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Abstract
The Funil Reservoir receives a large amount of xenobiotics from the Paraíba do Sul River (PSR) from large number of 
industries and municipalities in the watershed. This study aimed to assess environmental quality along the longitudinal 
profile of the Paraíba do Sul River–Funil Reservoir system, by using biomarkers and bioindicators in a selected fish 
species. The raised hypothesis is that Funil Reservoir acts as a filter for the xenobiotics of the PSR waters, improving 
river water quality downstream the dam. Two biomarkers, the ethoxyresorufin–O–deethylase activity (EROD), measured 
as fluorimetricly in S9 hepatic fraction, and the micronuclei frequency (MN), observed in erythrocytes of the cytoplasm, 
and three bioindicators, the hepatosomatic index (HSI), gonadosomatic index (GSI) and condition factor (CF) were 
used in Pimelodus maculatus, a fish species widely distributed in the system. Four zones were searched through a 
longitudinal gradient: 1, river upstream from the reservoir; 2, upper reservoir; 3, lower reservoir; 4, river downstream 
of the reservoir. EROD activity and HSI and GSI had significant differences among the zones (P<0.05). The upper 
reservoir had the lowest EROD activity and HSI, whereas the river downstream of the reservoir had the highest EROD 
and lowest GSI. The river upstream from the reservoir showed the highest HSI and GSI. It is suggested that the lowest 
environmental condition occur at the river downstream of the reservoir, where it seems to occur more influence of 
xenobiotics, which could be associated with hydroelectric plant operation. The hypothesis that Funil reservoir acts as 
a filter decanting pollution from the Paraíba do Sul River waters was rejected. These results are novel information on 
this subject for a native fish species and could be useful for future comparisons with other environments.
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Biomarcadores e bioindicadores da condição ambiental usando uma espécie 
de peixe (Pimelodus maculatus Lacepède, 1803) em um reservatório tropical 

no Sudeste do Brasil

Resumo
O reservatório do Funil recebe uma grande quantidade de contaminantes xenobióticos do Rio Paraíba do Sul (RPS) 
provenientes de grandes indústrias e municípios situados na bacia hidrográfica. O objetivo deste estudo é avaliar a 
qualidade ambiental ao longo de um perfil longitudinal do sistema rio Paraíba do Sul-reservatório do Funil, através de 
biomarcadores e bioindicadores em uma espécie de peixe selecionada. A hipótese a ser testada é de que o reservatório 
do Funil funciona como filtro para poluentes xenobioticos de águas do rio Paraíba do Sul, melhorando a qualidade da 
água à jusante da represa. Foram usados dois biomarcadores: a atividade de etoxiresorufina–O–desetilase (EROD), 
medida fluorimetricamente na fração S9 hepática, e a Freqüência de Micronúcleos (MN), observada no citoplasma 
dos eritrócitos; e também três bioindicadores: Índice hepato-somático (IHS), Índice gonado-somático (IGS) e Fator de 
Condição (FC) em Pimelodus maculatus, uma espécie de peixe amplamente distribuída no sistema. Quatro zonas foram 
amostrados ao longo do gradiente longitudinal: 1, rio a montante do reservatório; 2, parte superior do reservatório; 
3, parte inferior do reservatório; 4, rio à jusante do reservatório. A atividade de EROD, o IHS e o IGS apresentaram 
diferenças significativas (P<0.05) entre as zonas. A atividade EROD e o IHS foram mais baixos na parte superior do 
reservatório, enquanto que no rio à jusante do reservatório, a atividade de EROD foi mais alta e o IGS foi mais baixo. 
O rio acima do reservatório apresentou maiores IHS e IGS. É sugerido que a pior condição ambiental ocorreu no rio 



Araújo, F.G. et al.

Braz. J. Biol. 2018,  vol. 78, no. 2, pp. 351-359352   352/359

1. Introduction

The development of agricultural and industrial 
activities contribute to production of xenobiotics that can 
cause undesirable effects in aquatic systems depending 
on their toxicity and concentration (Hutzinger and 
Veerkamp, 1981; Clements, 2000; Van der Oost et al., 
2003). Measurements of xenobiotic concentrations are 
expensive and do not supply the amount of the impact on the 
biological compartment (Solé et al., 2009; Schirmer et al., 
2011). The recent advances in the ecotoxicology field had 
supplied a number of the biomarkers in organism, which 
can be used to estimate either exposure to chemicals or 
resultant effects (Handy  et  al., 2003; Lu  et  al., 2009; 
Ramsdorf et al., 2012). Biomarkers and bioindicators has 
been extensively used as proxies to determine responses 
at individual level to stressors, with biomarkers being 
more species-specific and with higher variability of 
responses compared to bioindicators (Schulz and Martins-
Junior, 2001; Solé et al., 2010; Linde-Arias et al., 2008a, 
b; Barrilli et al., 2015). The integrated use of biomarkers 
and bioindicators is suggested as an evaluation tool, 
since they are effective means to determine the impact 
of pollution in the aquatic environment (Mc Carthy and 
Schugart, 1990; Reynolds et al., 2003). Moore and Simpson 
(1992) and Pacheco and Santos (2002) reported that the 
information supplied by a given biomarker individually is 
limited, due to great probability of incorrect interpretation. 
Therefore, the use of a set biomarkers and bioindicators 
should be used to better assess environmental condition.

Induction of the hepatic cytochrome P450-monooxygenase 
measured as EROD activity is a sensitive indicator of 
environmental alteration and usually one of the first 
detectable, quantifiable responses to chemical exposure 
in fishes (Stegeman and Lech, 1991; Stegeman, 1992; 
Stegeman et al., 1997; Parente et al., 2011, 2015). The most 
potent inducing to these isoform are the pollutants of the 
polychlorinated biphenyls (PCBs) group, polycyclic aromatic 
hydrocarbons (PAHs) and dioxins (e. g. tetrachlorodibenzo-
p-dioxin (TCDD) and Dichloro-Diphenyl-Trichloroethane 
(DDT)) (Jung et al., 2001). Owing to this fact, activity of 
CYP1A subfamily in fish liver has been extensively used 
as a biomarker of aquatic contamination by industrial 
pollutants (Pacheco and Santos, 1998; Bainy et al., 1999; 
Whyte et al., 2000; Parente et al., 2004).

Micronuclei are biomarkers at celular level to exposition 
of fish to genotoxic compounds that can cause chromosome 
fragmentation, chromossome lag at cell division due to 
the lack of centromere, damage, or a defect in cytokinesis 
(Al‑Sabti and Metcalfe, 1995; Çavaş and Ergene Gozu-Kara, 
2005a, b; Srivastava and Singh, 2015). Its determination is 

more simple than EROD activity, although being a sensible 
to pollutant occurrence (Al-Sabti and Metcalfe, 1995).

The hepatosomatic index (HSI) is a widely known as 
bioindicator of contaminant exposure (Goede and Barton, 
1990; Sadekarpawar and Parikh, 2013). Because the liver 
is so important in detoxification, exposure to contaminants 
can lead to an increase in liver size from hypertrophy 
(an increase in size), hyperplasia (an increase in number) 
of hepatocytes (Goede and Barton, 1990; Solé et al., 2010), 
or both. Studies evaluating the relative liver size of fishes 
from contaminated sites and last disturbed sites often 
utilize the HSI, which expresses liver size as a percentage 
of total body weight (Facey et al., 1999; Sadekarpawar 
and Parikh, 2013).

The gonadosomatic index (GSI) is a bioindicator 
that supply structural information, more than functional 
to respect of health and gonadal maturation status. There 
is evidence that the majority of the species undergo 
reproductive cycle and, frequently, variation in the gonadal 
size is observed across of the cycle (De Vlaming et al., 
1981; Sakamoto et al., 2003; Sadekarpawar and Parikh, 
2013). Consequently, calculanting the gonadal weight 
as a percentage of the body weight has been used for 
determining the reproductive maturity, as well as responses 
to environmental dynamics (e.g., seasonal changes) or 
exogenous stress (e.g., exposition to contaminants). 
There is significative evidence that exposition to several 
environmental pollutants can result in gonad alterations 
like reduction of GSI, morphological changes, or both 
(Choudhury et al., 1993; Sakamoto et al., 2003).

The condition factor - CF (Le Cren, 1951) is a quantitative 
indicator of individual well being, reflecting recent food 
availability conditions. There is also some argument 
that CF can increase in polluted and rich organic matter 
areas due to increased feeding sources used by tolerant 
species that take advantage of this resources (Lohani and 
Santos, 1994). It is the proportion of the weight related 
to length, being an indirect measure of the fish energy 
reserves. Since this bioindicator is sensible to stress in 
natural environment, the condition factor can also be 
employed as an integrative bioindicador (Sutton et al., 
2000; Barrilli et al., 2015).

The Funil reservoir was built in 1969 and has received 
large pollutants loads from the industrial municipalities 
located in the watershed, mainly from petrochemical, 
fertilizers and pesticides brought into the reservoir by the 
Paraíba do Sul River (PSR). According Klapper (2003) 
large reservoirs act as a decanting filter to the pollution, 
improving the water quality of the river downstream of the 
dam. Changes of the flow by forcing the energy gradient 
to approach near zero results in a loss of transport capacity 

abaixo do reservatório, o que poderia ser associado às influências das operações da usina hidroelétrica. A hipótese de 
que o reservatório do Funil atue como filtro decantando a poluição do rio Paraíba do Sul foi rejeitada. Estes dados são 
novas informações sobre este tema para uma espécie nativa e podem ser úteis para futuras comparações outros ambientes.

Palavras-chave: biomonitoramento, EROD, peixes, poluentes, reservatórios.
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and leads to sediment deposition. Coarse sediments are 
initially trapped and deposited at the head of the reservoir 
forming a delta, while smaller particles will move into a 
reservoir before depositing. Because there are a variety 
of contaminants associated with sediment particles, and 
because they also accumulate in reservoirs, these lentic 
system can trap pollutants excluding from biological 
cycle and improving water quality downstream the 
reservoir (Shotbolt et al., 2005). Reservoir trap efficiency 
is frequently reported as 70-90 per cent of the sediment 
volume delivered from the watershed (Sundborg, 1992; 
Toniolo and Schultz, 2005). Therefore, evaluation the 
environmental quality along the longitudinal profile of 
the Paraíba do Sul River – Funil reservoir system, by 
using biomarkers and bioindicators in one Siluriform 
fish species that is widely distributed across the system. 
Siluriformes fishes, according to Whyte et al. (2000) are 
good candidate species for biomonitoring because they 
have a wide range between basal and induced EROD 
activity. The hypothesis of the reservoir to act as a filter 
for polluted Paraíba do Sul River waters was tested. 
We ask the following questions: 1. Do exist differences 
in biomarkers and bioindicators values between the 
sampled zones (river upstream from the reservoir; upper 
reservoir; lower reservoir; and river downstream of the 
reservoir) that could indicate a environmental quality 
gradient? 2. Do the biomarkers/bioindicators and the 
fish species used are efficient for indication of eventual 
environmental alterations? 3. Does the Funil reservoir 
improve the water quality of the Paraiba do Sul River 
downstream the dam?

2. Material and Methods

2.1. Study area
The Funil reservoir (Figure 1) is located in Rio de Janeiro 

State (22°30′-22°37′S; 44°33′-44°44′W, 440 m above sea 
level), and blocks the Paraíba do Sul River in its middle 
reaches. The reservoir has a 40 km2 area, mean depth of 
22 m, and retention time of 10 to 50 days. The average 
monthly temperature ranges from 22 °C to 27 °C, river 
inflow is 200-500 m3 × sec-1, and accumulated rainfall 
in summer is 1500 and in winter is 900 mm. The main 
longitudinal axis of the reservoir follows the river channel, 
corresponding to the enlargement of the Paraíba do Sul 
river bed. The vegetation around the reservoir is very poor, 
a result of previous agricultural use for coffee plantation 
and pasture. The water level oscillation contributes to 
shoreline erosion increasing sedimentation in the reservoir. 
Reforestation programmes are being implemented by the 
power generation company responsible for the reservoir.

The PSR receives in the reaches upstream from the 
reservoir large loads of domestic and industrial pollutants 
from a number of municipalities, which has caused 
dramatic eutrophication in Funil reservoir in recent decades, 
resulting in frequent and intense cyanobacterial blooms 
(Klapper, 1998; Branco et al., 2002; Rocha et al., 2002; 
Costa et al., 2006).

2.2. Data collection
The species used for this study is a Siluriformes fish 

(Pimelodus maculatus Lacépède, 1803) that is abundant 
and widely distributed in the whole river-reservoir system. 

Figure 1. Map of the Funil reservoir with indication of the four studied zones. 1, river upstream from the reservoir; 2, upper 
reservoir; 3, lower reservoir; 4, river downstream of the reservoir.
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References for feeding in Pimelodus maculatus from 
different localities, reported a wide and diverse diet. 
Arciffa et al. (1988) regarded it as species as omnivore. 
Lolis and Andrian (1996) considered this species (adult 
specimens) omnivore with tendency to piscivory.

Fishes were collected in November 2007 in the four 
zones: zone 1, river upstream from the reservoir; zone 2, 
upper reservoir; zone 3, lower reservoir; and zone 4, river 
downstream of the reservoir. Only adult fishes were used 
to eliminate the interference of growth and physiological 
ontogenetic changes. A total of 10 individuals were 
examined from each zone totaling 40 individuals that 
were used in each analysis (Erod, Micronuclei frequency, 
CF, HSI and GSI). Macroscopic maturation stages were 
determined. Gonads were fixed in buffered formalin and 
weighted. Fish total length averaged 25.93 cm, ranging 
from 17 to 34.5 cm.

2.3. Chemicals
Substrates (ethoxyresorufin), the reaction product 

(resorufin), ß-NADP, glicose-6-phosfate, glucose-6-
phosphatedehydrogenase, bovine serum albumin and the 
Bradford reagent were all purchased from Sigma Chemical 
Company, St Louis MO, USA. TRIS, MgCl2 and other 
salts were of analytical grade and supplied by Merck SA 
Industrias Quimicas, Rio de Janeiro, Brazil.

2.4. EROD activity assay
All fish were measured, weighed and killed with a 

cephalic blow. Livers were then rapidly excised, weighed 
and frozen in liquid nitrogen until further use. Three frozen 
livers from fish collected at the same sampling site were 
thawed on ice and homogenized in a cold buffer solution 
(50 mM Tris, 1 mM EDTA, 250 mM sucrose, 20% glycerol, 
pH 7.4) by using a motor-driven glass Potter-Elvejhem 
homogenizer equipped with a Teflon pestle. Hepatic 
homogenates were subsequently centrifuged at 9,000g for 
30 min at 4 °C. Aliquots (1 ml) of the supernatant (liver 
S9 fraction) were transferred to cryotubes and stored in 
liquid nitrogen until they were assayed for monooxygenase 
activity. Protein concentrations in the S9 fractions were 
measured by a colorimetric method (absorbance at 595 nm) 
using Coomassie brilliant Blue G dye and bovine serum 
albumin as the standard. Details of the method used for 
protein quantification were reported by Bradford (1976).

Ethoxyresorufin-O-deethylase (EROD) activity in 
the hepatic S9 fractions were assayed essentially as 

described by Burke et al. (1985) except for the use of a 
NADPH regenerating system. Reactions were carried out 
in quartz cuvettes at 37 °C and were started by addition 
of the regenerating system which consisted of 0.25 mM 
b-NADP, 2.5 mM MgCl2, 5 mM glycose-6-phosphate, 
and 0.5 units of glucose-6-phosphate-dehydrogenase per 
ml of incubation mixture. The rate of resorufin formation 
was measured fluorimetrically. The spectrofluorimeter 
(Shimadzu RF-5000) settings were as follows: excitation 
at 550 nm, emission at 582 nm and a 5 nm band slit width.

2.5. Micronuclei frequency
A drop from peripheral blood was directly smeared 

on slides and air-dried. Smears were subsequently fixed in 
methanol for 10 min, and were stained with 10% Giemsa 
solution for 6 min. The frequency of MN evaluated (per 
1,000 cells) by scoring at a 1,000× magnifications using 
Olympus BX 45 microscope. Only erythrocytes with intact 
cellular and nuclear membrane were examined. Round 
or ovoid-shaped non-refractory particles with color and 
structure similar to chromatin, with a diameter 1/3 - 1/20 
of the main nucleus and clearly detached from it were 
interpreted as MN.

2.6. Bioindicators
Three bioindicators were used: hepato-somatic index 

(HSI), gonadosomatic index (GSI) and condition factor 
(CF), according to the following equations. The HSI = (liver 
weight × total weight-1) × 100; GSI = (gonad weight × total 
weight-1) × 100; CF = (total weight × total lenght-3) ×100.

2.7. Statistical analysis
One way analysis of variances (ANOVA) and Tukey 

HSD multiple comparison test were carried out to compare 
means values of each biomarker and bioindicator among the 
studied zones at the level of significance α = 5% (P < 0.05).

3. Results

The means of EROD activity detected in P. maculatus 
was significantly lower (P<0.05) in fishes caught in zone 
2 (upper reservoir) compared with those in zone 4 (river 
downstream of the reservoir) that had the highest values 
(Table  1; Figure  2). Frequency of micronuclei did not 
change significantly among the four zones, although a 
slight trend for the highest values was observed for zone 
1 (river upstream the reservoir) and lowest values in zone 
3 (lower reservoir).

Table 1. F-values and P-significance from ANOVA for differences in biomarkers and bioindicators among the zones.
Biomarker/ 
Bioindicator F P Tukey differences

EROD 4.97 0.0030** 4 (river downstream reservoir) > 2 (upper reservoir)
MN 2.06 0.1287 ns
HSI 3.20 0.0368* 1 (river upstream reservoir) >2 (upper reservoir)
GSI 4.65 0.0079** 1 (river upstream reservoir) > 4 (river downstream reservoir)
CF 2.85 0.0511 ns

*P<0.05 – Significant; ns, non-significant; **P<0.001, Highly significant.
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The bioindicator HSI had the highest significant 
values at zone 1 compared with zone 2 (Table 1, Figure 2). 
The highest GSI values were observed in zone 1 and the 
lowest in zone 4. The Condition Factor (CF) had an opposite 
tendency in relation to GSI, with a non-significant trend 
to show the highest values in zone 4.

4. Discussion

Increased EROD activity has been reported for fishes 
exposed to a wide range of pollutants, such as HPAs, BPCs, 
and TCDDs (Van Der Weiden et al., 1992; Gadagbui et al., 
1996; Pacheco and Santos, 1998). Inductions of liver EROD 
activities have been detected in both, the microsomes 
(Bainy et al., 1999) and in the S9 fraction (Parente et al., 
2004) that worked with tilapia Oreochromis niloticus 
from different polluted areas. However, information’s on 
eventual differences in EROD activities in fishes exposed 
to pollutants along the longitudinal gradient river-reservoir 
are scarce. The findings of the present study detected 
the lowest EROD activity in a zone where most of the 
pollutants probably are incorporated in the sediment by 
decantation due to decreased water flow. In this studied 
zone, fish species are like to have low influence from 
xenobiotic exposure. Furthermore, decreased flow could 
enhance interaction between organic pollutants and heavy 
metals, resulting in complex forms that sink to sediment 
and are not incorporated in the biological cycles. In such 
conditions, the presence of xenobiotics may not induce 
elevated CYP1A levels (Široká et al., 2005; Bakhtyar and 
Gagnon, 2011). Previous work in the middle reaches of 
the Paraíba do Sul River showed critical concentrations of 
some elements (Pb, Cu, Cr and Zn) in suspended particulate 
matter (Massena et al., 2007).

The highest EROD activity in zone 4 (river downstream 
the reservoir) suggests that the Paraíba do Sul River waters 
can have high levels of xenobiotics compared with the 
reservoir. It could be linked to structural and operational 
of the reservoir power plant procedures. For instance, leak 
of askarel, and oil from PCB derived, formerly employed 
as an insulator fluid in most voltage converters could be 
introduced in this part of the river. Additionally, large amount 
of visceral fat were observed in fishes from zone 4 (C. N. 
Morado, personal observation) and pollutants could be 
more easily absorbed by fat tissues as have been observed 
by Aluru et al. (2004) for the anadromous Arctic charr.

Micronuclei test in fishes erythrocytes response positively 
to large mutagenics and carcinogenics substances, like 
as aflatoxinas, benzidinas, heavy metals and polycyclic 
aromatic hydrocarbons (PAHs) (Al-Sabti and Metcalfe, 
1995; Pacheco and Santos, 2002; Srivastava and Singh, 
2015). Furnus et al. (2014) found that Steindachnerina 
brevipinna in the Paraná River had a high frequency of MN 
that was associated to environmental alterations. Moreover, 
Linde-Arias et al. (2008a) found that frequencies of MN 
in Oreochromis niloticus were lower at the reference site 
than at the others. Zone 1 is likely to be strongly affected 
by pollutants from Paraiba do Sul River, and this trend 
was detected by micronuclei.

In most studies high HSI values have been associated 
to disturbed zones (Karels et al., 1998; Billiard and Khan, 
2003), although in a few cases (e.g., Ma  et  al., 2005; 
Sadekarpawar and Parikh, 2013) have observed low HSI 
values in zones next to effluent discharges from sewage 
treatment plant, and linked the decreased of HSI to 
sub‑lethal toxicity of the effluent. The lowest HSI in zone 
2 can be linked to a more pollution retention in this zone 
associated to decreased flow and synergic effect causing 
liver intoxication, reflecting in lower HSI in this site.

Alterations in the steroids hormones concentrations in fishes 
exposed to industrial pollutants were directly connected with 
the interruption of the reproductive function (McMaster et al., 
1991; Munkittrick et al., 1992). Choudhury et al. (1993) 
observes a decreased in the GSI values in Mystus vittatus 
after exposure to organophosphate. Sakamoto et al. (2003) 
studing the cytochrome P450 induction and status of the 
alteration gonadal in Cyprinus carpio associating with 
a discharge of the effluents contaminated by dioxins at 
Hikiji River, Japan, observed lowest GSI values for fishes 
of the contaminated zone compared to the reference zone. 
Additionally, Sepúlveda et al. (2004) assessing effects of 
paper mill effluents (BKME) in reproductive parameters 
of Micropterus salmoides floridanus observed an inverse 
relation between GSI and EROD activity. These patterns 
were also observed in this work since zone 4 had both 
highest EROD activity and lowest GSI, thus corroborating 
the hypothesis that the presence of xenobiotics in this zone 
is likely to occur.

According Tyler and Dunn (1976), CF varies directly 
with nutrients availability. Sabinson et al. (2014) found 
the high values of CF and GSI in P. maculatus during the 
summer and associate this pattern with the reproductive 

Figure 2. Means and standard errors for biomarkes (EROD, 
Ethoxyresorufin-O-deethylase activity (pmol/min/mp of 
protein), and MN, micronuclei frequency per 1000  cells, 
and bioindicators (HSI, hepatosomatic index, GSI, 
gonadosomatic index and CF, condition factor) in the four 
studied zones.



Araújo, F.G. et al.

Braz. J. Biol. 2018,  vol. 78, no. 2, pp. 351-359356   356/359

period that occur in the rainy season, when a greater gain in 
weight is expected during the months before the spawning, 
and that after it occurs the fish loses fat and weight as a 
consequence of metabolic effort. The CF may also vary 
in either direction outside the normal range in response 
to chemical exposure. High CF for Astyanax paranae 
was associated with well oxygenated and oligotrophic 
environments, typical of conserved areas or near the 
natural state in tributary streams of the Monjolinho 
River, in São Carlos, SE (Barrilli et al., 2015). Moreover, 
Linde-Arias et al. (2008b) using multibiomarker approach 
in the fish Geophagus brasiliensis to assess the impact 
of pollution in the Paraiba do Sul River, found that the 
reference area had significant higher CF related to the 
other sites. On the other hand, high CF has been found 
in white sucker (Catostomus commersoni) and redbreast 
sunfish (Lepomis auritus) at sites polluted with pulp mill 
effluents (McMaster et al., 1991; Adams et al., 1992). Our 
results are in accordance with these last findings, and in 
consonance with most of examined tools, indicating the 
zone 4 as the most disturbed (higher EROD and CF, low 
GSI), and suggesting that fish in this area are likely to be 
more exposed to pollutants. Thus, the use of biomarkers 
e bioindicators in the case of Funil reservoir rejected the 
hypothesis that reservoirs acts as filters to pollution caused 
by the inflowing river.

The use of different tools to assess effects of pollutants 
in aquatic systems by using fishes have been done and the 
explanations is hardly straightforward (Stegeman, 1992; 
Bainy, 1993; Franco-Bernardes et al., 2015). Similarly to 
Linde-Arias et al. (2008b) that used different biomarkers 
in fish species to assess pollution in the Paraíba do Sul 
River, our findings revealed different effects in fish 
from different areas with varying degrees of pollution. 
Increased concerned in this subject have be raised to 
untangle relationship between pollution, liver activities 
and reproductive functions. We should take in account that 
the CYP1A biologic function encompasses not only the 
metabolism of xenobiotics agents, but also the synthesis 
and degradation of endogenous compounds, such as 
steroids and derived compounds (Sakamoto et al., 2003; 
Karimzadeh and Zahmatkesh, 2013). Each biomarker and 
bioindicator has both advantages and disadvantages, but 
the use of several tools can help to overcome misleading 
interpretation. These results are novel information on 
this subject for a native fish species and could be useful 
for future comparisons with data of fishes belonging to 
other environments.
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