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Abstract - A method for analysis of the electric potential profile in saline solutions was developed for 
systems with one or two infinite flat plates. A modified Poisson-Boltzmann equation, taking into account non-
electrostatic interactions between ions and surfaces, was used. To solve the stated problem in the steady-state 
approach the finite-difference method was used. For the formulated pseudo-transient problem, we solved the 
set of ordinary differential equations generated from the algebraic equations of the stationary case. A case 
study was also carried out in relation to temperature, solution concentration, surface charge and salt-type. The 
results were validated by the stationary problem solution, which had also been used to verify the ionic 
specificity for different salts. The pseudo-transient approach allowed a better understanding of the dynamic 
behavior of the ion-concentration profile and other properties due to the surface charge variation.  
Keywords: Electric Potential; Poisson-Boltzmann; Finite Difference. 

 
 
 

INTRODUCTION 
 

At the interface of the disperse and the dispersant 
phases of a colloidal system there are characteristic 
surface phenomena, like adsorption effects and an 
electric double layer that are very important to de-
termine the physicochemical properties of the whole 
system (Lima et al., 2008). In the classical approach, 
the Poisson-Boltzmann (PB) equation does not take 
into account the non-electrostatic interactions present 
between ions and surfaces. However, the modified 
PB equation used in this study enables the ionic 

specificity to be described, as verified in several 
colloidal systems.  

Even though the classical form of the Poisson-
Boltzmann equation presents limitations, an innu-
merable number of application are found in the litera-
ture.  A good introduction and derivation can be found 
in Israelachvili (1995). Concerning application of the 
PB equation, excellent reviews are reported by Davis 
and McCammon (1990) and by Honig and Nicholls 
(1995). In particular, Shestakov et al. (2002) solved 
the nonlinear Poisson-Boltzmann equation using 
pseudo-transient continuation and the finite element 
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method to show the behavior of ions close to elec-
trodes with changinged potential. Although a very 
good numerical technique was used, Shestakov et al. 
(2002) reported results that are limited for general 
electrolytes. The authors did not include ionic speci-
ficity (Hofmeister effect). Here, we include the dis-
persion interaction between each ion and the elec-
trode wall (from Lifshitz theory as described in Ninham 
and Yaminsky, 1997) to take into account the differ-
ence between salt types. The Hamaker potentials are 
obtained elsewhere (Tavares et al., 2004, Livia et al., 
2007). 

The PB equation in 1-D form is a second order 
non-linear ordinary differential equation with Dirichlet 
and/or Neumann boundaries conditions. An analyti-
cal solution for this equation is only available for 
particular cases like when the system is composed of 
a single plate and the classical PB approach for 
symmetrical electrolyte solution is used (Lima et al., 
2007). In this study, the PB equation was solved for 
the classic and modified forms, for one or two flat 
plate systems, using the finite-difference method and 
a numeric approach, which is detailed in the second 
and third section of this paper. A pseudo-transient 
form of this equation is described in the fourth sec-
tion. Finally, results and conclusions are presented in 
the last sections. 
 
 

POISSON-BOLTZMANN EQUATION 
 

In a liquid medium with electric charges, the ba-
sic form of the Laplace equation gives place to the 
Poisson equation, shown in Equation (1), which re-
lates the vector field divergence to the charge den-
sity,  (Equation (2)).  
 

    0 w x x                 (1) 
 

( ) ( )i i
i

x e z c x              (2) 

 

in which ic  is the concentration of ion i, e  is the ele-

mentary charge, iz  is the valence of ion i, 0  the vac-

uum permittivity, and w  the water dielectric con-
stant (Lima et al., 2007). 

From the chemical potential of each ion in solu-
tion, the Boltzmann distribution (Equation (3)) of the 
ions can be obtained. 
 

0
( )

( ) exp i io
i i

B

E x E
c x c

k T

 
  

 
         (3) 

where 0ic  is the concentration of ion i in the bulk so-

lution, 0iE is the reference state potential energy for 

ion i, and iE   is the potential energy of ion i defined 
as the sum of the electrostatic potentials plus the 
dispersion interactions ( iU ) between the ion i  and the 
surface (non-electrostatic potentials). Considering that 
all potentials between ions and macro particles in an 
aqueous solution go asymptotically to zero in the bulk 
phase ( 0 0,ix E i   ), Equation (3) becomes: 
 

( ) ( )
( ) exp i i

i io
B

z e x U x
c x c

k T

 
  

 


        (4) 

 

Substituting Equation (4) in (2), gives (Equation 
(5)): 
 

  ( ) ( )
exp i i

i io
B

z e x U x
x e z c

k T

 
  

 
         (5) 

 

Substituting Equation (5) into Equation (1), gives 
the second-order non-linear modified PB equation: 
 

  0
( ) ( )

exp 0i i
w i io

B

z e x U x
x e z c

k T

 
     

 
   

 

(6) 

 
 
NUMERICAL SOLUTION OF THE POISSON-

BOLTZMANN EQUATION 
 

This section presents a pseudo-transient approach 
to calculate the electrical potential profile using a 
modified Poisson-Boltzmann equation in different 
conditions. The profile trends presented in the Re-
sults section, based on the data calculated from this 
approach, in some cases are all well known; how-
ever, these trends are confirmed and presented in a 
different way using 3D figures.  

Two kinds of geometry have been studied. The 
problem domains for each case are:  

ionr x     for one flat plate 

ionion rLxr   for two parallel plates 

in which ionr  is the ionic radius (here all ions have 

the same size), x is the independent variable and L is 
the distance between the two flat plates. 
 
The Boundary Conditions  
 

The 1-D form of the non-linear PB equation re-
quires two boundary conditions. In this study two 
kinds of system are discussed: i) Systems with a 
charged surface, such as proteins not at their isoelec-
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tric point and, ii) Systems with a non-charged sur-
face, such as the air/water interface. For an infinite 
flat plate, the first boundary condition (BC), valid for 
both systems (Equation (7)), admits that the electric 
field goes asymptotically to zero in the bulk phase 
( x  ). Applying Gauss’ law for charged surfaces, 
the second BC (Equation (8)) comes from the elec-
tric field generated by the surface charge density,   
(Moreira et al., 2007): 
 

 lim 0
x

x


               (7) 

 

 
0

ion
wx r

d x

dx


 
 

 
           (8) 

 
Equation (8) is also used for non-charged sur-

faces, at which 0 . 
In the case of two parallel infinite flat plates, the 

first BC (Equation (9)) for both systems admits that 
the electric field profile has a symmetry condition in 
the mid-point of the domain ( / 2x L ).  
 

 
/2

0
x L

d x

dx





             (9) 

 

The second BC is also represented by Equation (8).  
 
One Infinite Flat Plate – Dimensionless Form  
 

For both geometries studied, the corresponding 
model equations were rewritten in dimensionless 
form in order to avoid scaling problems during the 
numerical resolution. 

Defining the new independent variable y: 
 

exp( )y kx   0 exp( )iony kr        (10) 
 

The Debye-Length ( 1k ) is defined by: 
 

2 2
0

2
i i

i

o w B

e z c

k
k T




 
           (11) 

 
In which Bk  is the Boltzmann constant and T is 

the temperature. 
The new dependent variable (dimensionless elec-

tric potential) is defined as: 
 

   
B

e y
y

k T



             (12) 

and the ionic strength of the solution, is given by: 
 

21

2 i io
i

I z c              (13) 

 
The dispersion interaction between each ion and 

the flat surface, in the Hamaker approach, is given 
by (Israellachvili, 1995): 
 

 
 

3

3 3

1 /

ln
  i i i B

B B

U x H H k k T

k T k T x y
      (14) 

 
in which iH  is the dispersion coefficient, estimated 
here by the Lifshitz theory (for van der Waals 
interactions) (Israellachvili, 1995). Its dimensionless 

form, *
iH is defined by: 

 
3

* i
i

B

H k
H

k T
              (15) 

 
For this geometry, the modified dimensionless 

form of the PB equation is given by: 
 

 

2
2

2

*

0 3

( ) ( )

1
exp 0

2 ln( )
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 



    (16) 

 
And the two dimensionless BC are represented by 

Equations (17) and (18): 
 

 
0

0
y

y

             (17) 

 

 
exp( )

2
iony k r

d y k
y

dy e I
 


 

       (18) 

 
Two Parallel Flat Plates – Dimensionless Form  
 

In the case of two parallel flat plates, a similar 
procedure was performed; however, the independent 
variable was defined as: 
 
y kx     ion ionkr y k L r         (19) 

 
For this geometry, the modified dimensionless 

form of the PB equation is given by: 
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2 *

02 3
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exp 0
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i
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i

d y H
z c z y

Idy y

 
    

  
    (20) 

 
And the two dimensionless BC are represented by 

Equations (21) and (22): 
 

 
0

2




L
ky

dy

yd
            (21) 

 

 
2

iony k r

d y k

dy e I


 
 

         (22) 

 
The Finite-Difference Method  
 

As already mentioned, for the examples studied 
here, there are no analytical solutions. Therefore, the 
finite-difference method with second-order approxi-
mations and n  equally-spaced discretization inter-
vals was used to solve the problem. The equations 
used to calculate the derivative at the domain end-
points were generated from linear interpolation in 

0 1y y y   and 1n ny y y   , respectively. 
 
a) One Infinite Flat Plate – Steady State Condition  
 

Applying the finite-difference method in Equations 
(16)-(18) ( 1,2,..., 1j n  ) gives: 
 

0 0               (23) 
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(24) 

 

2 1
1 3

2
2 2 2n n n

k

Ine  
    
 

           (25) 

 
b) One Infinite Flat Plate – Pseudo-Transient 
Condition 
 

To verify the effects on the electric potential pro-
files, caused by changes in surface charge, a pseudo-
transient model of the modified PB was proposed. 

The pseudo-transient form of the modified PB equa-
tion is an extension form of Shestakov et al. (2002). 
Furthermore, verifying these changes, it was possible 
to corroborate the results found with the steady-state 
problem solution. The pseudo-transient problem was 
formulated by defining a dimensionless potential 
variation with respect to a dimensionless time, t  
(Shestakov et al., 2002). The system of n+1 alge-
braic equations, generated in the previous item, is 
turned into a system with two algebraic equations 
defined by the boundary conditions (Equations (23) 
and (25)), and n-1 differential Equations (24) for the 
internal points ( 1,2,..., 1j n  ). 
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  (26) 

 
c) Two Parallel Plates – Steady-State Condition  
 

Applying the finite-difference method in Equations 
(20)-(22) ( 1,2,..., 1j n  ) gives: 
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2 1
1 4

3 3n n n                (29) 

 

d) Two Parallel Plates – Pseudo-Transient Condition  
 

In a similar way, using ( )t  , the steady-state 
system of n+1 algebraic equations is redefined by 
Equations (27) and (29), and n-1 differential Equa-
tions (30) for the internal points ( 1,2,..., 1 j n ). 
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To solve item (b) and item (d), the initial condi-
tions (  0j ) are obtained from the solution of the 

stationary problem for discharged surfaces.  
To solve the proposed problem, a computational 

code was written in MATLAB, using internal solvers 
like fsolve and ode45. 
 
 

RESULTS AND DISCUSSION 
 

To establish the mesh size, an analysis of the 
convergence of the electric potential on the surface 
as a function of n was performed. It was verified 
that, for above 100 intervals, the difference between 
the surface electric potentials was less than 410  and

the electric potential value in the limit of x   
converged asymptotically to zero. To validate the 
implemented algorithm, we compared our results 
with those presented in the recent literature for NaCl, 
considering the dispersion interaction (Moreira et al., 
2007). The base case was generated for NaCl solu-
tions (1 M at 298.15K).   
 
One Infinite Flat Plate – Steady State Condition  
 

These results were generated for NaCl solutions 
(1 molar at 298.15 K).  Figure 1 shows the electric 
potential profile generated by a discharged surface, 
Figure 2 (a) and (b) shows the electric potential pro-
files for surfaces with positive and negative charges, 
respectively. From these results, it is possible to say 
that the modified PB equation accounts for the influ-
ence of the non-electrostatic potential of each ion, 
that is, the ionic specificity given by the dynamic 
reorientation of the electronic cloud due to a nearby 
surface. This becomes evident in the electric poten-
tial value observed on the surface, which is not zero 
even when the surface is not charged. The latter re-
sult would not be obtained from the solution of the 
classical PB equation. 
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Figure 1: Electric potential profile for a discharged 
surface (Surface Charge Density =0 C/m2). 
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Figure 2: (a) Electric potential profile for a positively charged surface (Surface Charge Density =0.012 
C/m2). (b) Electric potential profile for a negatively charged surface (Surface Charge Density =- 0.012 
C/m2). 
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One Infinite Flat Plate – Pseudo-Transient Condition 
 

Results obtained from the dimensionless pseudo-
transient model for one infinite flat plate are shown 
in Figures 3 and 4 (1 molar NaCl solutions at 298.15 K). 
Based on these results it is possible to verify changes 
in the electric potential profile caused by changes in 
the surface charge. 

It is important to emphasize that the electric 
potential on the surface is not zero, even when the 
surface has no charge (see Figure 1). This is not true 
when using the classical PB equation, as can be seen 
in Figure 5. 
 
One Infinite Flat Plate – Case Study 
 

Figures 6-10 show the electric potential profiles 
obtained by perturbations in the model parameters:

solution temperature, solution concentration, surface 
charge and the salt type. These results were obtained 
by evaluating the steady-state model for different 
parameter values. Regarding the solution tempera-
ture, two opposite effects can be observed, a negative 
correlation (the potential decreases as the tempera-
ture increases) when there is charge on the surface 
(Figure 6), and a positive one (Figure 7) when the 
surface is discharged. We show calculations for a 
very large range of temperature (from 200 to 600 K). 
At very high pressure (i.e., 109 Pa), water is an in-
compressible liquid in this temperature range. Be-
cause the calculations are carried out in the 
McMillan-Mayer framework, results are independent 
of pressure. Other important point is about the di-
electric constant. The dielectric constant decreases 
when temperature increases. However, we assume that 
the product o w Bk T   is independent of temperature. 
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Figure 3: Dimensionless electric potential profile 
for increasing surface charge ( initial=0 C/m2 and 
 final=0.012 C/m2). 

Figure 4: Dimensionless electric potential profile 
for decreasing surface charge ( initial=0.012 C/m2 
and  final=0 C/m2). 
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Figure 5: Dimensionless electric potential profile for decreasing surface charge ( initial=0.012 C/m2 and 
 final= 0 C/m2), considering only the electrostatic potential (classical PB equation). 
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Figure 6: Dimensionless electric potential pro-
file for temperatures between 200 and 600 K 
with charged surface (Surface Charge Density 
=0.06 C/m2) 

Figure 7: Dimensionless electric potential pro-
file for temperatures between 200 and 600 K 
for a discharged surface (Surface Charge Density 
=0 C/m2).
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Figure 8: Dimensionless electric potential pro-
file for concentrations between 2 and 6 molar 
with a charged surface (Surface Charge Density 
=0.06 C/m2). 

Figure 9: Dimensionless electric potential pro-
file for surface charge densities between: -
0.024 and 0.024 C/m2. 

 
Figures 6 - 9 were obtained for NaCl. The base 

case was done at 298 K and 1M. The results in 
Figures 10 (a) and (b) were obtained by evaluating 
the steady-state model for different salts (NaCl, KCl, 
BaCl2 and CaCl2) and concentration 1M. It is note-
worthy that the ion specificity shown (Hofmeister 
effect) in Figure 10 (a) loses its influence in cases 

where the surface charge is high. For these cases, 
electrostatic effects outweigh the others and the 
valence of the ions in solution becomes more 
relevant (Figure 10 (b)). In conclusion, in Figure 10 
(b), it is not possible do distinguish NaCl and KCl. In 
addition, results obtained for BaCl2 and CaCl2 are 
praticaly the same. 
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Figure 10: (a) Dimensionless electric potential profiles for different salts (Surface Charge Density =0 C/m2); 
(b) Dimensionless electric potential profiles for different salts (Surface Charge Density = 0.06 C/m2). 
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Two Parallel Plates – Steady-State Condition 
 

These results were generated for NaCl solutions 
(1 molar at 298.15 K). Figures 11(a) and 11(b) show 
the results generated for the geometry with two 
charged parallel flat plates, where the influence of 
the distance ( L ) between the two plates on the 
electric potential profile can be seen. 

A critical point was observed half way between 
the two plates; however, the potential value at this 

point is not necessarily zero and it increases (in 
magnitude) as the plates come closer to each other. 
 
Two Parallel Plates – Pseudo-Transient Condition 
 

The results obtained from the dimensionless 
pseudo-transient model for this geometry are shown 
in Figures 12 and 13. Based on these results, it is 
possible to verify changes in the electric potential 
profile due to changes in the surface charge. 
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Figure 11: (a) Electric potential profile with L   3.5 nm (Surface Charge Density =0.034 C/m2); (b) Electric 
potential profile with 1.5 L nm  (Surface Charge Density =0.034 C/m2). 
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Figure 12: Effect of inversion of the surface charge density ( ) on the dimensionless electric potential 
profile with 3 L nm  ( initial=+0.024 C/m2 and  final=-0.024 C/m2). 
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Two Parallel Flat Plates – Case Study 
 

Figures 14-17 show the profiles obtained by 
changes in: solution temperature, solution concentra-
tion, surface charge and type of salt used. Figures 14 
- 16 were obtained for NaCl. The base case was done 
at 298 K and 1M. The results in Figure 17 were ob-
tained by evaluating the steady-state model for dif-
ferent salts (NaCl, KCl, BaCl2 and CaCl2) and con-
centration 1M. 

In a similar fashion, Figures 14, 15, 16 and 17 show 
the electric potential profiles obtained by changes in 

solution temperature, solution concentration, surface 
charge, and type of salt used. The results show that 
the electric potential is not necessarily zero in the 
middle of the domain, only the critical point condi-
tion is established by the problem boundary conditions. 
As shown in Figure 17, in cases where the surface 
charge is high, the influence of the electrostatic effects 
increases and the behavior of the physical properties is 
only modified by the valence of the ions present in the 
solution. Once more, in Figure 17, it is not possible to 
distinguish NaCl and KCl. Also, the results obtained 
for BaCl2 and CaCl2 are the same. 
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Figure 14: Dimensionless electric potential profile 
with temperatures between 200 and 600 K, with 
charged surface, and 3 L nm  (Surface Charge Den-
sity =0.06 C/m2). 

Figure 15: Dimensionless electric potential pro-
file for concentrations between 0.5 and 1.5 mo-
lar, with charged surface and 3 L nm  (Surface 
Charge Density =0.06 C/m2). 
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Figure 16: Dimensionless electric potential profile for surface charge density between -0.06 and 0.06 
C/m2 ( 2 L nm ). 
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CONCLUSIONS 
 

A modified Poisson-Boltzmann equation, taking 
into account non-electrostatic interactions between 
ions and surfaces was used to describe salt concen-
trations close to one or two infinite flat plates. To 
describe pseudo-transient behavior, a set of ordinary 
differential equations generated from algebraic equa-
tions and written in dimensionless variables was 
solved. This procedure permitted obtaining the dy-
namic behavior of the ion-concentration profile and 
other properties due to the surface charge variation.   

The proposed method to solve the pseudo-
transient Poisson-Boltzmann equation that accounted 
for salt type and divalent counterions can be used to 
describe electrochemical devices, such as electrodes 
with different surface-charge frequency. Sensitivity 
analysis was successfully carried out to verify the 
potential and ion concentrations close to the elec-
trode in response to temperature, solution concentra-
tion, salt type, and surface charge.  
 
 

NOTATION 
 

ic  ion concentration  
0ic  concentration of ion i  in the reference 

state (bulk phase) 
 

iE  potential energy  

ioE  potential energy in the reference state 
(bulk phase) 

 

i ie z  charge of each ion  
H  dispersion potential (Hamaker 

constant) 
 

*H  dimensionless dispersion parameter  
I  ionic force in the bulk phase  
i  Counter  

1k  Debye-Length  
Bk  Boltzmann constant  

L  distance between two flat plates  
ionr  radius of the ion  

T  temperature  
t  dimensionless time 
U dispersion potential  
x  position coordinate, independent 

variable 
 

y  dimensionless independent variable  
n  number of discretization intervals  
Z  valence surface  

y  interval size  
 

Greek Letters 
 
 surface charge density  
 dielectric constant  
 charge volumetric density  
  electric potential  
 dimensionless electric potential  
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