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Abstract

Epipsammic diatoms have important implications for ecosystem processes in lotic environments. Most of the studies 
on benthic diatoms concentrate on epilithic diatoms and very little is known about epipsammic diatoms. The objective 
of this study was to assess epipsammic diatom communities in streams in relation to environmental conditions. 
Epipsammic diatoms and water quality sampling was done at 7 sites during summer base flow period (2008). Forward 
stepwise multiple regression and canonical correspondence analysis (CCA) were used to determine environmental 
gradients along which species vary with physical and chemical variables. A total of 112 diatom species distributed 
among 44 genera were recorded. Altitude and the process of eutrophication played a significant role in structuring 
diatom communities in the study region.

Keywords: diatom communities, pollution, environmental gradients, biological monitoring.

Epipsammic diatomáceas em riachos influenciada  
pela poluição urbana, São Carlos-SP, Brasil

Resumo

Diatomáceas epipsâmicas têm implicações importantes para os processos em ecossistemas em ambientes lóticos. A 
maioria dos estudos sobre diatomáceas bentônicas concentra-se em diatomáceas epilíticas e muito pouco se sabe sobre 
diatomáceas epipsâmicas. O objetivo deste estudo foi avaliar comunidades de diatomáceas epipsâmicas nos córregos em 
relação às condições ambientais. Amostragens de diatomáceas epipsâmicas e de água para determinação da qualidade 
foram feitas em sete locais durante o verão do ano de 2008. As análises de regressão múltipla passo a passo e análise 
de correspondência canônica (CCA) foram usadas para determinar quais espécies ao longo dos gradientes ambientais 
variam de acordo com as variáveis físicas e químicas da água. Um total de 112 espécies de diatomáceas distribuídas 
entre 44 gêneros foi registrado. A altitude e o processo de eutrofização exerceram um papel significativo na estruturação 
das comunidades de diatomáceas na região de estudo.

Palavras-chave: comunidades de diatomáceas, poluição, gradientes ambientais, monitoramento biológico.

1. Introduction

Lotic ecosystems present unique patterns of distribution 
of biological diversity among taxonomic groups and 
among regions (Allan and Flecker, 2003; Tundisi and 
Matsumura‑Tundisi, 2008). These patterns are responsive 
to the nature of physical and chemical characteristics 
of lotic environments. The integrity of biota inhabiting 
lotic ecosystems thus provides a direct, holistic and 
integrated measure of the integrity of the system as a 
whole (Karr, 1991).

A fundamental part of biota of lotic ecosystems is the 
periphyton community. The main part of periphyton consists of 
diatoms which are various microscopic one-celled or colonial 
members of the algal division or phylum Bacillariophyta. 
Diatoms are the most species rich group of algae with tens 

of thousands of species (Mann, 1999; Moura et al., 2007). 
Round (1991) states that there are currently over 260 genera 
of living diatoms with over 100,000 species.

Diatoms are cosmopolitan, with others being endemic to 
specific regions (Kelly, 1998; Potapova and Charles, 2003). 
Their community structures in streams are controlled by 
multiple factors prevailing at different temporal and spatial 
scales (Biggs, 1995; Stevenson, 1997; Pan et al., 1996). These 
factors include water chemistry (particularly pH, ionic strength 
and nutrient concentrations), substrate, current velocity, light 
(degree of shading) grazing and temperature (which also 
correlate strongly with latitude and altitude) (Patrick and 
Reimer, 1966; Round, 1991; Pan et al., 1996; Potapova and 
Charles, 2002; Necchi-Júnior et al., 2003, Moura et al., 2007). 
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Most of these factors depend strongly on climate, geology, 
topography, land-use and other landscape characteristics, and 
therefore diatom communities are similar within ecological 
regions defined by these characteristics (Pan et al., 1996). 
Short-term differences in community composition are also 
driven by immigration of cells, differences in growth rate 
between populations and loss processes such as death, 
emigration and sloughing.

Most of the studies carried out on benthic diatoms tend 
to concentrate on epilithic diatoms (growing on stones) and 
very little is known about epipsammic diatoms (growing on 
sand) despite their ecological importance in the structure and 
functioning of lotic systems (Krecji and Lowe, 1986). The 
patterns of epipsammic diatom taxa distributions and their 
underlying causes have, therefore, largely been unexplored. This 
study was designed to assess epipsammic diatom communities 
in streams in relation to environmental conditions.

2. Material and Methods

2.1. Study area

The area under study (Figure 1) is bound by latitudes 
22° 00’ and 22° 30’ S, and longitude 47° 30’ and 48° 00’ E. 
Headwaters of the study streams (Monjolinho, Gregório and 
Água Quente) fall within mainly agricultural area. Apart 
from agricultural practices in the headwaters, the study 

area is predominantly urban. The city of São Carlos covers 
a total area of 1143.9 km2. The area is characterised by 
rugged topography and an average annual temperature of 
around 19.5 °C, with a mean monthly maximum of around 
21.9 °C recorded in January and February and the mean 
monthly minimum of around 15.9 °C recorded in July.

In 2008, the population of São Carlos was estimated at 
218,080 inhabitants by the Instituto Brasileiro de Geografia e 
Estatística (IBGE). The expansion of the city at the moment 
does not meet the technical standards that should go with 
it in terms of streets, sewage treatment and collection of 
garbage, urban drainage, water supply, road system and 
recreational area. The council also does not have an adequate 
system of sorting and disposal of waste. Streams in the 
study area, therefore, receive untreated or semi-treated 
effluent from various domestic and industrial sources as 
well as other diffuse sources as they pass through the city 
of São Carlos. The city has also expanded without taking 
into account environmental, geological and topographical 
factors leading to deforestation, erosion and siltation. This 
disorderly growth of São Carlos promoted: a) deterioration 
of stream health; b) erosion of soil; c) flooding; d) loss of 
the remaining primary vegetation; and e) eutrophication 
and contamination of surface and underground aquifers.

A total of 7 sites were established in three stream 
systems; 2 sites in the headwaters, 2 sites in the urban area, 

Figure 1. The location of the study area and sampling sites.
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and 3 sites downstream after the urban area. The rational 
for choosing the sampling sites was to obtain a pollution 
gradient of all the stream systems from relatively unpolluted 
headwaters to highly polluted downstream sites.

2.2. Data collection

Diatom and water quality sampling was done during 
the summer season when flow was stable (September 
to October 2008). The dry season was selected to avoid 
variable effects of rainy season like great variations in 
water level and velocity, floods and inundations, which 
affect diatom development, especially growth rate and 
relative abundance of different species (Round, 1991; 
Biggs, 1990, 1995; Patrick and Hendrickson, 1993; 
Duong et al., 2006). At each site, dissolved oxygen (DO), 
electrical conductivity, temperature, pH, concentration of 
total dissolved solids (TDS) and turbidity were measured 
using a Horiba U-23 and W-23XD Water Quality Meter 
(Horiba Ltd, Japan).

The depth and current velocity were maintained relatively 
uniform among all the sites (10-30 cm and 1.5-2.0 m/s 
respectively). The percentage riparian vegetation cover was 
estimated at each site. Altitude was determined at each site 
using a GPS (Northport Systems, Inc. Toronto, Canada). 
Light intensity was measured using an LI-193 Spherical 
Quantum Sensor (LI-COR Worldwide, Brazil).

Water samples for total nitrogen (TN) and total 
phosphorus (TP) analysis were also collected at each site 
into acid-cleaned polyethylene bottles Valderrama (1981). 
No preservations were added to the samples before analysis 
but they were refrigerated within 12 hours of collection.

Epipsammic diatoms were sampled by pressing a petri 
dish lid (area = 17 cm2) into the top layer of sand to a depth 
of 5-7 mm followed by sliding a spatula blade under the 
petri dish to isolate the contents in the dish which were 
then gently brought to the surfaces. The contents were then 
empted into a labelled container. Samples from 6 locations 
in each sampling reach of about 20-30 m were pooled into 
a single sample; the total area sampled was 102 cm2.

2.3. Laboratory analysis

The concentration of total nitrogen in the water samples 
was determined following the method by Golterman et al. 
(1978). The concentration of total phosphorus was also 
determined following the method by Valderrama (1981).

Sub-samples of the diatom suspensions were 
cleaned of organic material using wet combustion with 
concentrated sulphuric acid and mounted in Naphrax 
(Northern Biological supplies Ltd. UK. RI = 1.74) following 
Biggs and Kilroy (2000). Three replicate slides were 
prepared for each sample. A total of 250-600 frustules 
per sample (depending on the abundance of diatoms) 
were identified and counted using the phase contrast light 
microscope (1000×). The diatoms were identified to species 
level based on studies by Mizuno (1964), Patrick and 
Reimer (1966), Bourrelly (1981), Lobo et al. (1996), John 
(2000) Biggs and Kilroy (2000), Oliveira et al. (2001), Lobo 
et al. (2002), Lobo et al. (2004), Bicudo and Menezes (2006), 

Salomoni et al. (2006), Delgado et al. (2007), Moura et al. 
(2007), Soares et al. (2007) and Zalocar de Damitrovic 
et al. (2007) and the following website: http://diatom.
acnatsci.org.

2.4. Data analysis

Diatom species counts from each site were expressed 
as relative abundances. Species richness (S), Shannon’s 
diversity (H’) and equitability indices (E) calculated 
according to Shannon and Weaver (1946) were used as 
measures of community structure. A nonparametric test, 
Mann-Whitney U-test, was used to compare means of 
S, H’ and E from highly polluted sites (5, 6 and 7) and 
relatively less polluted sites (1, 2, 3 and 4).

Cluster analysis with single linkage and Euclidian 
distance was performed with physical and chemical variables, 
species richness, diversity and evenness standardised data 
matrix to show the main differences and similarities in 
physical and chemical variables and community structure 
among the 7 sites sampled. The Mann-Whitney U-test 
was used to compare means of measuring environmental 
variables from the polluted and unpolluted area.

The original diatom data set consisted of 112 diatom 
species. Input for numerical analysis included the diatom 
taxa that were present in a minimum of two samples 
and had a relative abundance of ≥5% in at least one 
sample, following Lobo et al. (1996), Potapova and 
Charles (2003, 2005) and Doung et al. (2007). Of the 
112 diatom taxa recorded in the 7 sites, a total of 13 met 
these criteria. The data set for subsequent analyses consisted 
of 7 samples × 13 diatom taxa × 13 physical and chemical 
variables. The distribution of turbidity was positively skewed, 
and thereforewas ln (x + 1) transformed (Zar, 1984).

The significance of the measured environmental 
variables in explaining species composition data was 
carried out in two ways. Firstly, groups of significantly 
correlated environmental variables were identified from a 
Pearson’s correlation matrix (p ≤ 0.05). A forward stepwise 
multiple regression analysis method was then used to 
determine the environmental variable in each group that 
explained the greatest amount of variance in the diatom 
species diversity data. This environmental variable was 
then used in subsequent analyses as a representative of 
that particular group of correlated variables, eliminating 
other variables, thus taking care of multi-colinearity in 
the data. Variables that did not contribute to the regression 
where also eliminated. Of the 13 measured environmental 
variables, 5 variables (altitude, canopy cover, TP, turbidity 
and pH) were selected. Each of these variables therefore 
represented a group of significantly correlated values. 
A final forward stepwise multiple regression analysis 
was then performed using the remaining variables as 
independent variables and Shannon’s species diversity as 
dependent variable.

Secondly, patterns of floristic variation in data explained 
by the measured environmental variables, selected according to 
the criteria above, were detected by canonical correspondence 
analysis (CCA). An environmental data matrix was constructed 
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using five of the 13 environmental variables (altitude, 
canopy, TP, turbidity and pH) that were identified based on 
the above criteria. This environmental data and species data 
matrix of the 13 most frequently occurring diatom species 
were used to perform CCA. Monte Carlo permutation 
tests (99 unrestricted permutations, p ≤ 0.05) were used to 
test the significance of the axis and hence determine if the 
selected environmental variables could explain nearly as 
much variation in the diatom data as all the 13 environmental 
variables combined (Ter Braak, 1988).

All statistical analysis, Cluster analysis, Mann-Whitney 
U-test, Multiple regressions and Pearson’s Correlation 
Analysis were performed using the STATISTICA software 
package (Release 7, Stat Soft. Inc., USA). CCA was 
performed using PAlaeontological STatistics (PAST) 
software version 1.90 (Hammer et al., 2009).

3. Results

The values of physical and chemical variables measured 
in the study area during the study period are shown in Table 1. 
The water quality generally tended to deteriorate downstream 
as the streams pass through the urban area due to discharge of 
treated and untreated effluent as well as other diffuse sources 
of pollution from the city. The pH presented values slightly 
inferior to neutral pH. Temperature, conductivity, turbidity, 
TN and TP tended to increase downstream while dissolve 
oxygen and altitude tended to decrease downstream. TN and 
TP differed significantly between relatively less polluted 
sites (1, 2, 3 and 4) and highly polluted sites (5, 6 and 7) 
being low in the former group compared to the later group 
(Mann-Whitney U-test unilateral, p ≤ 0.05).

A total of 112 diatom species belonging to 44 genera 
that are distributed among the families Achnanthidiaceae, 
Achnanthaceae, Bacillariaceae, Eunotiaceae, Cymbellaceae, 
Gomphonemataceae, Fragilariaceae, Melosiraceae, 
Naviculaceae, Rhoicospheniaceae, Rhopalodiaceae and 
Surirellaceae were recorded in all the diatom samples 
collected. Of the 112 species observed, 13 species 
(Figure 2 and 3) were considered to be the most frequently 

occurring in the study area (5% occurrence and present 
in at least 2 samples).

There was no significant difference in species richness, 
diversity and equitability (Mann-Whitney U-test, p ≤ 0.05) 
among sampling sites, though they showed a general tendency 

Table 1. The values of physical and chemical variables measured on all the sites.

Site 1 2 3 4 5 6 7
Temperature ( oC) 20.6 21.1 21.2 24.0 24.8 23.0 21.3

Conductivity (μS.cm–1) 53.0 89.0 103.0 28.0 715.0 322.0 283.0

DO (mg.L–1) 7.1 4.9 4.5 3.0 3.4 3.2 1.8

pH 6.2 7.0 7.4 6.7 7.3 7.6 7.5

Turbidity (NTU) 0.0 0.0 0.0 0.0 0.1 0.1 0.1

TDS (g.L–1) 22.6 57.4 66.5 18.1 458.0 206.0 181.7

TN (mg.L–1) 0.24 1.29 1.41 1.72 38.32 14.87 10.17

TP (mg.L–1) 0.01 0.16 0.06 0.03 2.97 1.11 0.75

Altitude (m) 831.0 794.0 745.0 774.0 724.0 630.0 627.0

Canopy cover (%) 60.0 50.0 4.0 20.0 20.0 50.0 5.0

Light intensity (μmol/s.m–2) 431.0 1500.0 2110.0 1645.0 1780.0 1996.0 2212.0

Width (m) 2.0 3.3 5.0 3.5 20.0 5.0 15.0

Depth (m) 0.6 0.6 0.3 0.4 0.9 0.4 0.5

Figure  2. The relative abundances of the most frequently 
occurring diatom.
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Figure 3. The most frequently occurring diatom species. a) Aulacoseira ambigua (Grunow) Simonsen, b) and c) Aula-
coseira granulata (Ehrenberg) Simonsen, d) Cymbopleura naviculiformis (Auerswald) Krammer, e) and f) Eunotia bilu-
naris (Ehrenberg) Mills, g) and h) Fragilaria capucina Desmaziéres, i), j) and k) – Gomphonema parvulum (Kützing) 
Cleve, l) Gomphonema angustatum (Kützing) Rabenhorst, m) and n) Nitzschia palea (Kützing) Smith, o) Pinnularia gibba 
(Ehrenberg) Grunow, p) Nupela praecipua (Reichardt) Reichardt, q) Rhoicosphenia abbreviata (Agardh) Lange-Bertalot, 
r) Sellaphora pupula (Kützing) Mereschkowsky, s) Synedra ulna (Nitzsch) Ehrenberg, 19 –20 –. Scale bars correspond to 
10 μm.

of being higher in relatively less polluted (1, 2, 3 and 4), 
compared to highly polluted, sites (5, 6 and 7).

From cluster analysis results, two major distinct 
groups of sites were separated at a linkage distance of 
about 100 (Figure 4). The separation can be attributed to 
pollution; one group consisted of relatively less polluted 
sites (site 1, 2, 3 and 4), while the other group consisted 
of sites from the highly polluted area. Site 7, which was 
the furthest downstream, tended to be more similar to 
the upstream relatively less polluted sites compared to 
the other sites.

The final forward stepwise multiple regression analysis 
performed using altitude, canopy cover, TP, turbidity 
and pH as independent variables and Shannon’s species 
diversity as dependent variable significantly explained 
the data (as shown in Table 2). Of the 5 variables, only 
3 (altitude, canopy cover and turbidity) were retained after 
forward stepwise multiple regression. Altitude was found 
to be significantly contributing to the model (beta = 1.17, 
R2 = 0.71, p ≤ 0.05), as shown in Table 3, in agreement 
with CCA results. This has been noted by several authors 
(e.g. Biggs and Kilroy, 2000; Oliveira et al., 2001; Potapova 

and Charles, 2002). The contribution of other variables 
was not significant.

The results of CCA are presented in Figure 5. The CCA 
explained a large proportion of the diatom species variance; 
CCA axis 1, eigenvalue = 0.40 and axis 2, eigenvalue = 0.24. 
Monte Carlo unrestricted permutation test indicated that 
axis 1 (99 permutations) and axis 2 (99 permutations 
of axis 2 with axis 1 as a covariable) were statistically 
significant (p ≤ 0.05). CCA axis 1 and 2 roughly separated 
relatively less polluted sites (1, 2, 3 and 4) from highly 

a b

c

d e f g h

i j k

Table 2. The species richness, Shannon’s diversity and 
equitability indices for the different microhabitats sampled 
during the study period.

Site 1 2 3 4 5 6 7
Species 

richness (S)
47.0 33.0 49.0 58.0 31.0 14.0 26.0

Species 
diversity (H’)

3.11 2.91 3.01 3.78 2.31 1.33 2.47

Species 
equitability (E)

0.81 0.83 0.77 0.93 0.67 0.50 0.76
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polluted sites (5, 6 and 7). The former group of sites 
was associated with high altitude, high canopy cover 
(which was highly negatively correlated to temperature, 
light intensity and mean stream width), low turbidity, 
slightly alkaline pH and low TP (which was highly 

positively correlated with TDS, TN, conductivity and 
depth) while the latter group of sites was associated with 
low altitude, low canopy cover, high turbidity, slightly 
acidic pH and high TP.

The upstream, relatively less polluted, sites (1 and 4) 
were characterised by such species as Aulacoseira ambigua 
(Grunow) Simonsen, Aulacoseira granulata (Ehrenberg) 
Simonsen, Cymbopleura naviculiformis (Auerswald) 
Krammer, Eunotia bilunaris (Ehrenberg) Mills, Fragilaria 
capucina Desmaziéres, and Gomphonema angustatum 
(Kützing) Rabenhorst. These species were highly positively 
associated with CCA axis 1.

On the other hand, downstream, highly polluted 
sites (5, 6 and 7) were characterised by Gomphonema 
parvulum (Kützing) Cleve and Nitzschia palea (Kützing) 
Smith (negatively related to CCA axis 1) which have been 
reported to be highly pollution tolerant (Round, 1991; 
Biggs and Kilroy, 2000; Potapova and Charles, 2003; 
Duong et al., 2006) and Sellaphora pupula (Kützing) 
Mereschkowsky. Sites 2 and 3 were dominated by Pinnularia 
gibba (Ehrenberg) Grunow, Nupela praecipua (Reichardt) 
Reichardt, Rhoicosphenia abbreviata (Agardh) Lange-
Bertalot and Synedra ulna (Nitzsch) Ehrenberg. These 
species, except R. abbreviata, were negatively associated 
with CCA axis 2.

4. Discussion

As pollution increased, low pollution tolerant species 
such as E. bilunaris, A. ambigua, A. granulata and 
C. naviculiformis were replaced by high pollution tolerant 
species such as G. parvulum, N. palea, N. praecipua, 
R. abbreviata and S. pupula. The latter group of species 
has been reported to be associated with waters of relatively 
high ionic strength and high conductivity, and is known to 
be resistant to organic and heavy metal pollution (Biggs and 
Kilroy, 2000; Potapova and Charles, 2003; Duong et al., 
2006) that accompanied the downstream gradient in this 
study. These species have also been frequently recorded 
in waters that are nutrient rich and poorly oxygenated 
(Round, 1991).

Working on epipelic diatoms in the streams of Argentina 
in a similar environment as in this study, Licursi and Gómez 
(2001) associated R. abbreviata with levels 0 to 2 of their 
Pampean Diatom Index (IDP) i.e. unpolluted to moderately 
polluted respectively. This species has also been frequently 
reported in rivers in Japan where it is classified as sensitive 
to pollution (Kobayasi and Mayama, 1989; Asai and 
Watanabe, 1995). Studies in the streams of Yamuna, Delhi, 
confirmed N. palea to be tolerant of organic pollution due 
to sewage effluent (Dakshine and Soni, 1982). G. parvulum 
has also been shown to be tolerant of organic pollution 
(Kelly and Whitton, 1995; Lobo et al., 2004a) which was 
also typical of the study area.

Recent studies of environmental monitoring, using 
diatom communities in hydrological systems in Guaíba-
RS, have demonstrated the importance of eutrophication in 
structuring benthic diatom communities (Lobo et al., 1999; 
Lobo et al., 2002, 2003, 2004a, b, c, d, e; Oliveira et al., 

Figure 4. A single linkage, Euclidean distance classification 
of sites using physical and chemical variables and species 
diversity, richness and equitability.

Table 3. Summary of stepwise multiple regression of Shan-
non-Weiner’s diversity indices with physical and chemical 
variables. Significant betas are highlighted.

Step 
+in/–out

Beta R2 p-level Variables 
included

Altitude 1.17 0.71 0.04 1
Canopy cover (%) –0.40 0.47 0.09 2

pH (g.L–1) –11.49 0.99 0.13 3

Figure  5. Ordination diagram based on canonical corre-
spondence analysis (CCA) of most frequently occurring 
diatom species composition in 7 sampling sites with respect 
to five environmental variables (ALT, altitude; CN, canopy 
cover; TB, turbidity; TP, total phosphorus and pH). Aamb, 
A. ambigua; Agra, A. granulate; Cnav, C. naviculiformis; 
Gpar, G. parvulum; Npal, N. palea; Npra, N. praecipua; 
Rabb, R. abbreviata; Spup, S. pupula; Ebil, E. bilunaris; 
Fcap, F. capucina; Gang, G. angustatum; Pgib, P. gibba; 
Suln, S. ulna.
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2001; Rodrigues and Lobo, 2000; Wetzel et al., 2002; 
Hermany et al., 2006; Salomoni et al., 2006; Dupont 
et al., 2007). In this study TN and TP (and consequently 
the level of eutrophication) were found to be significantly 
different (p ≤ 0.05) between the polluted and unpolluted 
sites that were characterised by different diatom community 
structures. Eutrophication is therefore an important factor 
in determining the structure of benthic diatom communities 
in the study area.

Lange-Bertalot (1979) stated that species are indicative 
of the upper limits of pollution that they can tolerate, and 
not the lower limit. Thus species which develop well in 
polluted (eutrophic) zones (e.g. G. parvulum, N. palea, 
N. praecipua, R. abbreviate and S. pupula in this case) may 
also occur in fairly clean water. Their value as indicators 
is their presence in polluted water.

Based on cluster analysis results, site 7, which was 
the furthest downstream, tended to be more similar to the 
upstream relatively less polluted sites compared to the other 
sites in terms of community structure and water quality. 
This could be due to the process of stream self‑purification, 
which is a collective expression for a large number of 
biogeochemical and hydrological processes that temporarily 
decrease, decay, degrade, transform, or permanently retard 
and remove pollutants from the river channel (Spellman, 
1996). This self-purification process is very effective and 
the system will suffer no permanent damage as long as its 
capacity has not been exceeded (Bere, 2007). If this capacity 
is exceeded the system will become ecologically stressed 
with the symptoms of pollution becoming increasingly 
obvious and extensive as on site 6.

From the forward stepwise multiple regression and CCA 
results, altitude was found to be important in determining 
the diversity of epipsammic diatoms in the study area. 
This is well in agreement with other works emphasising 
the importance of altitude in structuring benthic diatom 
communities in lotic systems (e.g. Ter Braak and van 
Dam, 1989; Round, 1991; Biggs, 1990, 1995; Patrick and 
Hendrickson, 1993; Biggs and Kilroy, 2000; Potapova and 
Charles, 2003, 2005; Duong, 2007).

Benthic diatom communities (and unicellular organisms 
in general) are traditionally considered to be more regulated 
by local environmental conditions than by broad-scale 
climatic, vegetational and geological factors (Pan et al., 
1996; Leland et al., 2001, Moura et al., 2007). However, 
this view has been recently challenged by Kociolek and 
Spaulding (2000) and Mamm and Droop (1996) who ague 
that a considerable proportion of diatoms are in fact endemic 
or at least show a regionally restricted distribution. According 
to their view therefore, in explaining the distribution of 
benthic diatoms, more emphasis should be given to broad-
scale climatic, vegetational and geological factors.

The results of this study support the view that diatom 
communities exhibit a strong spatial component, with 
distinctly different communities in different parts of the 
study area. Although many taxa in this study were truly 
cosmopolitan, some species exhibited restricted distributions, 

with altitude and pollution levels playing a major role 
in governing the distribution patterns. For example, 
C. naviculiformis and A. granulata were generally found 
in high altitude relatively clean sites while G. parvulum 
and N. palea were found in low altitude polluted sites.

Canopy cover (which was highly negatively correlated 
to temperature, light intensity and mean stream width) and 
turbidity were also found to be important in structuring 
benthic diatom communities in the study area as they 
were retained after forward stepwise multiple regression. 
This is because of the importance of light for diatom 
photosynthesis (Round, 1991; Pan et al., 1996; Potapova 
and Charles, 2002).

Biological monitoring of lotic systems using benthic 
diatoms, a tool that has proved to be important worldwide 
(e.g. Schoeman, 1979; Gasse et al., 1995; Lowe and Pen, 
1996; John, 1998; Kelly et al., 1998; Prygiel et al., 1999; 
Loez and Topalian, 1999; Chessman et al., 1999; Rothfritz 
et al., 1997; Lobo and Callegaro, 2000; Fernandes and 
Esteves, 2003, Lobo et al., 2004a,b,c,d,e; Lobo et al., 
2006), has received less attention in the study area. A lot of 
studies carried out in southern Brazil confirmed diatoms as 
excellent indicators of environmental conditions (especially 
eutrophication) in lotic system (e.g. Lobo and Torgan, 1988; 
Rosa et al., 1988; Lobo et al., 1991, 1995b, 1996; Lobo 
and Callegaro, 2000, Lobo et al., 2004a,b,c,d,e; Burliga 
et al., 2005; Lobo et al., 2006; Hermany et al., 2006; 
Schneck et al., 2007; Salomoni et al., 2008). However, 
the studies are concentrated or restricted mainly to the 
southern part of the country (Tundisi, 2006), and very little 
has been done in other lotic systems. In Central America, 
Michels‑Estrada (2003) investigating the ecology of 
benthic diatom communities in several rivers and streams 
of Costa Rica, highlights the urgent need to establish a 
base of information on the ecology of aquatic ecosystems 
in the tropics in order to develop efficient methodologies 
for monitoring water quality. This is also supported by the 
work of Silva-Benavides (1996a, b).

We propose that diatom indices from elsewhere, 
especially in the southern part of Brazil where more studies 
have been carried out and the first Brazilian-base index 
of water quality monitoring using diatoms, Biological 
Index of Water Quality (BIWQ), was developed initially 
by Lobo et al., (2002) and completed by Lobo et al., 
(2004a), be used for gaining support and recognition for 
diatom-based approaches to water quality monitoring and 
for allowing sample and data collection which can then 
be used later in the formulation of diatom indices unique 
to the study area.
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