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Abstract - This paper investigates the use of machine learning (ML) techniques to study the effect of different 
process conditions on ethanol production from lignocellulosic sugarcane bagasse biomass using S. cerevisiae in a 
simultaneous hydrolysis and fermentation (SHF) process. The effects of temperature, enzyme concentration, 
biomass load, inoculum size and time were investigated using artificial neural networks, a C5.0 classification 
tree and random forest algorithms. The optimization of ethanol production was also evaluated. The results 
clearly depict that ML techniques can be used to evaluate the SHF (R2 between actual and model predictions 
higher than 0.90, absolute average deviation lower than 8.1% and RMSE lower than 0.80) and predict 
optimized conditions which are in close agreement with those found experimentally. Optimal conditions were 
found to be a temperature of 35 °C, an SHF time of 36 h, enzymatic load of 99.8%, inoculum size of 29.5 g/L 
and bagasse concentration of 24.9%. The ethanol concentration and volumetric productivity for these 
conditions were 12.1 g/L and 0.336 g/L.h, respectively. 
Keywords: Lignocellulosic ethanol; Machine learning; Simultaneous hydrolysis and fermentation; Crude 
enzyme complex. 

 
 
 

INTRODUCTION 
 

One of the most promising methods to obtain re-
newable energy in an environmentally sustainable 
way is to produce it from cheap and abundant bio-
mass sources like lignocellulosic materials. Bioetha-
nol production from waste crop and crop residues 
could potentially surpass 491 GL/year worldwide. 
Under such circumstances, ethanol production from 
lignocellulosic biomass is a promising technology, 
and several techniques have been proposed to reduce 
the recalcitrance of the lignocellulosic matrix struc-
ture, reduce the cost of enzyme production and 
improve enzymatic hydrolysis and fermentation 

(Chen et al. 2014; Wu et al. 2011; Karlsson et al. 
2014; Prado et al. 2014) 

Although companies and academia have made a 
lot of progress, enzymatic hydrolysis remains one of 
the critical bottle-necks as a result of the large 
amounts of enzyme required for hydrolysis, the 
complexity of mass transfer and the large number of 
chemical reactions with the generation of inhibition 
products (Khare et al. 2015; Goldbeck et al. 2013). 
The combination of hydrolysis and fermentation in a 
simultaneous process represents one strategy that can 
lower capital cost, facilitate the recovery of the prod-
uct and reduce contamination and inhibition (Ohgren 
et al. 2007; Ask et al. 2012; Saha et al. 2011). There-
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fore, a large number of studies have been conducted 
to evaluate the effects of different biomasses, solid 
loading, inhibition and hydrolysis conditions on the 
feasibility of ethanol production by simultaneous 
saccharification and fermentation (SSF) (Cuevas et 
al. 2015; Asada et al. 2015; Narra et al. 2015; Gu et 
al. 2014; Chong et al. 2014). 

There is great interest in using machine learning 
(ML) procedures like artificial neural networks 
(ANNs), classification trees (CTs) and random for-
ests (RFs) in the context of achieving feasible 
production of ethanol from lignocellulosic biomasss 
by SSF, but few studies using ANN to describe the 
reduction in cost of enzyme production and improve 
the steps of enzymatic hydrolysis and fermentation 
are available (Vani et al. 2015; Das et al. 2015; 
Giordano et al. 2013; Gitifar et al. 2013), and no 
study on methodologies other than ANN has yet been 
reported. Consequently, the aim of this study was to 
use the ability of ML techniques (ANN, RF and CT) 
to model the effects of temperature, time, biomass 
and inoculum size on ethanol fermentation by SSF. 
The optimization of ethanol production was also 
evaluated. 
 
 

MATERIALS AND METHODS 
 
Raw Materials 
 

All the ethanol fermentations were performed 
using the enzyme complex (Enz) produced in situ by 
extraction of the enzyme content provided by solid 
state cultivation (SSC) and exploded sugarcane ba-
gasse (Bag) with a severity factor (SF) of 3.4 do-
nated by the Centro de Tecnologia Canavieira (CTC, 
Brazil) which contained about 50% water, 30.0% 

cellulose, 7.3% hemicellulose, 11.2% lignin and 1.5% 
ash (content analysis performed as described in 
Browning, 1967). The SF of 3.4 was chosen from a 
previous study where Bag samples with SFs of 3.4 
and 3.8 were tested, and the best result was obtained 
using the sample with an SF of 3.4 (data not shown 
here). The Enz was produced using the same Bag 
(SF of 3.4) and rice bran (RB), as described below. 
The RB was purchased from Cocal Foods (Uber-
lândia-MG, Brazil). The raw materials were stored at 
-18 °C and subsequently milled and sieved through a 
1.8 mm mesh prior to their use as samples in the 
experiments.  
 
Microorganisms, Fermentations and Enzyme 
Complex 
 

The SSF was performed using Saccharomyces 
cerevisiae Y904 (AB Brasil, Pederneiras-SP, Brazil) 
and an enzyme complex obtained from SSC using a 
strain of Aspergillus niger reported in a previous 
study (Fischer et al. 2014). The conditions used in 
SSC, enzyme production and SSF are described in 
Table 1.  
 
Experimental Strategy and Overview of Proposed 
ML Methods 
 

To model the effects of process variables (time, 
load of bagasse, enzyme, temperature and inoculum 
concentrations) on ethanol production and find the 
optimized conditions of SSF, a total of 17 experi-
mental runs with different sampling times were 
performed, and a total of 1560 experimental points 
expressing the evolution of cells and SSF products 
were collected. The operational conditions used in 
the runs are presented in Table 2.  

 
Table 1: SSC, SSF and enzyme complex production. 

 
Process-Step Description 
SSC A. niger cells were produced by submerged fermentation at 30 ± 2 °C, agitated at 150 rpm in a rotatory 

shaker using Czapec medium composed of (g/L): NaNO3 (2.0), K2HPO4 (1.0), MgSO4 (0.5), KCl (0.5), 
FeSO4 (0.01) and glucose (20.0). After 48 h of submerged fermentation the cells were harvested by 
centrifugation at 8000 g for 10 min and the cell pellets were washed twice, re-suspended in sterile water 
and used to start the SSC (1.0 × 108 spores/g of solid medium). The SSC was done in a 0.25 L conical 
flask reactor at 30 ± 2 °C containing 40 g of solid medium (composed of 40% Bag and 60% RB) and 40 
g of water containing the harvest cells. 

Enz production Forty (40) g of solid fermented medium was mixed with 50 mL of 1.0% (w/w) aqueous Tween 80 at 30 °C 
in a 500 mL closed Duran bottle. The mixture was agitated for 10 min and the extracted slurry was 
filtered to collect the Enz (liquid fraction). 

SSF The SSF was performed in a 0.25 L conical flask reactor at variable temperatures (30 to 40 °C) in a 
medium containing K2HPO4 (5.0 g/L), MgSO4 (1.0 g/L), NH4Cl (1.0 g/L), KCl (5.0 g/L), yeast extract 
(1.0 g/L) and variable concentrations of Bag (15 to 25%) and Enz (60 to 100% vol/vol). 
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Table 2: SSF operating conditions. 
 

Run Code T  
(C) 

Enz  
(%) 

Inoc  
(g/L) 

Bag 
(%) 

1 A1 40 100 35 25  
2 A2 40 100 25 15 
3 A3 30 60 25 25 
4 A4 40 60 25 25 
5 A5 30 100 25 25 
6 B1 30 100 35 15 
7 B2 40  60 35 15 
8 B3 30  60 25 15 
9 B4 40 60 25 15 

10 B5 40  60 35 25 
11 C1 40  100 35 15 
12 C2 30  60 25 25 
13 C3 30 60 35 15 
14 C4 30 100 25 15 
15 C5 40 100 25 25 
16 D1 30 100 35 25 
17 D2 35 80 30 20 

 
ANN Model 
 

The ANN model containing three layers was 
implemented and used to find optimal conditions 
employing R software and the library AMORE 
(http://cran.r-project.org/web/packages/AMORE/) as 
follows. First, the values of variables and responses 
were normalized using z-score standardization (cal-
culated for each data set of variables and response by 
subtracting its mean value and dividing the result by 
the standard deviation). Second, the data set was 
categorized into two random subsets: a training data 
set (2/3 of the original experimental data set) and a 
test data set (1/3 of the original experimental data 
set). Third, a total of 500 ANN were tested, varying 
the number of hidden neurons and transfer functions 
(purelin, sigmod and tansig) in layers to optimize the 
ANN for both data sets (training and validation) and 
achieve a coefficient of determination (R2) close to 1 
and a reduction of the root mean squared error 
(RMSE) and the absolute average deviation (AAD) 
calculated according to Equations (2), (3) and (4), 
respectively: 
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where n is the number of points, calc

iY  is the pre-
dicted value, exp

iY  is the experimental value, Ym is the 
average value of all experimental data and MSE is the 
mean square error. Third, the connection weights of 
the ANN were used to calculate the effect of features 
(variables of the process) on ethanol production, as 
described in Equation (5) (Garson 1991): 
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where Ij is the relative importance of the jth input 
variable on ethanol concentration, Ni and Nh are the 
number of input and hidden neurons, Ws are the con-
nection weights, the subscripts i, h and O refer to the 
input, hidden and output layers, respectively, and the 
subscripts k, m and n represent the input, hidden and 
output neurons, respectively. Fourth, the optimized 
conditions related to ethanol production were deter-
mined using the ANN and an R script for ant colony 
optimization (ACO) written as described in Dorigo 
et al. (1996). The ACO was used with different ran-
domly initiated input variables to secure the solution 
corresponding to the best multi-objective optimiza-
tions. Accordingly, the optimal ethanol concentration 
for the optimal volumetric ethanol productivity and 
the optimal ethanol conversion for the lowest time 
were found. The volumetric productivity was calcu-
lated as the ratio between the ethanol concentration 
and time of fermentation, and the ethanol conversion 
was defined as described in equation 6 (Naveen et al. 
2011): 
 

0Ethanolconversion
0.51 _ 1.11

Et Et
=

f Dry Bag


  

    (6) 

 
where Et is the ethanol concentration at time t, Et0 is 
the initial ethanol concentration, 0.51 is the conver-
sion factor for glucose to ethanol based on the 
stoichiometry of yeast, f is the glucan fraction of dry 
biomass, Dry_Bag is the dry biomass and 1.11 is the 
conversion factor for glucan to glucose. 
 
Random Forest (RF) Model 
 

RF is a non-parametric ML algorithm derived 
from a classification and regression tree and per-
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forms very well when compared with ANN and other 
ML methodologies. RF characteristics include ro-
bustness to noise, tuning simplicity and ability to han-
dle high dimensional non-linear problems (Breiman, 
Friedman and Stone 1984; Breiman 2001; Seyedos-
seini and Tasdizen 2015; Liaw and Wiener 2002). In 
this work, the use of RF was performed using the RF 
library for R language (Random Forest) and was used 
to describe the SSF and predict the influence of vari-
ables using the available measure of increase of node 
purity according to MSE (IncMSE) present in the 
software. To ensure good predictive performance of 
the RF, a total of 1000 RFs containing different num-
bers of trees and variables in each of the branches (pa-
rameters of the method) were evaluated. The evalua-
tion of the optimal RF model was conducted using 
the same division of experimental points (two ran-
dom data sets, containing 2/3 for training and 1/3 for 
test) and the same criteria described in the ANN 
methodology (i.e., reduce RMSE and AAD as much 
as possible, and obtain an R2 as close as possible to 1 
in both the training and test data sets).  
 
C5.0 Model 
 

C5.0 has become the industry standard for produc-
ing decision trees. It is based on the concept of 
entropy of information for recursively separate ob-
servations in branches to construct a tree based on 
rules that are logically understood (Mistikoglu et al. 
2015; Lantz 2013). In this work, C5.0 was used as 
follows: (a) the ethanol concentration was described 
in three classes: low, if it was below the first quartile, 
high, if it was equal to or greater than the fourth 
quartile and medium, if it was between the first and 
fourth quartile; (b) C5.0 script was written using the 
default library for R (http://cran.r-project.org/web/ 
packages/C50/) for ranking the variables of the 
process based on their ability to partition the data 
and find the rules for the correct classification of 
ethanol production. 
 
Analytical Methods 
 

The cell concentrations in SSF and those required 
to begin SSC were determined by counting in a 
Neubauer chamber and by estimation from the 
optical density at 600 nm, respectively. The estima-
tion methodology used a correlation determined a 
priori between the optical density and number of 
colonies obtained in using a spread plate method-
ology after 48 h of incubation at 40 °C. The inoculat-
ing plates contain Czapek with agar and the same 
nutrient concentrations described above. The sugars 
and ethanol concentrations were determined by high 

performance liquid chromatography (HPLC; Shimadzu 
LC-20A) equipped with a refractive index detector, a 
Supelcogel Ca column operated at 80 °C and deion-
ized water (pH 7.0) as the mobile phase at a flow rate 
of 0.5 mL/min. 
 
 

RESULTS AND DISCUSSION 
 

Table 3 presents some descriptive statistics of the 
experimental runs, and Figures 1 and 2 show the re-
sults of the sugars and metabolites of fermentation 
detected during the SSF runs, respectively. The in-
spection of this table and the figures reveals that the 
yeast cell growth was found to be low, and the accu-
mulation of arabinose and glycerol was lower when 
compared with the production of xylose, ethanol and 
acetic acid. These results suggest active utilization of 
glucose and that the concentrations of the metabo-
lites and pentoses found are likely to have a signifi-
cant impact on microorganism viability and ethanol 
production. Loss of viability of cells during fermen-
tation was not observed (data not presented in 
figures). According to the literature, acetic acid can 
inhibit the cell metabolism as a result of an increase 
in the ATP required for cell maintenance (Mariorella 
et al., 1983; Narendranath et al., 2001; Sousa et al., 
2012), xylose can inhibit the pathway of glucose-
phosphorylating enzymes (Fernandez et al., 1985), 
arabinose can positively affect the enzymatic hy-
drolysis of lignocellulosic biomass by reduction of 
crystallinity (Fengcheng et al., 2013) and glycerol is 
essential for balancing the redox potential in the 
absence of oxygen and osmoregulation of the cell 
(Neivoig et al., 1997). The high concentrations of in-
hibitors found suggest the choice of the configura-
tion of the fermentation in two steps described as 
separated hydrolysis and fermentation (SHF) as more 
favourable than one step described as SSF. However, 
the process operation in SSF or SHF modes is an 
open question. Although SSF has been widely de-
scribed as more favourable than SHF because it 
results in an improved ethanol yield by reducing 
product inhibition and a reduction in cost as there is 
no need for separate reactors (Narra et al. 2015; Ask 
et al. 2012), both configurations have advantages 
and disadvantages. According to the literature, the 
accumulation of glucose that inhibits cellulase 
activity (Gosh et al., 1982; Alfani et al., 1990; Ohgren 
et al., 2007) is not present in the latest generation of 
commercial enzymes, which work equally well in SSF 
and SHF (Pachos et al., 2015). On the other hand, 
the suboptimal temperatures in SSF are expected to 
be minimized by using thermotolerant microor-
ganisms (Narra et al., 2015; Naveen et al., 2011).  
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Table 3: Descriptive analysis of the runs. 
 

Variables Code Min 1st quartile Mean Median 3rd quartile Max 
Time (h) Time 0 18 29.3 34 42 48 
Glucose (g/L) Glu 0 0.25 0.48 0.37 0.42 4.1 
Arabinose (g/L) Ara 0.56 0.87 1.18 1.12 1.39 2.56 
Xylose (g/L) Xyl 1.32 6.97 8.74 10.8 10.8 14.1 
Acetic acid (g/L) Acet 1.51 5.37 6.83 7.09 8.51 11.8 
Glycerol (g/L) Gly 0.62 1.39 1.71 1.66 2.05 3.04 
Ethanol (g/L) Et 0 5.86 7.09 7.42 8.43 12.4 
log10 (cel/mL) Cel 8.20  8.95 9.06  9.08 9.13 9.38 
Temperature (C) TC 30 30 35.02 35 40 40 
Enzyme (%) Enz 60 60 80 100 82.2 100 
Inoculum (g/L) Inoc 25 25 30 30 35 35 
Bagasse (%) Bag 15 15 19.5 15.0 25 25 

Note: the data represent the average of measurements in duplicate 
 

 

 

 
Figure 1: Dynamics of carbohydrates during SSF experiments. Codes of the runs are 
presented in Table 2 and the data represent the average of measurements in duplicate. 
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Figure 2: Metabolic products formed during SSF experiments. Codes of the runs are 
presented in Table 2 and the data represent the average of measurements in duplicate. 

 
 

Table 4 presents the Pearson correlation coeffi-
cients among the variables obtained. The correlations 
obtained are important to better evaluate the process 
and select the variables with high predictive power 
for modelling ethanol production using ML method-
ologies. A high correlation between the pairs ethanol-
glycerol, inoculum-cell concentration, xylose-arabi-
nose, xylose-bagasse and arabinose-bagasse is ob-
served. The bivariate correlations also show that: a) 
there is not a high correlation between cell concen-
tration and variables distinct from the inoculum; b) 
ethanol is associated with increased time, cell, xylose, 

arabinose, acetic acid and glycerol and decreased glu-
cose. According to the correlation coefficients, the var-
iables time, acetic acid, glucose, xylose and arabi-
nose cannot be chosen simultaneously to describe the 
ML models because they are highly correlated, indi-
cating redundant information. Consequently, the ML 
models used in this study have time, temperature and 
the concentrations of enzyme, inoculum and bagasse 
as dependent variables to describe the ethanol 
concentration. 

Table 5 summarizes the best models found to 
describe ethanol using ANN and RF, and Figure 3 
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presents details of the RF adjustment. Based on 
the low values of RMSE and AAD found, the de-
viations of the models from the experimental re-
sults are satisfactory, and, according to the high 
values of R2, the accuracy of the RF and ANN to 
predict future outcome is also satisfactory. Accord-

ing to the values, it is possible to say that RF and 
ANN fitted well to the experimental data. In ad-
dition, it should be noted that ANN produced 
lower values of AAD than RF to describe ethanol. 
For this reason, ANN was selected for additional 
studies.  

 
Table 4: Correlation matrix in the SSF. 

 
 Time Glu Xil Ara Acet Gly Et Cel TC Enz Inoc Bag 

Time 1.00            
Glu -0.64* 1.00           
Xil -0.02 0.05* 1.00          
Ara  0.24* -0.11 0.69* 1.00         
Acet 0.83* -0.59* 0.35* 0.38* 1.00        
Gly  0.44* -0.37* 0.24* 0.41* 0.42* 1.00       
Et  0.64* -0.61* 0.42* 0.56* 0.68* 0.65* 1.00      
Cel  -0.05* 0.05* 0.27 0.35* 0.05 0.28* 0.23* 1.00     
TC  0.01 -0.08* 0.07 0.13 0.11 -0.19* -0.03 -0.37 1.00    
Enz 0.01 0.13* 0.39* 0.35* 0.15* 0.46* 0.34* 0.02 0.12* 1.00   
Inoc  -0.01 -0.04 -0.01 0.17 -0.03 0.13* 0.10 0.61* 0.00 -0.12* 1.00  
Bag  -0.01 0.15* 0.70* 0.67* 0.20* 0.08* 0.30 0.41* -0.12* 0.02 0.12 1.00 

Note: * Statistically significant correlations (P < 0.05). Codes of the variables are presented in Table 3. 

 
 

Table 5: The best ANN and RF using time, temperature and concentrations of bagasse, 
enzyme and inoculum as dependent variables. 

 
ML  Description Train data set Validation data set 
ANN Number of hidden layer = 1 

Number of hidden neurons = 7 
TF = purelin (OL) and tansig (HL) 
 

R2 = 0.92 
RMSE = 0.68 
AAD = 5.22% 

R2 = 0.90 
RMSE = 0.78 
AAD = 8.04% 

RF Number of trees = 109 
mtry = 3 (nodes in each tree) 

R2 = 0.92 
RMSE = 0.77  
AAD = 8.32% 

R2 = 0.91 
RMSE = 0.87 
AAD = 9.32% 

Note: TF transfer function, OL output layer, HL hidden layer 

 

Figure 3: Results of the adjustment of the RF methodology: the importance of effects predicted using RF (right),
the worst and best results according to the parameter mtry (left). Codes of the variables are presented in Table 3. 
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According to the ANN, the importance of time, 
enzyme, bagasse, inoculum and temperature calcu-
lated by Equation 4 were, 50.1, 18.3, 17.7, 8.1 and 
5.9%, respectively. The RF prediction of the im-
portance of variables on ethanol production provided 
by IncMSE (an available measure present in the RF 
algorithm that represents the increase of MSE when 
each predictor is replaced in turn by a random noise) 
is the same observed using the ANN (Figure 3, left). 
These results indicate that all of the variables used 
are important to describe the ethanol concentration 
during SSF. The poor correlation between these input 
variables and ethanol described by bivariate correla-
tions (Table 3) and the importance of these variables 
described by ANN and RF suggest that highly non-
linear interactive effects are found in SSF. Complex 
interactive effects between the input variables are 
expected in SSF using a high a load of solid. Bellido 
et al. (2011), studying the inhibition effects in ethanol 
production from wheat straw using Scheffersomyces 
stipitis, found a synergistic inhibition effect between 
acetic acid and furaldehydes. Pietrzak and Kawa-
Rygielska (2015), in a study using a high concentra-
tion of solid biomass and saccharification of starch, 
found lower dynamics of ethanol production caused 
by the synergistic stressing action of sugars and 
ethanol. 

According to the C5.0 methodology, different 
combinations of variables are able to yield a high 
production of ethanol (Table 6), and the importance 
of time, enzyme, bagasse, inoculum and temperature 
were 100, 100, 99.1, 90.3 and 68.9%, respectively. 
The percentages indicate the number of times each 
variable was used to describe the rules of classifica-
tion presented in Table 5. Despite the fact that C5.0 
is related to a qualitative analysis, the results found 
are very close to the results obtained using ANN and 
RF, suggesting that this methodology, which has not 
been used before in fermentation studies, can be very 
useful to describe SSF and other kinds of fermen-
tation. The comparison between C5.0, RF and ANN 
show that: a) all variables tested are important to 
describe ethanol production; b) the relative im-
portance of bagasse and enzyme are nearly the same 

in value and rank; and c) the relative importance of 
time, inoculum and temperature are nearly in the 
same order as that found using ANN and RF. 

The optimum values predicted by ACO-ANN for 
simultaneous optimization of volumetric productivity 
and ethanol concentration found a volumetric produc-
tivity, an ethanol concentration and a conversion of 
0.345 g/Lh, 12.1 g/L and 0.29 g/g, respectively, at the 
set input conditions of 99.8% enzyme, 35 C, 29.5 g/L 
of inoculum, bagasse concentration of 24.9% and 36 h 
of SSF. The experimental validation under optimized 
conditions determined that the volumetric productiv-
ity and ethanol concentration were 0.336 g/Lh and 
12.1 g/L, respectively, which is in close agreement 
with the ACO-ANN results. In terms of the error of 
these results, it is important to note that, according to 
the theory of error propagation, the magnitude of 
errors in inoculum size, enzymatic loading and ba-
gasse concentration are 0.15 g/L, 0.14% and 1 g/L, 
respectively. The comparison of these results with 
the literature results demonstrates that an optimiza-
tion goal was found since a high concentration of 
ethanol was obtained at optimized conditions. Das et 
al. (2015), studying ethanol production by different 
microorganisms (Scheffersomyces stipitis, Candida 
shehatae and Saccharomyces cerevisiae) using hya-
cinth as lignocellulosic biomass and a commercial 
enzyme, found S. stipitis to be the best microor-
ganism, with an optimal ethanol concentration of 
10.4 g/L (ethanol conversion of 0.104 g/g) after 36 h. 
Asada et al. (2015), using thermotolerant yeast S. 
cerevisiae BA11, commercial enzyme and cedar 
lignocellulosic biomass, obtained their best results of 
9.96 g/L of ethanol (conversion not reported) in a 
batch process of 24 h and 26.5 g/L (conversion of 
0.741 g/g) after 60 h in a fed-batch process using the 
same yeast and detoxification to reduce inhibition 
effects. Swain and Khrishnan (2015), studying ethanol 
production by S. cerevisiae and Candida tropicalis 
using commercial enzyme in a SHF (72 h of hy-
drolysis and 18 h of fermentation) and rice straw, 
found C. tropicalis to be the best microorganism, 
with an optimal ethanol concentration and conver-
sion of 26.2 g/L and 0.992 g/g, respectively.  

 
Table 6: Decision tree by entropy analysis using C5.0 (error = 12.2% found using C5.0). 

 

Rule Description of Rules Ethanol 
1 Time (h) > 14 & Enz (%) > 60  High 
2 Bag (%) > 20  High 
3 Time (h) > 34 & Enz (%) ≤ 60 & Bag (%) 20 & Inoc (g/L)> 30 Med 
4 Time (h) > 44 & Enz (%) ≤ 60 & Inoc (g/L) > 30 Med 
5 24 < Time (h) ≤ 26 & Enz (%) ≤ 60 & Bag (%) ≤ 20 & Inoc (g/L) > 30  Med 
6 Time (h) ≤ 14 & Enz (%) > 60 & Bag (%) ≤ 20  Med 
7  Enz (%) ≤ 60 & Inoc (g/L) ≤ 30 & Bag (%) ≤ 20 Small 
8 Time (h) ≤ 44 & Enz (%) ≤ 60 & Bag (%) ≤ 20 Small 
9 24 < Time (h) ≤ 34 & Enz (%) ≤ 60  Small 
Note: Low: Ethanol (g/L) ≤ 1st quartile. High: Ethanol (g/L) ≥ 3rd quartile  



 
 
 
 

Machine Learning Techniques Applied to Lignocellulosic Ethanol in Simultaneous Hydrolysis and Fermentation                                61 
 

 
Brazilian Journal of Chemical Engineering Vol. 34,  No. 01,  pp. 53 - 63,  January - March,  2017 

 
 
 
 

The optimum values predicted by ACO-ANN for 
the optimization of ethanol conversion were 0.45 g/g 
and 11.5 g/L of ethanol at the set input conditions of 
86.0% enzyme, 33.7 C, 34.2 g/L of inoculum, ba-
gasse concentration of 15.1% and 33.7 h of SSF. 
This value represents a 1.5-fold increase in ethanol 
conversion compared to that observed in the first 
optimization. These results also suggest that the ML 
model proposed is in good agreement with the ex-
pected results, which demonstrate that higher ethanol 
concentrations can be reached without achieving a 
very high ethanol conversion (Pachos et al. 2015).  

Although the potential ML to predict and opti-
mize the lignocellulosic ethanol production was 
evaluated in a study using traditional microorganisms 
for both the production of the enzyme complex and 
ethanol, it could be used directly to optimize other 
situations. This is important because the production 
of lignocellulosic ethanol continues to face technical 
and economic challenges as it seeks to find a cost-
effective process with ethanol concentration and 
volumetric productivities higher than 4% and 1 g/lh, 
respectively (Petersen et al., 2015; Jin et al., 2012; 
Kang et al., 2015; Raele et al., 2014), which will be 
possible in the future by several strategies, including 
fermentations using a single genetic modified yeast 
available to ferment both C5 and C6 sugars (He et 
al., 2015; Lever, 2015; Baeyens et al., 2015) and 
using yeast strains which combine thermotolerance 
and higher ethanol productivity (Narra et al., 2015; 
Hasunuma and Kondo, 2012). 
 
 

CONCLUSIONS 
 

The ML methodologies were successfully able to 
predict the effects of temperature, bagasse load, in-
oculum size and enzyme load without requiring the 
knowledge of the kinetics and the inhibition process. 
In addition, it was shown that the RF and ANN 
mathematical models are effective in evaluating the 
production of ethanol. The temperature of 35 C, 
SSF time of 36 h, enzymatic load of 99.8%, inocu-
lum size of 29.5 g/L and bagasse concentration of 
24.9% was considered to be the optimum for the 
simultaneous optimization of volumetric productivity 
and concentration of ethanol, which were found to be 
0.336 g/Lh and 12.1 g/L, respectively. 
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