their oligo or oligomesotrophic 
status, and glacial origin (Thomasson, 1963). These 
lakes have low zooplankton species number with 
marked higher calanoid abundance compared to 
daphnids in oligotrophic status which can observed 
under oligomesotrophic status (Modenutti et al., 1998; 
De los Ríos-Escalante, 2010).

These lakes located in Chile has marked human 
intervention due to changes in their surrounding basins, 
because the original native forest was replaced by towns, 
agricultural, and industrial activities, with consequent nutrient 
inputs (Soto, 2002). These increases were accentuated 
during the last three decades (Woelfl et al., 2003), and 
generate changes in zooplankton composition. In the 
last decades it was found an increase in species number, 
daphnids percentage and low calanoid percentage (De los 
Ríos-Escalante, 2010).

In some lakes with small bays it was found different 
gradient of trophic status due nutrients inputs associated 
to presence/absence of human intervention, such as was 
observed for Llanquihue lake (Soto, 2002). The effects of 
these alterations in trophic status on zooplankton assemblages 
were previously described (De los Ríos, 2003), and it was 
reported preliminary an increase of daphnids abundance in 
bays with towns or aquaculture activities. The aim of the 
present study is to analyze the zooplankton assemblages 
in different bays of Llanquihue lake in order to determine 
the potential role of nutrient and chlorophyll concentration 
on distinct zooplankton groups abundance.

2. Material and Methods

Th sampling sites were visited once, between December 
2001 and March 2002. These sites correspond to different 
bays in Llanquihue lake with towns, aquaculture and with 
absence of marked human intervention (Figure 1; Table 1). 
Nutrient and chlorophyll samples were taken for each site 
and analyzed according to Wetzel and Likens (1991). 
Zooplankton samples were taken using 20 m vertical hauls 
with a plankton net of 20 cm diameter and 100 μm mesh 
size, and fixed with ethanol absolute. For analysis were 
considered the following groups daphnids (Daphnidae 
family), other cladocerans (Sididae and Bosminidae 
family), calanoids (Centropagidae and Diaptomidae) 
and cyclopoids. Specimens were identified with help of 
specialized literature (Araya and Zúñiga, 1985; Reid, 
1985; Bayly, 1992).

2.1. Data analysis
Data on nutrients and chlorophyll concentrations, 

daphnids, cladocerans, calanoid and cyclopoids percentages 
were analyzed using Statgraphics Centurion software, 
in order to determine the grouping variables, using a 
principal component analysis (PCA). In a second step, 
the Checkerboard score (“C-score”) was calculated, 
which is a quantitative index of occurrence that measures 
the extent to which species co-occur less frequently than 
expected by chance (Gotelli, 2000, 2001). A community is 
structured by competition when the C-score is significantly 
larger than expected by chance (Gotelli, 2000, 2001). 
Finally, the co-occurrence patterns were compared with 
null expectations via simulation. Gotelli and Entsminger 
(2007) and Gotelli (2000) suggested the following robust 
statistical null models: (1) Fixed-Fixed: in this model the 

Figure 1. Map of localization of Llanquihue lake, and sites considered in the present study (1: Llanquihue town; 2: Puerto 
Chico bay; 3: Puerto Phillippi bay; 4: Puerto Rosales bay; 5: Ensenada bay; 6: Puerto Octay town; 7: Volcanes bay; 8: Venado 
beach).
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row and column sums of the matrix are preserved. Thus, 
each random community contains the same number of 
species as the original community (fixed column), and each 
species occurs with the same frequency as in the original 
community (fixed row). (2) Fixed-Equiprobable: in this 
algorithm only the row sums are fixed and the columns 
are treated as equiprobable. This null model considers 
all the samples (columns) as equally available for all 
species. (3)  Fixed-Proportional: in this algorithm the 
species occurrence totals are maintained as in the original 
community, and the probability that a species will occur at 
a site (column) is proportional to the column total for that 
sample. The null model analyses were performed using 
Ecosim version 7.0 software (Gotelli and Entsminger, 
2007; Tiho and Josens, 2007; Tondoh, 2006).

Finally, the available data was ordered for apply species 
richness estimation considering presence/absence data using 
the software SPADE with the aim of understanding the 
community properties (Chen and Chen, 2010), considering k 
= 3 as limit number for rare species because the crustacean 
zooplankton in southern Patagonia exhibits low species 
number (De los Ríos-Escalante, 2010).

3. Results

The results shown in Table 1 denote the association of 
oligo-mesotrophic status with high daphnids percentage 
in sites near to towns and bays with aquaculture activities. 

Conversely, in zones without human intervention it was 
observed low nutrients and chlorophyll concentration and 
low daphnids abundances. The species reported revealed 
that Daphnia pulex occurred in many aquaculture and 
towns sites, whereas Ceriodaphnia dubia was present 
in practically all sites, similar to Boeckella gracilipes. 
Whereas Tumeodiaptomus diabolicus was present only in 
two aquaculture sites, Neobosmina chilensis occurred mainly 
in less polluted sites, and finally Mesocyclops araucanus 
was present mainly in mesotrophic sites (Table 1).

The Pearson index correlation matrix generated by PCA 
shows direct significant correlations between dissolved 
inorganic nitrogen and reactive soluble phosphorus, 
daphnids percentage with chlorophyll “a” concentration”, 
daphnids percentage with cyclopoids percentage and 
nitrogen/phosphorus molar ratio with cyclopoids 
abundance, species number with N/P ratio, and daphnids 
with cyclopoids percentages. It was found significant 
inverse associations between calanoids percentage with 
daphnids and other cladocerans percentage (Table  2). 
The main variables correlated to the first axis were 
species number, daphnids and cyclopoids percentage and 
chlorophyll concentration. The main variables correlated 
to the second axis were total inorganic nitrogen, soluble 
reactive phosphorus and calanoid percentage (Table 3). 
The results of PCA revealed the presence of two main 
groups, one representing sites with low nutrient and 

Table 2. Pearson correlation index matrix generated by PCA of variables considered in the present study (values in bold 
denotes significant correlations; p < 0.05).

Variables
Dissolved 
inorganic 
nitrogen

N/P Chlorophyll 
“a”

% 
Daphnidae

% Other 
Cladocerans

% 
Calanoids

% 
Cyclopoids

Species 
number

Soluble reactive 
phosphorus

0.9 0.2 0.4 0.1 -0.1 0.0 -0.1 0.2

Dissolved inorganic 
nitrogen

0.3 0.4 0.2 -0.1 -0.1 -0.1 0.3

N/P -0.1 0.3 -0.2 -0.1 0.7 0.7
Chlorophyll “a” 0.6 -0.1 -0.2 0.3 0.4
% Daphnidae 0.1 -0.7 0.7 0.8
% Other Cladocerans -0.7 -0.2 0.0
% Calanoids -0.3 0.6
% Cyclopoids 0.8

Table 3. Scores of importance of PCA factors.
Component 1 Component 2

Soluble reactive phosphorus -0.1 -0.5
Dissolved inorganic nitrogen -0.2 -0.5
N/P -0.3 -0.1
Chlorophyll “a” -0.3 -0.2
% Daphnidae -0.4 0.1
% Other Cladocerans 0.1 0.3
% Calanoids 0.3 -0.3
% Cyclopoids -0.3 0.2
Species number -0.4 0.1
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chlorophyll concentrations and high calanoid percentage 
(Ensenada, Venado, Volcanes and Puerto Octay bays), 
and a second group with moderate to high nutrient and 
chlorophyll concentrations and moderate to high daphnids 
percentage and low calanoids percentage (Llanquihue, 
Puerto Phillippi and Puerto Chico Bays), and a third site 
corresponding to Puerto Rosales bay, an isolated eutrophic 
bay with high daphnids percentage (Figure 2).

The results of the co-occurrence null model analysis 
revealed the presence of regulator factors only for fixed‑fixed 
model (Table 4), that would partially agree with the results 
of PCA analysis of strong driving force acting on crustacean 
communities. The species richness estimations, based on 
presence-absence data, revealed were weakly higher than 
the total species number reported, but the variation range 
was relatively wide (Table 5).

Table 4. Results of null model co-occurrence species for data included in the present study (“p” values lower than 0.05 denotes 
the existence of regulator factors in species associations).

Model Observed index Mean index Standard effect size P
Fixe-fixed 2.4 1.7 5.7 < 0.01
Fixed-proportional 2.4 1.8 1.2 0.12
Fixed-equiprobable 2.4 2.0 0.8 0.24

Table 5. Results of estimated biodiversity parameters obtained from SPADE software.
Estimator Estimate Estimate standard error 95% confidence interval

Homogeneous model 7.6 1.0 (7.1-13.1)
Chao2 7.2 0.7 (7.0-11.3)
Chao2-bc 7.0 0.1 (7.0-7.0)
Model 1(h) 7.3 0.8 (7.0-12.1)
Model 1(h)-1 7.3 0.8 (7.0-12.1)
Model (th) 7.2 0.8 (7.0-12.7)
Model (th)-1 7.2 1.0 (7.0-13.5)
1st Order jackkniffe 7.9 1.3 (7.0-14.1)
2nd Order jackkniffe 7.3 2.0 (7.0-20.5)

Figure 2. Results of PCA analysis for variables and sites considered in the present study.
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4. Discussion

The results revealed that nutrient and chlorophyll 
increases had a positive influence on daphnids and cyclopoids 
percentage, such as observed for North Patagonian lakes 
(Woelfl, 2007; De los Ríos-Escalante, 2010). In Patagonia 
there are numerous oligotrophic lakes with low species 
number, low daphnids abundance and high calanoid 
dominance in their zooplankton assemblages (Soto and 
Zúñiga, 1991; Kamjunke et al., 2009; De los Ríos-Escalante, 
2010). The trophic status of Llanquihue was based on 
first studies was carried out in Ensenada Bay and it was 
described as oligotrophic (Campos et al., 1988). Nevertheless 
the study of Soto (2002) described this lake based on the 
analyses of bays under towns and aquaculture influence 
and a control site in the center of the lake, and it observed 
that zones with human interference exhibited increases in 
total phosphorus and chlorophyll concentrations. In a first 
studies with zooplankton assemblages it was found increase 
in daphnids abundances in lakes between 39-41° S with 
higher chlorophyll concentrations (Soto and Zuñiga, 1991; 
De los Rios-Escalante, 2010). In this context, Llanquihue 
lake has a gradient of chlorophyll concentration due human 
intervention in their surrounding basins. Despite that 
there is low dissolved organic matter concentrations, as 
other regionally similar lakes in Argentinean and Chilean 
Patagonia (Balseiro et al., 2007; De los Rios-Escalante, 
2010). Therefore, the chlorophyll concentration, in spite 
of the kind of phytoplankton composition, can be an 
important as regulator factor for zooplankton abundances 
in Argentinean Patagonian lakes (Trochine et al., 2015).

Our results concerning Daphnids and other cladocerans 
(Bosminidae and Sididae families), are supported by 
Modenutti et al. (1998) who described opposite zooplankton 
abundances responses between Ceriodaphnia dubia and 
Neobosmina chilensis. The direct association between 
daphnids and cyclopoids percentage associated to chlorophyll 
increase was described for Chilean North Patagonian lakes 
(Woelfl, 2007; De los Ríos-Escalante, 2010). Similar results 
were described for New Zealand lakes that have similar 
latitude and geographical characteristics of Nothofagus 
forests (Jeppesen et al., 1997, 2000).

Other important factor to be considered is the fish 
predation on zooplankton composition (Modenutti et al., 
1998). In unpolluted conditions the calanoids copepods 
would have an important role as grazer on phytoplankton 
and in turn would be eaten by zooplanktivorous fishes 
in Argentinean and Chilean Patagonian lakes (Soto and 
Zuñiga, 1991; De los Rios-Escalante, 2010; Reissig et al., 
2015; Trochine  et  al., 2015). Additionally, the natural 
ultraviolet radiation exposure that increased in Patagonia 
affect zooplankton assemblages because the species have 
different tolerance to UV radiation under trophic gradient 
(Marinone  et  al., 2006; De los Ríos-Escalante, 2010; 
Hylander et al., 2012). Then considering both view point, 
the zooplankton composition can be regulated by trophic 
variations, ultraviolet radiation exposure and fish predation.

The predicted results about species richness indicate 
that species number is independent of sampling replicates 
(Gongalsky et al., 2006). Thus, probably the species richness 
estimators would agree with null models, because first null 
models revealed the presence of many species repeated in 
many of sampled sites, and the species richness estimators 
would indicate that the species number would not vary. 
These results would agree with the descriptions about Chao 
1 and Chao2 index that is a robust estimator (Cannon et al., 
1998; Martinez-Aquino et al., 2011; Hoshi et al., 2014).

Our study revealed that zooplankton assemblages are 
associated to chlorophyll gradients in bays with different 
kind of human intervention. These results can be the 
base for future studies about spatial heterogeneity and 
trophic status in Patagonian lakes with difererent human 
interference, towards future environmental management 
and sustainable use.
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