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1. Introduction

Drought is an utmost significant abiotic stress that 
affects the growth, development and production of several 
plants (Ceccarelli and Grando, 1997). Some regions with 
inadequate water are more inclined to drought due to 
irregular changes in weather conditions. Moreover, lack 
of water resources resulting from increasing human 
needs and growing harsh climatic conditions amplify 

the effects of drought several folds (Rosegrant and Cline, 
2003). Drought tolerance is a complex trait aided by 
morphological, physiological and biochemical adaptations 
(Zhu, 2002; Shinozaki et al., 2003; Bohnert et al., 2006). 
These adaptations to drought stress are at least partially 
dependent on changes in gene expression. Regulation of 
gene expression at the transcriptional level is crucial for 
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Resumo
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Arabidopsis, exhibited enhanced transpiration and drought 
sensitivity as compared to wild type (WT) plants (Li et al., 
2008). Nevertheless, transgenic tomato over-expressing 
Sly-miR169c exhibited decreased transpiration rate, 
reduced stomatal opening, decreased leaf water loss but 
enhanced drought resistance (Zhang et al., 2011).

The members of miRNA family have been assumed to 
have redundant functions; nevertheless, closely related 
miRNAs that were projected to target the same genes 
differentially responded to osmotic stress. In rice, members 
of MIR319 family were both up- and down-regulated 
(Zhou et al., 2010). Using soil grown Arabidopsis plants, 
it had been reported that only MIR169a and MIR169c 
were substantially down-regulated by drought stress; 
Co-expression of miR169 and NFYA5 (nuclear transcription 
factor Y in Arabidopsis thaliana) proposed that MIR169a 
was more proficient as compared to MIR169c at limiting 
the level of NFYA5 mRNA (Li et al., 2008). In contrast; 
MIR169j, MIR169l, and MIR169m expression significantly 
increased when Arabidopsis seedlings were exposed to 
dehydration shock for 3 hours. Furthermore, it has also been 
reported that MIR169j and MIR169l mainly affected NFYA5 
expression at the translational level and miRNA/miRNA* 
complementarity as the determinant triggering differences 
in the NFYA5 regulation pattern by MIR169a and MIR169l 
(Du et al., 2017). It has also been reported that the miR169 
family in Arabidopsis is highly conserved in Populus 
trichocarpa and Oryza sativa. Therefore it is assumed that 
the regulatory modes of miR169 by water stress may also 
be related to other plants.

3. miRNAs Target Drought-Responsive Genes

miRNA-target regulatory module is important for plant 
adaption to drought stresses. Some targets are regulatory 
proteins. Nuclear factor Y (NF-Y) is a universal transcription 
factor that contains NF-YA (also known as CBF-B or HAP2), 
NF-YB (CBF-A or HAP3) and NF-YC (CBF-C or HAP5). NF-Y 
recognizes CCAAT box (cis-element) comprising of ~25% 
of eukaryotic gene promoters. NF-YAs were targeted 
by miR169 as mentioned above. In Arabidopsis, NFYA5 
knockout plants were highly sensitive to drought stress 
as compare to WT plants. However, overexpression of 
NFYA5 Arabidopsis plants showed significant drought 
stress tolerance (Li et al., 2008). Interestingly, microarray 
study revealed that NFYA5 is essential for many drought 
stress-responsive gene expressions, including subunit of 
cytochrome b6-f complex, GST, oxidoreductase family 
protein and peroxidases (Li et al., 2008). In P. trichocarpa, 
the expression of miR164/ miR160 and their targets, 
ARF and NAC domain TFs, was down- and up-regulated 
respectively under drought conditions (Shuai et al., 2013). 
Overexpression of the given TFs changed the sensitivity 
to exogenous Abscisic acid (ABA) in Arabidopsis (Liu et al., 
2007) and enhanced drought resistance in rice (Hu et al., 
2006).

Drought stress improved ABA contents in maize 
seedlings, which led to the accumulation of reactive 

plant drought resistance by altering the expression of 
still other downstream genes (Singh et al., 2002). It has 
been shown that altering the expression of transcription 
factors, including CBFs/DREBs, NACs and NF-YAs, could 
alter stress resistance and plant hormone action by down-
stream regulation of the target genes (Kasuga et al., 1999; 
Hu et al., 2006; Li et al., 2008).

Recently, many researchers have focused on 
microRNAs (miRNAs) because of their significant roles 
in gene regulation mechanisms through heterochromatin 
modification, post-transcriptional gene silencing or 
translational inhibition (Carrington and Ambros, 2003; 
Bartel, 2004; Vaucheret, 2006). miRNAs are processed by 
the ribonuclease III-like enzyme Dicer-like (DCL) 1 or DCL4 
from single-stranded RNA precursors that are capable of 
forming hairpin structures (Kurihara and Watanabe, 2004; 
Rajagopalan et al., 2006). Plant miRNAs regulate several 
physiological processes including auxin signaling, leaf 
morphogenesis, flowering time and embryo development 
(Carrington and Ambros, 2003; Bartel, 2004; Allen et al., 
2005). Increased researches support the vital roles of 
miRNAs in orchestrating important agronomic traits in 
crops (Tang and Chu, 2017). Recent studies have also 
reported the key roles of plant miRNAs to drought stress 
adaptation (Li et al., 2008; Du et al., 2017; Ferdous et al., 
2017a), which made miRNAs as the promising candidates 
for molecular breeding of crops with increased drought 
resistance. The current review highlights the recent 
advances of miRNA-mediated adaptation to drought-stress 
in plants. Furthermore, it also focuses on their potential 
roles in molecular breeding of crops for increased drought 
resistance.

2. miRNA Responses to Drought Conditions

A number of drought-responsive miRNAs have been 
identified in Arabidopsis, common bean, cowpea, rice, 
tobacco and soybean using global expression profiling 
analysis (Sunkar and Zhu, 2004; Arenas-Huertero et al., 
2009; Zhou et al., 2010; Barrera-Figueroa et al., 2011; 
Frazier et al., 2011; Kulcheski et al., 2011). In Arabidopsis, 
drought stress upregulated miR156, miR159, miR167, 
miR168, miR171, miR172, miR319, miR393, miR394a, 
miR395c, miR395e, miR396 and miR397 whereas decreased 
the expression level of miR161, miR168a, miR168b, 
miR169, miR171a and miR319c (Sunkar and Zhu, 2004; 
Liu et al., 2008).

In several cases, it had been revealed that the responses 
of miRNAs to drought stress depended on species. For 
example, miR1510 was decreased in Medicago truncatula 
while increased in Glycine max by drought treatment 
(Mantri et al., 2013); In contrast to the down-regulation 
in rice and maize by drought stress (Wei et al., 2009; 
Zhou et al., 2010), miR156 abundance is upregulated in 
Arabidopsis, barley, peach and wild emmer wheat (Sunkar 
and Zhu, 2004; Kantar et al., 2010, 2011; Eldem et al., 
2012). Being one of the major miRNA families in plants, 
miR169 also revealed differential expression to drought 
conditions in many species. Overexpressing miR169a in 
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oxygen species (ROS), targeting the up-regulation of 
mitogen-activated protein kinase (MAPK) to enhance 
the expression of corresponding antioxidant genes and 
proteins (Wei et al., 2009). Down-regulation of miR528 
and miR168 in maize seedlings under drought stress was 
accompanied by the accumulation of their corresponding 
targets, MAPK (Mitogen Activated Protein Kinase) and 
POD (Peroxidase) (Wei et al., 2009), further suggesting 
that miRNAs benefit antioxidant defense of plant cells 
caused by drought stress.

4. Drought-Responsive miRNAs and Plant Hormones

ABA accumulation is required for some drought stress-
induced up-regulation of gene expression (Zhu, 2002). In 
Arabidopsis, ABA treatment reduced the level of miR169 to 
approximately 16% of the control level; however, miR169 
expression in the ABA-deficient mutant (aba2-1) and 
ABA-insensitive mutant (abi1-1) was not significantly 
affected by drought (Li et al., 2008), indicating that 
miR169 was down-regulated by drought stress through 
an ABA-dependent pathway. In germinating Arabidopsis 
thaliana seeds, ABA induced the miR159 abundance in an 
ABI3-dependent pattern (Reyes and Chua, 2007). The null 
mutants of miR159 targets, MYB33 and MYB101, as well as 
plants overexpressing miR159a showed hyposensitivity to 
ABA. In contrast, overexpressing cleavage-resistant forms 
of MYB101 or MYB33 were found to be ABA hypersensitive 
(Reyes and Chua, 2007). It have been reported that miR396 
and miR168 was upregulated by drought stress (Liu et al., 
2008). Using the PlantCARE program (http://bioinformatics.
psb.ugent.be/webtools/plantcare), ABRE (ABA responsive 
element) sequences could be found in the promoter region 
of miR159a, miR167c, miR168, miR393b, miR396b and 
miR408. Therefore it is suggested that these miRNAs could 
be directly affected by ABA treatment (Liu et al., 2008).

Plants inhibit the lateral root growth to allow the 
redirection of resources for deeper roots production during 
drought stresses. The lateral root growth is inhibited by 
ABA formation under drought conditions (Xiong et al., 
2006). An elevated level of miR393 suppressed the lateral 
root growth of an ABA hypersensitive mutant through 
direct cleavage of two auxin receptors, TIR1 and AFB2 
(Chen et al., 2012). The lateral root growth of Arabidopsis 
seedlings expressing miR393-resistant TIR1 or AFB2 was 
no longer inhibited by ABA or osmotic stress (Chen et al., 
2012). Furthermore, TGA element and AuxRR core could 
be found in the promoter region of miR156a, miR159a, 
miR167d, miR168, miR171b, miR319b, miR319c, miR393a, 
miR393b, miR393c, miR397 and miR408 (Liu et al., 2008). 
These results suggested that miRNA-mediated auxin 
signaling modulates plant adaptation to drought stress.

Leaf senescence is a basic mechanism to avoided drought 
by reducing transpiration and canopy size. In higher plants, 
ethylene generation is trigger by drought stress, which 
accelerates leaves senescence (Apelbaum and Yang, 1981; 
McKeon et al., 1982). The role of miR164 in leaf senescence 
has been described in detail in Arabidopsis. The expression 

level of miR164 gradually decreases with aging through 
negative regulation by EIN2 (ETHYLENE INSENSITIVE 
2), which led to the concurrent upregulation of ORE1 
(oresara1-1) (Kim et al., 2009). An enhancement in the 
leaf longevity has been observed by the overexpression of 
miR164 and/or absence of its target ORE1 (Kim et al., 2009). 
EIN3 is a key transcription factor in ethylene signaling. 
Constitutive or temporary activation of EIN3 is sufficient 
to accelerate leaf senescence in Arabidopsis; In contrast, 
ein3 loss-of-function mutant postponed dark-induced leaf 
senescence (Li et al., 2013). EIN3 could bind the promoters 
of miR164, and EIN3-induced early-senescence phenotypes 
were repressed in 35S::MIR164 transgenic plants (Li et al., 
2013). It gives an idea to link the abovementioned pathway 
to the plant adaptation to drought stress.

5. miRNAs as Candidates for Breeding Drought-
Resistance Crops

A systematic analysis of MIRNA genes in the close 
relatives, Arabidopsis thaliana and Arabidopsis lyrata, 
indicated that at least 13% of MIRNA genes in each species 
are unique (Fahlgren et al., 2010). A polymorphism survey 
of 94 small RNA loci in domesticated rice demonstrated 
that many substitutions or insertions/deletions existed at 
small RNA loci and several small RNA loci showed significant 
signals for positive selection and/or potential domestication 
selection (Wang et al., 2010). By analysis of expression 
patterns and single-nucleotide polymorphism (SNP)-based 
association studies in 435 unrelated individuals of Populus 
tomentosa, it was observed that allelic interactions among 
Pto-MIR475b and its four target genes potentially affect 
growth and wood properties in Populus (Xiao et al., 2017) 
[43]. These results suggested that miRNAs could be used 
as molecular markers for improving agronomic traits of 
crops, including drought resistance.

Altering miRNA levels could affect the drought resistance 
of crops. miR408 targets copper related genes and miR408 
overexpression increased drought tolerance in chickpea 
(Hajyzadeh et al., 2015); OsmiR393-overexpressing rice 
showed increased tillers, early flowering and reduced 
tolerance to salt and drought stresses (Xia et al., 2012); 
Transgenic creeping bentgrass overexpressing Osa-
miR319a exhibited enhanced drought tolerance associated 
with increased leaf wax content (Zhou M et al., 2013). 
Of course, overexpression of miRNAs could not always 
obtain beneficial traits. The growth, agricultural water use 
efficiency (WUE) and productivity (WP), time to anthesis 
and grain weight of transgenic barley plants expressing 
CaMV-35S::Ath-miR827 were negatively affected in both 
well-watered and drought conditions compared with 
WT (Ferdous et al., 2017b). In contrast, transgenic plants 
over-expressing Zm-Rab17::Hv-miR827 showed improved 
WUEwp (Ferdous et al., 2017b), suggesting that the nature 
of promoter is important for the phenotypic performance 
of transgenic crops. A summary of functionally validated 
miRNAs related to drought resistance in plants has been 
given in Table 1.
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6. Conclusion

The agriculture yield is prone to harsh environmental 
stresses including biotic and abiotic stresses. Drought 
being one of the major threats has devastating effects on 
the crop yield and production across the globe. Drought 
stress a complex trait that is controlled by several genes 
regulatory networks mainly constitutes miRNAs. A little 
is known about the actual mechanism involved to confer 
stress resistance through miRNAs by targeting regulatory 
networks. It might be attributed to the regulation of 
multiple genes by miRNAs under stress conditions. 
Although the targets of several miRNAs are still unclear 
but their roles for conferring drought resistance to plants 
has been reported in many studies. Therefore, it is a major 
challenge to study and identify targets for miRNAs and 
their major functions. The given piece of information will 
aid the research aimed to identify miRNAs as well as their 
targets contributing to drought stress resistance. Another 
important consideration will be the characterization of 
cis-regulatory elements in miRNAs genes and their TFs 
towards drought stress responses. The given article will 
also provide an insight to recognize the mode of action for 
future research aiming abiotic stress especially drought 
resistance.
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