Abstract
This study explores the influence of salinity on some physiological and biochemical pathways of four facultative halophytes (Abutilon pannosum, Indigofera oblongifolia, Senna italica, and Tetraena coccinea) along the southwest coast of Jeddah Governorate. Through a comparative analysis of these plants in both saline and non-saline environments, the study investigates chlorophyll levels, ion concentrations within the plants, the correlation with the SOS1 gene, and the impact of salinity on metabolic compounds. The overarching goal is to gain insights into the adaptive mechanisms of these specific plants to salt stress, providing valuable information for addressing global agricultural challenges associated with salinity. Throughout the study, metabolic, ionic, and molecular responses of these plants were scrutinized in both environments. The findings revealed elevated levels of Na+, K+, Ca2+, and Mg2+ in saline habitats, except for Na+ in I. oblongifolia. Despite increased concentrations of Chl b, variations were noted in Chl a and carotenoids in plants exposed to salt. Osmoregulatory patterns in A. pannosum and I. oblongifolia exhibited reversible changes, including heightened protein and proline levels in A. pannosum and decreased levels in I. oblongifolia, accompanied by alterations in amino acids and soluble carbohydrates. Senna italica displayed higher levels of osmolytes, excluding proline, compared to salinized environments, while T. coccinea exhibited lower levels of amino acids. The accumulation of Na+ emerged as the primary mechanism for ionic homeostasis in these plants, with non-significant decreases observed in K+, Mg2+, and Ca2+. Notably, an overexpression of the SOS1 gene (plasma membrane Na+/H+ antiporter) was observed as a response to maintaining ionic balance. Understanding these halophytes will be critical in addressing salinity challenges and enhancing crop tolerance to salinity.
Keywords:
halophytes; osmomodulators; metabolic homeostasis; ionic balance; SOS1 gene expression