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Abstract
In the Neotropical Region, information concerning hyporheic communities is virtually non-existent. We carried out a 
sampling survey in the hyporheic zone of the Tijuca River, in the Tijuca National Park, located in the urban area of the 
city of Rio de Janeiro. Biological samples from the hyporheic zone were collected in three different stream reaches, in 
June 2012. The main objectives were: 1) to describe the structure of invertebrate assemblages in the hyporheic zone 
of a neotropical stream; 2) to apply a reach-scale approach in order to investigate spatial patterns of the hyporheic 
assemblages in relation to hydrology, depth and microhabitat typology. A total of 1460 individuals were collected 
and identified in 31 taxa belonging to Nematoda, Annelida, Crustacea, Hydrachnidia and Insecta. The class Insecta 
dominated the upper layer of the hyporheic zone. Copepods were the most abundant taxon among crustaceans and 
occurred mostly in the upwelling areas of the reaches. The results of this study represent one of the few contributions 
so far about hyporheic invertebrate assemblages of the Neotropical Region.

Keywords: hyporheic zone, Neotropical Region, stygobites, stygophiles, stygoxenes.

Assembleia de invertebrados em grande escala em um  
riacho Neotropical no Brasil

Resumo
Na Região Neotropical, informações sobre comunidades de invertebrados de zona hiporréica são praticamente inexistentes. 
Foi realizado um levantamento da zona hyporréica do Rio Tijuca, no Parque Nacional da Tijuca, localizado na área urbana 
da cidade do Rio de Janeiro. As amostras biológicas da zona hiporréica foram coletadas em três diferentes trechos do 
riacho, em junho de 2012. Os principais objetivos foram: 1) descrever a estrutura das assembléias de invertebrados na 
zona hiporréica de um riacho neotropical, 2) aplicar uma abordagem de grande escala de trecho de riacho com finalidade 
de investigar os padrões espaciais das assembléias hiporréicas em relação à hidrologia, profundidade e tipologia de 
microhabitat. Um total de 31 táxons foram identificados pertencentes à Nematoda, Annelida, Crustacea, Hydrachnidia 
e Insecta. A classe Insecta dominou a camada superior da zona hiporréica. Copépoda foi o taxon mais abundante entre 
os crustáceos e ocorreu principalmente nas áreas de resurgência de água. Os resultados deste estudo representam uma 
das poucas contribuições até o momento sobre assembléias de invertebrados de zona hiporréica em região Neotropical.

Palavras-chave: zona hiporréica, Região Neotropical, estigóbios, estigófilos, estigóxenos.

1. Introduction

The hyporheic zone (HZ) is the interstitial active 
ecotone between the surface stream and ground water, where 
exchanges of water, biota, nutrients and organic matter 
occur (Orghidan, 1959; Schwoerbel, 1967; Boulton et al., 
1998; Bencala, 2000, 2005). At reach scale, in opposition to 
surface water, the hyporheic water flow is laminar but not 
unidirectional. A maze of flow paths of different lengths, 
directions and velocities occurs, generated by reach-scale 

geomorphological features such as discontinuities in 
slope and depth of riffle-pool sequences, channel shape 
and streambed structure (Boulton et al., 1998). Along a 
single riffle-pool alternation, surface water enters the HZ 
in a downwelling area at the riffle head (or at the end of 
a pool), and hyporheic water returns to stream surface 
in an upwelling area at the riffle tail (or at the head of a 
pool) after travelling in the HZ (Thibodeaux and Boyle, 
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1987; Boulton et al., 1998 and references herein), in 
a process known as hyporheic exchange (Harvey and 
Wagner, 2000). Laterally, water flow enters and leaves 
the HZ proceeding from stream banks and vice versa, 
according to geomorphological features (Jones Junior 
and Holmes, 1996). Hyporheic flow patterns regulate 
physical and chemical conditions in the HZ, determining 
microbial activity and occurrence of hyporheic fauna 
too (Franken et al., 2001). According to the degree of 
adaptation to subsurface habitats, hyporheic species can 
be attributed to one of three diverse ecological categories: 
stygoxenes, that have no affinities with the underground 
environment and occur in it only accidentally; stygophiles, 
that actively explore the resources of the HZ, at least in part 
of their life cycle; stygobites, that are specialized to live 
in underground and complete their lifecycle in subsurface 
waters only (Gibert et al., 1994). The stygophiles can be 
further subdivided into three categories: the occasional 
hyporheic fauna, predominantly consisting of benthic 
insects, mainly larvae, that may spend part of their 
lifetime in this environment under specific circumstances 
like simulids; amphibites, namely species with lifecycle 
related to both surface and subsurface environments, 
mostly represented by insects like chironomids and some 
species of ephemeropterans; permanent hyporheos, namely 
species that may be present during all life stages either 
in benthic habitats and in ground water, like nematodes, 
oligochaetes, copepods, ostracods, cladocerans, tartigrades 
and mites (Gibert et al., 1994). Hyporheic invertebrate 
communities typically exhibit high spatial and temporal 
heterogeneity due to several biotic and abiotic factors, at 
all scales (Boulton et al., 1998; Brunke and Gonser, 1997). 
At reach scale, the structure of hyporheic assemblages may 
be strongly influenced by the nature of substratum which 
affects the ability of organisms to move, settle, gather food, 
and find shelter (Olsen et al., 2001; Omesová and Helešic, 
2007; Omesová et al., 2008). The occurrence of riffle-pool 
sequences has been proved to be a major determining factor 
of the patterns of hyporheic assemblages. In particular, 
more oxygenated downwelling zones are often dominated 
by stygoxenes and stygophiles, whereas stygobites may 
prevail in the upwelling areas which are less rich in oxygen 
(Marmonier et al., 1992; Brooks and Boulton, 1991). 
The insect larvae are generally confined to the upper layers 
of the HZ; however, some species penetrate deeper and 
can be an important component of the hyphoreic fauna, 
called hyporheos (Stanford and Ward, 1988; Brooks and 
Boulton, 1991; Lencioni, 2004; Fenoglio et al., 2006; 
Lencioni et al., 2008). The benthic invertebrates may 
use the HZ in order to escape competition or predation 
(Schwoerbel, 1967; Williams and Hynes, 1974). Moreover, 
they actively exploit it as a nursery and shelter from the 
disturbance induced by the movement of the substrate 
and the variations of the environmental conditions due 
to seasonal flooding and droughts (Schwoerbel, 1967; 
Williams and Hynes, 1974; Dole-Olivier et al., 1997; 
Lencioni, 2004; Lencioni et al., 2008; James and Suren, 
2009; Stubbington, 2012). Other groups perform vertical 

migrations: Tricladida, Nematoda, Annelida, Crustacea, 
Acari (Hynes, 1975; Godbout and Hynes, 1982; Olsen 
and Townsend, 2003).

In Brazil, as elsewhere in the Neotropical Region, 
information concerning hyporheic communities are scarce. 
This study was aimed at enhancing the bulk of information 
on this matter. The main objectives were: 1) to describe 
the structure of invertebrate assemblages in the HZ of a 
neotropical stream in the Rio de Janeiro State, Brazil; 2) to 
apply a reach-scale approach in order to investigate the 
spatial patterns of the hyporheic assemblages in relation 
to hydrology, depth and microhabitat typology.

2. Methods
2.1. Study area

The Tijuca National Park is entirely located in the 
urban area of the city of Rio de Janeiro (Figure 1), between 
S 22° 55’– S 23° 00’ and W 43° 11’ – W 43° 19’, with a 
forested area of approximately 32 km2. The vegetation is 
typical of the Atlantic forest. From a historical point of view, 
this area was extensively deforested for coffee cultivation 
in the XVII and XIX centuries and it was subsequently 
reforested using native and some exotic species (Mattos et al., 
1976). The secondary forest is the typical tropical rainforest 
that occurs along the Brazilian coast. The climate is humid 
tropical with average annual temperature between 20 °C 
and 25 °C. The annual rainfall rate is higher than 1,500 mm. 
The rainy season occurs between November and February 
(rainfalls > 250 mm/month), and the dry season from June 
to September (rainfalls < 100 mm/month). The geological 
substratum predominantly consists in granite (Brasil, 1987).

Biological samples from the HZ were collected in 
three stream reaches (PI, PII and PIII), in June 2012, 
respectively located in the first, second and third Strahler 
order (sensu Strahler, 1957) in the Tijuca River (Figure 1). 
The three reaches are quite different. PI is the steepest; 
boulders represent 80% of the riverbed with a 20% of sand. 
The PII is the least steep and sand represents 60% of the 
riverbed, with regular riffle–pool alternations. In the PIII 
reach, boulders represent 60% of the riverbed; riffle-pool 
sequences are less regular and separated by long areas of 

Figure 1. Study area, stream reaches and sampling sites in 
the Tijuca River, Tijuca National Park, Rio de Janeiro city, 
State of Rio de Janeiro, Brazil. P letters indicate the stream 
reaches.
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deposition of fine sediments. Habitat assessment was done 
with visual-based habitat assessment (Barbour et al., 1999).

2.2. Sampling methodology
At each reach, PVC mini-piezometers, 2.5 cm in 

diameter and 150 cm in length, were used to collect samples 
from the HZ at three different depths: 10, 25 and 45 cm. 
The design of traditional piezometers (see Lee and Cherry, 
1978; Valett, 1993;) was modified reducing the height of 
perforated bands to 5 cm, in order to allow a stratified 
sampling (Figure 2). The diameter of the slots was 5 mm. 
For each depth, five mini-piezometers were positioned in 
five different habitats: riffle heads, riffle tails, lateral side 
of pools, areas of sand accumulation, namely bars and 
curves. Riffle heads represented downwelling habitats. 
Riffle tails and lateral sides of curves were considered 
zones of longitudinal and lateral upwelling, respectively. 
Sand accumulation areas were taken into account as 
zones of equilibrium between up- and downwelling. 
In the PIII reach, at 45 cm in depth, no water was found. 
Consequently, 40 mini-piezometers were located, overall. 
In order to guarantee the independence of samples, the 
mini-piezometers were positioned at least 1.5 meters from 
each other (Boulton et al., 2007). Samples were collected 
using a modified Bou-Rouch pump (Vigna Taglianti et al., 
1969). For each mini-piezometer, a sample of five liters 
of water and sediments was taken (Boulton et al., 2004; 
EA, 2009; Kibichii et al., 2009). In order to separate fine 
sediments, POM and invertebrates, the samples were 
elutriated in the field and filtered by a net with a mesh of 
68 µm and preserved in a 75% alcohol solution. In laboratory, 
the samples were treated with rose bengal for 48 hours 
(Brown, 1975), before sorting under a stereomicroscope. 
The specimens were counted and removed using tweezers 
and glass pipettes. Individuals were identified at the lowest 
taxonomic level allowed by a magnification of 40 x: genus 
or family for insect´s larvae, order for crustaceans with 
exception of family Parastenocaridae and phylum for 
anelidians and nematans (Appendix 1).

2.3. Statistical analyses
We analyzed the biological data of the HZ of Tijuca 

River at each sampling site for abundances (individuals 
per site) and taxa diversity considering Strahler order 
of stream reaches, depth and microhabitat typology 
as factors influencing biological patterns. Taxonomic 
richness and Shannon’s and Simpons’ indices were used 
to asses taxa diversity. Shapiro-Wilk test was used to test 
for normal distribution of biological data Since the data 
were not normally distributed, a non-parametric ANOVA 
was applied. Kruskal-Wallis tests, followed by post-hoc 
t-tests corrected through Bonferroni method, was carried 
out in order to detect differences in abundances and taxa 
composition, separately. The test was applied only to those 
variables with homogeneous variances, after applying 
a non-parametric Levene test. Multifactorial analysis 
was additionally used to identify the taxa that mostly 
contributed to site discrimination. Biological patterns 
were explored by a Principal Coordinate Analysis (PCoA) 
on log-transformed abundances of all taxa. All statistical 
analyses were performed by the R software, version 2.15.0 
(R Development Core Team, 2013).

4. Results

A list of hyporheic taxa, identified during the survey, 
and their relative abundances is given in the Appendix 1. 
A total of 31 taxa were identified belonging to Nematoda, 
Annelida, Crustacea, Hydrachnidia and Insecta. Insects 
were dominant with 23 taxa. A total of 1460 specimens 
were collected overall, of which 549 belonging to Insecta, 
458 to Crustacea, and the remnants evenly distributed 
among Nematoda, Annelida and Hydrachnidia. The absolute 
abundances ranged from 4 to 170 individuals/site. Insects 
were not equally distributed among the various orders and 
families, being Chironomidae (Diptera) dominant with 
369 individuals. The other 14 identified families of taxon 
Insecta accounted 180 individuals, overall. Copepods 
abundances accounted for 307 individuals; the rest of 
crustaceans, 151 individuals, were distributed in Cladocera, 
Ostracoda and Bathynellacea.

Both Shannon (H’) and Simpson (D) indices showed 
higher values at 45 cm in depth (H’ = 2.5; D = 0.9), while the 
lowest value was observed in the microhabitat represented 
by bars of sand accumulation (H’ = 2.1; D = 0.8). However, 
the ranges of the value of the indices were very narrow, 
indicating no marked differences in diversity indices 
among the orders of the reaches, depths and microhabitats, 
when considering all taxa. Conversely, the hyporheic 
assemblage showed clear spatial distribution in terms 
of abundances. Overall insect abundances significantly 
differed with depth (p<0.001), being higher at 10 cm than 
at the other two sampling depths (Figure 3). This pattern 
is mainly due to Diptera abundances (p<0.001), and above 
all to Chironomidae (p<0.001), whose abundances were 
significantly different at all depths, and to a lesser extent 
to Ephemeroptera that had higher abundances at 10 cm, 
being almost absent at the other depths. Insect abundances 

Figure 2. Mini-piezometers and position of perforated 
bands at different sampling depths.
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did not show a significant pattern considering stream orders 
and microhabitat typology according to the Kruskal_Wallis 
test. Water mite abundances were significantly higher at 
10 cm (p-value<0.001), compared to the other two depths. 
The abundances of the taxon Crustacea showed a pattern 
influenced by microhabitat typology (p-value = 0.049), 
being higher in riffle tails and in lateral sides of pools. 
The remnant taxa abundances were not explained by the 
examined factors. Taxa richness, both total and measured 
for each higher taxa (Insecta, Crustacea, etc.), did not 

Figure 3. Boxplot indicating differences in insect 
abundances at the three depths. Number of individuals on 
the Y axis.

Figure 4. Principal Coordinates Analysis on log-transformed species abundance data of the 40 sampling sites in the HZ of 
the Tijuca River. Left) Plot showing both the site locations of at different depth (black triangles: –10 cm; dark gray x: –25 cm; 
light gray quadrats: –45 cm) and species ordination overlain. Right) Plot showing the abundances of taxon Chironomidae at 
each sampling site. Diameter of circles are proportional to number of chironomids collected in each site.

differ significantly either according to stream orders, 
or to habitats, or to depth. The first two axes of PCoA 
plot accounted for 46% of the total cumulative variation 
(30.3% axis 1 and 15.8% axis 2, respectively). The major 
part of taxa, with the predominance of Chironomidae and 
Hydracnidia, showed higher abundances along the negative 
axis 1 where most of the sites at the lowest depth (10 cm), 
were located (Figure 4).

5. Discussion

Studies on HZ in the Neotropical Region are virtually 
absent and the ecology of interstitial habitats along the 
rivers remains uninvestigated. The study of hyporheic 
assemblages is of particular interest due to the ability of 
hyporheic communities to provide signals of declining 
water quality (Hancock et al., 2005; Di Marzio et al., 
2009; Iepure et al., 2013 and references herein). In the 
Neotropical Region, the first study of interstitial fauna was 
accomplished by Fernández and Palacios (1989) using the 
collecting method Chamaran-Chapuis (Chappuis, 1942). 
Fernández (1993, 1994, 2001) published a sequence of 
papers on interstitial water mites using the Bou-Rouch 
method (Bou, 1974). Both studies occurred in streams in 
Argentina. In other countries, studies mainly dealt with water 
chemistry and water flow exchanges in the HZ only (e.g. 
Chestnut and McDowell, 2000; Romero-González et al., 
2001; Medina et al., 2003; De Smedt et al., 2006; De  Smedt, 
2007; Fabian et al., 2011; Cuajinicuilapa et al., 2012; 
Marchetti and Carrillo-Rivera, 2013).

In our survey, the sampling sites located in the reach 
PIII at the depth of 45 cm were unsaturated. This fact may 
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be due to the presence of an upstream cascade followed by 
a small dam of 1.5 m in height. Dams along small-order 
streams are known to alter the linkage between headwater 
and downstream reaches, potentially increasing at short 
distance hyporheic connectivity in the riparian zone 
(Duke et al., 2007). In particular, dams simplify alluvial 
system structure, reducing surface water peak flows and 
hyporheic flow and thus preventing refilling of alluvial 
aquifers (Berman and Pole, 2000).

The upper layers of HZ of Tijuca River were dominated 
by insects, particularly Chironomidae. This pattern 
copes with data from other studies, since insects are 
known to use HZ to seek for refuge during periods 
of disturbance (Sedell et al., 1990; Robertson et al., 
1995; Dole-Olivier et al., 1997) or to find more stable 
habitats (Matthaei et al., 2000; Fowler and Death, 2001). 
Dole-Olivier (2011) reviewed the importance of the HZ 
as a protected “nursery” for eggs, early instar larvae, and 
quiescent stages of benthic invertebrates as Plecoptera, 
Ephemeroptera and Chironomidae. The Chironomidae 
were observed to be the most common insect in interstitial 
zone (Resh and Rosenberg, 1984; Ferrington Junior, 
2008). They play a particularly important role in stream 
dynamics (Coffman and Ferrington Junior, 1996) and may 
be an important component of hyporheos (Lencioni et al., 
2008). They typically are confined to surface sediment, 
but some species can penetrate deeper (Pinder, 1986) and 
larvae have been found invading the HZ at depths of up to 
2 m, following high discharge events (Dole-Olivier et al., 
1997). This strategy may in part account for the high 
resistance of these taxa to flood event (Anderson and 
Ferrington, 2012).

In our study, water mites were found with the highest 
abundances in the upper layers of the HZ of the Tijuca 
River. In surface water habitats, Hydrachnidia can be 
very abundant and diverse (Smith and Cook, 1991; 
Di Sabatino et al., 2000). In general, in the HZ they are 
less abundant, although in some case they can show 
a diversity compared with other meiofaunal groups 
(Di Sabatino et al., 2000). In the Neotropical Region 
many species are able to exploit both benthic layers and 
the HZ of lotic systems with frequent vertical migrations 
(Fernández and Fossati-Gaschignard, 2011). Identification 
to species level and further investigations are required 
in order to better explain the pattern highlighted in this 
study. Oligochaetes and nematods were fairly represented 
in the HZ of the Tijuca River, although they were not 
dominant as previously observed in other studies (Mary 
and Marmonier, 2000; Lafont and Vivier, 2006). The high 
abundances in the HZ may be favoured by the worm-shaped 
body, that facilitates the movement in the interstices of HZ 
sediments (Omesová and Helešic, 2007; Omesová et al., 
2008). Crustaceans, in particular copepods, ostracods 
and cladocerans, can be both abundant and species-rich 
in running waters and HZ (Dole-Olivier et al., 2000; 
Galassi, 2001). Only seven known species of cladocerans 
may be regarded as true inhabitants of subterranean 
environments, although they actively colonize ecotonal 

habitats (Forró et al., 2008). Van Damme et al. (2009) 
found specimens of Chidoridae up to a depth of 60 cm 
beneath the riverbed. In our samples, cladocerans were 
distributed at all depths, although they were mainly 
found in the upper layers (68% at 10 cm). In our study, 
copepods were the most abundant crustaceans. A similar 
condition was observed by other authors (Boulton et al., 
1992; Hunt and Stanley, 2003; Di Lorenzo et al., 2013 and 
references herein). Harpacticoids are mainly burrowers 
and often dominant in HZ due to their holobenthonic 
lifecycle (Dole-Olivier et al., 2000; Galassi, 2001). 
Cyclopods are also common in benthic and HZ habitats 
(Dole-Olivier et al., 2000; Galassi, 2001; Brancelj and 
Dumont, 2007; Galassi et al., 2009), although they prefer 
coarse sediments. Copepod abundances, mainly related to 
cyclopoids, were higher in the riffle-tail and pool habitats 
of the HZ of the Tijuca River, where upwelling of ground 
water was supposed to be consistent (Dole-Olivier, 
1998). A similar result was found by Mori and Brancelj 
(2011). According to this, the high abundances observed 
in this survey might be due to the massive presence of 
stygobiotic species. However, identifications to species 
level are required in order to shed light on this hypothesis. 
The occurrence of specimens from Parastenocarididae 
(Copepoda, Harpacticoida) in the HZ of the Tijuca 
River requires special mention. At present, the family 
includes five genera, four of which are exclusively found 
in the Neotropical Region (Galassi, 2001). In the HZ 
of the Tijuca River, specimens of Parastenocarididae 
were mainly collected in the sandier reach PII (60% of 
sand in the streambed). Bathynellacea (Syncarida) are 
stygobionts (Camacho and Valdecasas, 2008). They were 
only found in the deeper layers of the HZ in our survey. 
Remarkably, Amphipoda and Isopoda were not found in 
this first investigation. However, their presence cannot 
be excluded and further surveys are necessary.

6. Conclusions

The research in the HZ in Neotropical Region is 
still a challenge due to the paucity of basic information. 
The ecology of many invertebrate taxa found in the HZ 
of neotropical streams is almost unknown, especially for 
amphibite species. Only a few stygobiont species were 
described up to now. The results of this study represent 
new data about hyporheic invertebrate assemblages in 
this region. Seasonal surveys in the HZ of the Tijuca 
River are required in order to confirm the distribution 
patterns highlighted in this study. The analysis of other 
abiotic variables, such as granulometry, organic matter 
content and chemical-physical conditions, might highlight 
new patterns and better explain those analyzed in this 
first survey. Identification at species level is required for 
hyporheic specimens, in order to allow the attribution of 
the species either to the stygobiotic or non-stygobiotic 
categories, in this way obtaining a better assessment and 
understanding of the HZ biodiversity.
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Appendix 1. Sampling sites and taxa abundances (number of individuals). Site codes include information about: Strahler 
order (I: first Strahler order; II: second Strahler order; III: third Strahler order); sampling depth: numbers indicates cm of 
depth beneath the streambed (10, 25 and 45); habitats type (A: riffle head; B: riffle tail; C: lateral side of pools; D1: bars: 
D2: curves). CHIR: Chiromidae; DIXI: Dixidae; oCERA: other Ceratopogonidae; CULI: Culicoides; LEPT: Leptoconops; 
MARU: Maruina; TIPU: Tipulidae; SIMU: Simulidae; PSYC: Psychodidae; dLARV: Elmidae Larva d; NEOE: Neoelmis; 
DYTI: Dytiscidae; PERL: Perlidae; niEPHE: non identified Ephemeroptera; BAET: Baetidae; LEPT: Leptophlebiidae; 
OECE: Oecetis; NECT: Nectopsiche; HELI: Helicopsiche; GRUM: Grumicha; MARI: Marlia; CYRN: Cyrnellus; HYDR: 
Hydroptilidae; COLL: Collembola; CYCL: Cyclopoida; PARA: Parastenocarididae; Ahar: Harpacticoida morphotype “a”; 
OSTR: Ostracoda; CHYD: Chidoridae; BATH: Bathynellacea; HYIA: Hydrachnidia; NEMA: Nematoda; ANN: Annelida.
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26 I10A 5 0 0 5 0 0 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 4 1 0 0 4 0 4
27 I10B 12 0 0 17 1 1 0 0 1 0 0 0 0 2 0 0 1 0 0 0 0 0 0 1 1 0 14 1 0 0 14 0 1
28 I10C 20 0 0 3 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 9 4 1 0 5 2 8
29 I10D1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 2 1
30 I10D2 7 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0
31 125IA 3 0 0 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 4 1 1
32 125B 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2 3 5
33 I25C 4 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 10 1 4 0 1 0 4 1 3
34 125D1 7 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 2 11
35 I25D2 2 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2
36 I45A 5 0 0 2 0 0 1 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 4 7 0 0 7 9 2
37 I45B 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 1 1 1 0 0 3 0 2
38 I45C 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ‘‘0 0 0 0 0 3 0 0 0 5 0 0
39 I45D1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0
40 I45D2 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 0 0 0 0 1 1
1 II10A 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 2 0 0 9 4 2
2 II10B 15 0 0 14 0 0 3 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 6 9 9 12 14 0 7 17 61
3 II10C 21 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 25 7 5 3 13 0 9 4 4
4 II10D1 27 0 0 3 0 0 3 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 27 4 5 0 2 0 7 1 20
5 II10D2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
6 II25A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1
7 II25B 42 0 6 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2 7 7 1 0 3 0 6 6 0
8 II25C 30 0 2 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 1 29 1 0 3 0 13 1 0
9 II25D1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0

10 II25D2 3 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0
11 II45A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 14 2 1 3
12 II45B 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0
13 II45C 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 8 3 5 1 1 3 5
14 II45D1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 9 0 1 0 0 1 2 0 1
15 II45D2 7 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 3 0 1 0 1 1 0
16 III10A 17 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 2 4 2 11 0 9 14 1
17 III10B 21 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 8 1 6 7 13 0 14 5 4
18 III10C 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 2
19 III10D1 24 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 7 2 1
20 III10D2 36 0 0 2 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 3 4 2 0 12 18 10
21 III25A 7 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 0 0 5 5 4
22 III25B 7 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2
23 III25C 5 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 1 4 0 2 7 0 2 1 0
24 III25D1 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 6 0 0
25 III25D2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 1 1 4 0 2 3 2


