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Abstract  -  This work reports the integration of Real Time Optimization and Model Predictive Control in the 
multi-layer control structure of an existing Crude Distillation Unit (CDU) of an oil refinery. The MPC considers 
output control zones and targets for the inputs or outputs. Both the infinite horizon and the finite output horizon 
controllers were tested. The plant results show that the infinite horizon controller tends to perform similarly or 
better then the finite horizon MPC when the CDU system needs to operate at quite different conditions. Although 
the dynamic layer based on the infinite horizon controller is nominally stable for any set of tuning parameters, 
in practice, it is observed that the interaction between the layers of the control structure associated to model 
uncertainty may result in oscillations in some variables that fail to converge to the optimum operation point. 
This problem can be solved with the retuning of the intermediary layer (target calculation layer), which indicates 
that the frequent tuning of the MPC is recommended and should be performed in conjunction with tuning of the 
intermediary layer.
Keywords: Crude distillation unit; Infinite horizon MPC; Integration of RTO and MPC.

INTRODUCTION

The crude oil distillation unit (CDU) is one of the 
key process systems of the oil industry. The main 
functionality of the CDU is to separate the crude 
oil fractions according to their boiling point ranges. 
The operation of the crude distillation equipment 
demands large amounts of energy while producing 
a multitude of products. The optimization of the 
operation of the CDU becomes more complicated 
by the fact that the feedstock (crude oil) has a 
complex composition, consisting of a large number 
of hydrocarbons ranging from components with 
simple structures and low molecular weights, such 
as liquefied petroleum gas, to components with 

complex structures and large molecular weights 
such as diesel oil. 

The need of energy conservation and the 
different market values of the CDU products result 
in a challenge to perform the optimization of the 
operating conditions. Besides, in the operation of 
the CDU, the quality specifications of the products 
has to be maintained, and several process variables 
are to be kept inside well defined ranges despite the 
disturbances that affect the process. This results in the 
consideration of complex control structures that aim 
at the reduction of the variability of the intermediary 
products in order to reach an operation point, which 
is close to equipment constraints to maximize their 
utilization and the economic benefit. The number of 
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applications of complex control structures based on 
MPC (Model Predictive Control) in oil refineries, 
which includes the CDU process, amounts to 
thousands (Qin and Badgwell, 2003). Also, several 
studies can be found in the process control literature 
about the design and application of MPC in the crude 
distillation unit (Pannocchia et al., 2006; Kemalöglu et 
al., 2009; Mingjian, et al., 2007; Sun and Sun, 2006; 
Nogueira and Trivella, 2002). Some studies focus on 
the integration of real time optimization and MPC 
(Jones, et al., 1999; Hou et al., 2001).

The control structure of the CDU considered here 
is represented in Fig. 1 and follows the multilayer 
approach, where (uRTO, yRTO) are the values of the input 
and output variables that define the optimum point. 
The RTO layer that computes the optimum operating 
point is not part of this study, which deals only with 
the two lower layers. The objective function of the 
RTO problem corresponds to the economic profit 
of the crude distillation system at steady-state. The 
optimum values computed by the RTO are passed to 
the intermediary layer that recomputes these targets 
based on a linear steady-state model, the input and 
output constraints and the latest information about 
the plant input and output. The main role of the target 
calculation layer is to compute feasible targets for the 
control layer, because the RTO runs at a low frequency 
and the RTO targets may become infeasible because of 
disturbances. These updated targets (udes, ydes) are then 
passed to the MPC layer that calculates the control 
actions (u(k)) to be implemented in the real process. 
The industrial CDU system studied here has hosted 
several experiments concerning the development and 
implementation of advanced control strategies. For 
instance, a method for the tuning of a conventional 
MPC that was previously implemented in the CDU 
was reported in Yamashita et al. (2016).

In the structure represented in Fig. 1, u(k-1) is 
the last control action that was implemented in the 
real plant and y(k+∞|k-1) is the steady-state output 
prediction calculated at the previous time step. 

The structure represented in Fig. 1 can be 
considered conventional and is usually adopted 
in oil refineries. In this structure, a finite horizon 
MPC is usually considered. The main novelty of 
this work is the consideration of an Infinite Horizon 
Model Predictive Control (IHMPC). Although the 
IHMPC has been extensively studied in the literature 
(Rawlings and Muske, 1993; Santoro and Odloak, 
2012; González and Odloak, 2009) there is a lack of 
reported industrial applications of this sort of control 
algorithm (Forbes et al., 2015; Lee, 2011). So, it seems 
interesting to test if an IHMPC that was developed 
in the academia can have a satisfactory performance 
in a real application. The potential advantage of the 
IHMPC over the conventional MPC is the nominal 
stability of the closed-loop system, which means that, 
if the process being controlled is perfectly represented 
by the linear model considered in the controller, then 
the closed-loop will be stable no matter the adopted 
tuning parameters of the controller. This does not 
mean that IHMPC will not require an adequate tuning, 
but the tuning procedure may be easier than with the 
finite horizon controller, or the controller may tolerate 
a more aggressive tuning. Although the perfect model 
is rarely found in practice, nominal stability is a 
desirable property of any controller to be implemented 
in industry (Qin and Badgwell, 2003). Besides, another 
possible advantage of the infinite horizon controller is 
the existing theoretical framework that concerns the 
robust MPC to model uncertainty (Mayne et al., 2011; 
Ferramosca et al., 2012; Martins and Odloak, 2016). 
So, this work can also be considered as an intermediary 
step towards the practical application of a robust MPC. 

This paper is presented as follows: in section 2, 
the CDU process and the operating objectives of 
the system considered here are described. In section 
3 the control structure is described in more details. 
Particularly, the optimization problems that are solved 
in the target calculation layer and in the IHMPC layer 
are presented and discussed. The main differences 
between the conventional and the infinite horizon 
MPC are also discussed. In section 4, additional details 
about the CDU considered in this study are presented, 
as well as some practical results obtained in the real 
system, mainly the comparison of the structures 
with the two controllers are presented and discussed. 
Finally, in section 5, the paper is concluded.

THE CRUDE DISTILLATION UNIT OF THE 
CAPUAVA REFINERY

The industrial CDU considered in this work is 
schematically represented in Fig. 2. This system 

Figure 1. Integration of RTO and MPC (Alvarez and 
Odloak, 2010).
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was also considered in the development of a tuning 
method for the finite horizon MPC (Yamashita et al., 
2016). Typically, a crude distillation unit involves 
the crude preheating train, a pre-flash column, oil 
furnaces and the atmospheric distillation column. In 
the crude preheating trains, the crude is heated by hot 
product streams such as the diesel oil product and the 
pumparound reflux. The crude coming from the crude 
tanks is desalted, preheated and partially vaporized 
before being introduced in the preflash column. At 
the top of this column, two light hydrocarbon streams 
are produced, the refinery gas that mainly consists of 
methane and ethane and the light naphtha stream. The 
naphtha is sent to the Solvent Unit where liquefied 
petroleum gas (LPG) is produced to be utilized mainly 
for cooking and several types of solvents such as 
rubber solvent are also produced. To comply with 
the specification of the solvent to be produced, the 
distillation ASTM D86 endpoint of the naphtha must 
be kept below a maximum value. The flow rate of the 
light naphtha stream has to be kept above a minimum 
constraint to guarantee that the required amount of 
solvent will be produced. Also, to allow a suitable 
fractionation at the top of the column, the reflux flow 
rate should be controlled inside a pre-defined range 
and this can be done through the manipulation of the 
temperature at the top of the column.

The preflash column has a side draw where an 
intermediary naphtha stream (light diesel) can be 
produced when the refinery operation objective is to 
maximize the production of diesel. The naphtha stream 
is incorporated into the diesel pool. The role of this 
side draw is to alleviate the heat load of the oil furnace 
and to allow the increase of the amount of crude that 
can be processed.

To prevent the light components to be carried by the 
reduced crude, live superheated steam is introduced 

in the bottom section of the preflash column. This 
steam leaves the preflash column as liquid water in the 
liquid-liquid separation system in the overhead drum. 
The ratio between the flow rates of steam and reduced 
crude must be kept inside a suitable range to guarantee 
the efficiency of the stripping of the light components. 
Also, to produce a control strategy where energy is 
minimized, the flow rate of the stripping steam must 
be manipulated.

The reduced crude that leaves the bottom of the 
preflash column is directed to the furnace where it 
is partly vaporized and injected into the atmospheric 
column. To protect the furnace integrity, the heat 
load must be controlled in a suitable range and this 
is basically done through the manipulation of the 
temperature of the oil outlet stream.

At the top of the atmospheric distillation column, 
there is the production of heavy naphtha that 
becomes part of the gasoline pool. To guarantee the 
fractionation at the top of the atmospheric column, the 
top reflux flow is kept inside suitable bounds through 
the manipulation of the set point to the temperature 
controller at the top of the column. The diesel 
fraction that is produced in the atmospheric column 
is a blend of the two side streams of the column: the 
kerosene stream and the heavy diesel stream. The 
amount of diesel that is produced is defined through 
the manipulation of the fractionator top temperature, 
furnace outlet temperature and flow rate of the heavy 
diesel reflux. The flash point of the diesel product is 
controlled through the manipulation of the set point of 
the PID controller of the temperature at the top of the 
atmospheric column. The ASTM D-86 95% is another 
important specification of the diesel product and is 
mainly controlled through the manipulation of the 
heavy diesel reflux and the furnace outlet temperature. 
There is a pumparound reflux at the diesel zone of the 

Figure 2. Schematic Representation of the Crude Distillation Unit of the Capuava Refinery.
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atmospheric column. This reflux is manipulated to keep 
the fractionation along the column and to improve the 
recovery of heat at the crude preheating section.

The liquid hydrocarbon stream that leaves the 
bottom of the atmospheric column is the atmospheric 
residue that is the main component of feed to the 
RFCC unit.

In the standard operation of the CDU plant 
considered here, the Real Time Optimization (RTO) 
layer is based on a rigorous steady-state model of the 
crude distillation process and maximizes the economic 
benefit by setting target values for:

- the ratio between the flow rate of the stripping 
steam to the bottom of the preflash column and the 
flow rate of reduced crude

- the crude feed flow rate
- the temperature at the top of the preflash column
- the temperature at the top of the atmospheric 

column
- the flow rate of the heavy diesel reflux
- the flow rate of the heavy diesel pumparound
- the flow rate of the kerosene withdraw
- the crude furnace outlet temperature
The main disturbance to the control structure of 

the CDU is the composition of the crude oil. Once a 
change in the crude composition is detected by the 
crude analyzer and the system reaches the steady-state, 
the RTO layer computes a new optimum operating 
point for the target calculation layer, which at each 
sampling period computes new targets for the IHMPC.

The implementation details of the commercial RTO 
package that performs the optimization of the crude 
distillation unit is not included in this study. The scope 
here is to study how the infinite or finite horizon MPC 
will cope with the economic targets provided by the 
RTO for some of the inputs, while considering control 
zones for most of the outputs.

THE CONTROL STRUCTURE OF THE CDU

In the control structure represented in Fig. 1, the 
RTO layer solves an optimization problem based on a 
rigorous nonlinear model of the CDU. In the industrial 
unit considered here, the RTO package aspenONE 
with the Aspen Plus Optimizer was implemented to 
produce the optimum operating point of the CDU. We 
concentrate on the target calculation layer and on the 
MPC layer assuming that the optimum values of uRTO 
and yRTO are known to the target calculation layer as 
represented in Fig. 1. 

The target calculation layer and the MPC layer were 
implemented in the Petrobras control package SICON, 
which is the standard control package of Petrobras for 
MPC applications in oil refineries. At each time step 
k, the target calculation layer solves the following 
optimization problem:

subject to 

TCL
des de y y us

2 3

2 2
RTO des RTO desW W

2

TCL,k
u ,y

2 TCL
yW W

,
min V y y u u

u

δ
= − + −

+ Δ δ

+

+

( )des uy y k | k 1 K+∞ += − Δ

desu u(k 1) u= − + Δ

min des maxu u u≤ ≤

max maxm u u m u− Δ ≤ Δ ≤ Δ

TCL
min des m xy ay yy + ≤≤ δ

where ydes and udes are the desired output and input 
that are compatible with the linear static model of the 
process and the operating constraints, Δu is the input 
target increment that is penalized in the objective 
function to force a smooth operation, δy

TCL is the 
output slack variable, u(k-1) is the last implemented 
input and y(k + ∞ | k - 1) is the predicted output 
steady-state at the previous time instant k-1, K is the 
open-loop static gain matrix of the system. Although 
K could be updated with the gain resulting from the 
linearization of the nonlinear model considered in the 
RTO layer, the adaptive gain is not considered here 
because the existing RTO package does not provide 
such information. Weight matrices Wy and Wu penalize 
the deviations of the output and input targets from 
their optimum resting values defined by the RTO 
layer. Weight matrix W2 penalizes large changes of the 
input target from the present value of the input. The 
slack variable δy

TCL that is penalized with weight W3 is 
included in the optimization problem defined in (1)-(5) 
to guarantee that it will be always feasible. If this slack 
variable was not included in constraint (5), there could 
be a conflict between the input constraints defined in 
(4a) and (4b) and the output constraint defined in (5). 
This conflict could turn the target calculation problem 
unfeasible. Constraint (4b) concerns the input move 
limitation imposed by the MPC layer, where m is the 
input horizon and Δumax is the maximum input move. 
Observe that the problem solved in the target calculation 
layer is a QP and, if W2 = 0 and no constraints become 
active, it has a trivial solution (ydes = yRTO, udes = uRTO). 
However, because of the penalization of large moves 
of the input targets, and the presence of the constraint 
related to Δumax, the response of the target calculation 
layer may converge to the RTO targets (yRTO, uRTO) 
more slowly, inducing a sort of dynamics to this layer 
that deals with the predicted steady-state only. 

(1)

(2)

(3)

(4a)

(4b)

(5)
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When the infinite horizon controller is implemented 
with input targets and output control zones in an open-
loop stable system such as the CDU, the optimization 
problem that is solved by the IHMPC can be written 
as follows:

if one needs to force a target for an output, then 
constraint (9) has to be replaced with constraint (11) 
for this particular output. It should be observed that 
the number of inputs plus outputs that have optimum 
targets should not be larger than the degrees of freedom 
of the process system being controlled, which is equal 
to the number of manipulated inputs. Observe that δy

TCL 
is the slack that characterizes the offset of the output 
in the static problem solved in the target calculation 
layer. Also, δy,k is the slack that characterizes the offset 
of the predicted output at steady-state in the dynamic 
problem solved in the infinite horizon controller. Then, 
both slacks refer to the output offset at steady-state 
and the second equation of constraint (11) forces them 
to be the same for those outputs that have optimum 
targets. One should also note that, for those inputs 
that do not have targets, the corresponding entries in 
weight matrix Qu should be made equal to zero. 

It can be shown (Alvarez & Odloak, 2010) that, 
in the case where there is no model uncertainty, the 
sequential solution of problems (1-5) and (6-12) leads 
to the convergence of the inputs and outputs to their 
targets and the whole control structure is stable.

If the open-loop system is unstable or contains 
integration modes, the objective function of the 
IHMPC considered here must be slightly modified and 
other constraints should be included to guarantee that 
the objective function will be bounded. More details 
about these cases can be found in Martins and Odloak 
(2016).

In case of the implementation of the conventional 
finite horizon MPC the controller considered here 
solves the following problem:

Qk sp,k y,k u,k y
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R SS uy

2
k sp,k y,ku ,y , ,
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2
des u,k

j 0

m 1 2 22
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j 0
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u(k j | k) u
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∞
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∞
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−

=
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∑

∑

∑

subject to 

max maxu u(k j | k) u , j 0,1,...,m 1−Δ ≤ Δ + ≤ Δ = −

min maxu u(k j | k) u , j 0,1,...,m 1≤ + ≤ = −

min sp,k maxy y y≤ ≤

sp,k y,ky(k | k) y 0 for the outputs without targets+∞ − − δ =

sp,k des

TCL
y,k y

y y
 for the outputs with optimizing targets

= 


δ = δ 

des u,ku(k m 1| k) u 0 for the inputs with targets+ − − − δ =

where Qy > 0, Qu ≥ 0, R ≥ 0, Sy > 0 and Su ≥ 0 are 
diagonal weighting matrices that should be properly 
selected; y(k + j|k) is the prediction of the output 
at time step k+j performed at time k, the adopted 
dynamic model that relates the output predictions with 
the input will be presented at the end of this section; 
ysp,k is the computed output set-point that should lie 
inside the control zone defined through constraint 
(9); Δuk = [Δu(k|k)T ... Δu(k + m - 1|k)T]T is the control 
sequence that is computed at each time step where 
only the first control action is implemented in the real 
system and m is the control horizon. Constraints (7) 
and (8) correspond to bounds on the manipulated input 
moves and input bounds. Also, it can be shown that, 
with constraints (10) and (12), the infinite summation 
terms of the objective function defined in Equation (6) 
can be transformed into finite summation terms that 
go up to the end of the control horizon. Equations (10) 
and (11) mean that the predicted output at steady-state 
should be equal to the set-point, while Eq. (12) means 
that the input at the end of the control horizon should 
be equal to the input target. 

Slacks δy,k and δu,k are included to guarantee that 
these constraints will remain feasible. Observe that 

Qk sp,k y

Qu

R

p
2

k sp,ku ,y ,
j 0

m 1
2

des
j 0

m 1
2

j 0

min V y(k j | k) y

u(k j | k) u

u(k j | k)

Δ
=

−

=

−

=

= + − +

+ + − +

+ Δ +

∑

∑

∑

subject to (7), (8), (9) and ysp,k = ydes for the outputs 
with optimizing targets.

In the problem defined in (13), p is the output 
prediction horizon and one should observe that 
constraints (10) and (11) are not included in the 
conventional finite horizon MPC formulation. The 
inclusion of these constraints and the heavy penalization 
in (6) of the slack variables that are inserted in (10) and 
(11) raise the possibility of a strong interaction between 
the IHMPC layer and the target calculation layer. This 
point should be observed in the practical experiments 
performed here. Since the steady-state constraints are 
not present in the conventional controller, a lower 

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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level of interaction between the two layers would be 
expected.

To represent the output predictions along the 
output horizon in terms of the inputs along the 
control horizon, a dynamic model in the incremental 
form (Maciejowski, 2002) is adopted. This model is 
represented as follows:

xS ∈ ℜny; xd ∈ Cny.nu.na; z1, ..., zθmax ∈ ℜnu; x ∈ Cnx; nx = 
ny + nd + θmaxnu; nd = ny.nu.na, θmax is the largest time 
delay between any input and any output.

With the state vector defined above, the state 
matrices of the model defined in (14) can be written 
as follows:

x(k 1) A x(k) B u(k)
y(k) C x(k)

+ = + Δ
=

The advantage of the model defined in (14) is that 
any steady-state corresponds to an operating point 
where Δu(k) = 0 and we do not need to know the 
explicit value of u at the steady-state corresponding to 
a particular output set-point. 

For the crude unit considered in this work, a 
transfer function model obtained from plant step tests 
is available (see Yamashita et al., 2016). To convert 
the transfer function model to the state space form 
represented in (14), one can consider the method 
proposed in Santoro and Odloak (2012). For this 
purpose, assume that the multivariable system has nu 
inputs and ny outputs and for each pair (yi, uj), there is 
a transfer function of the form

i, j
nb

si, j,0 i, j,1 i, j,nb
i, j

i, j,1 i, j,2 i, j,na

b b s b s
G (s) e

(s r )(s r ) (s r )
−θ+ + +

=
− − −





Then, the step response of the above transfer 
function can be developed as follows:

i, j

i, j i, j

0
si, j i, j

i, j

d d
s si, j,1 i, j,na

i, j,1 i, j,na

G (s) d
S (s) e

s s
d d

e ... e
s r s r

−θ

−θ −θ

= = +

+ + +
− −

Since the parameters bi,j,l, ri,j,l and the time delay 
θi,j are assumed to be the coefficients d0

i,j and dd
i,j,l can 

be obtained from the partial fraction expansion of 
[Gi,j(s)]/s. 

Assuming that Δt is the sampling time, (16) is 
equivalent to: 

( )i, j i, jS k t 0,  if k tΔ = Δ ≤ θ

and:

i, j,1 i, j i, j,na i, jr k t r k t0 d d
i, j i, j i, j,1 i, j,na

i, j

S (k t) d d e ... d e

if  k t

Δ −θ Δ −θΔ = + + +

Δ > θ

Then, the state vector of the model represented 
in (14) that is equivalent to the step response model 
represented above can be written as follows:

max

s

d

1

2

x (k)

x (k)
z (k)x(k)
z (k)

z (k)θ

 
 
 
 
 =
 
 
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 



max max

max max

s s s s
ny 1 2 1

d d d d
1 2 1

nu
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I 0 B B B B

0 F B B B B

0 0 0 0 0 0A
0 0 I 0 0 0

0 0 0 0 I 0

θ − θ

θ − θ

 
 
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 
 
 
  








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

s
0
d
0

nu

B

B
IB
0

0

 
 
 
 
 =
 
 
 
  



nyC I 0 0 0 = Ψ 

It can be shown that, in the state vector defined in 
(18), component xS(k) corresponds to the integrating 
states introduced into the model through the adopted 
incremental form of the input. It is easy to show that 
xS(k) is equal to the predicted output at steady state. This 
means that y(k + ∞ | k - 1) = xS(k), which is an interesting 
property of the model formulation considered here. 
The state component xd(k) corresponds to the stable 
modes of the original system, the state components z1, 
..., zθmax store the last θmax control actions implemented 
in the true plant and y(k) is the measured output.

If the stable poles of the system are non-repeated, 
matrix F can be represented as follows:

( )1,1,1 1,nu,1 1,nu,na ny,1,1 ny,1,na ny,nu,1 ny,nu,na1,1,nar t r t r t r t r t r t r tr tF diag e e e e e e e eΔ Δ Δ Δ Δ Δ ΔΔ=       

nd ndF C ×∈

(14)

(15)

(16)

(17)

(18)

(19)
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Matrices Bl
S with l = 1, ..., θmax can be computed as 

follows:
- If l ≠ θi,j, then Bl

S = 0
- If l = θi,j, then [Bl

S]i,j = d0
i,j

Matrices Bl
d with l = 1, ..., θmax can be obtained as 

follows. If there are no dead times (l = 0), then B0
d = 

DdFN, where matrices Dd and N are defined as follows:

THE MPC OF THE CRUDE DISTILLATION 
UNIT OF THE CAPUAVA REFINERY (BRAZIL)

To implement the optimum operating point defined 
by the RTO layer of the industrial CDU system, the 
MPC (either infinite horizon or conventional) is 
built with 10 controlled outputs and 8 manipulated 
inputs. Table 1 shows the definitions of the controlled 
outputs, and their control zones that were adopted in 
the first practical case where the IHMPC is considered. 
Analogously, Table 2 shows the definitions of the 
manipulated inputs, their maximum and minimum 
bounds and the move bounds considered in these 
experiments.

Three operating scenarios were considered and the 
values of the outputs and inputs were collected from the 
Process Data Base of the Capuava Refinery. The first 
operating scenario (defined as Case I) considers the 
behavior of the CDU with the IHMPC and a particular 
set of tuning parameters for the target calculation layer. 
These parameters are the following:

( )d d d d d d d d d
1,1,1 1,1,na 1,nu,1 1,nu,na ny,1,1 ny,1,na ny,nu,1 ny,nu,naD diag d d d d d d d d=       

d nd ndD C ×∈

nd nu

J
J

N ny,   N

J

×

 
 
 = ∈ℜ   



nu na nu

1 0 0

1 0 0
J , J

0 0 1

0 0 1

×

 
 
 
 
 = ∈ℜ 
 
 
 
  



   







   



Alternatively, if l ≠ 0, then each matrix Bl
d would be 

a copy of DdFN but those elements corresponding to 
transfer functions with dead time different from l are 
replaced with zeros. 

Also, matrix Ψ, which appears in matrix C is given 
by:

ny nd×Ψ∈ℜ

[ ]1 1 1Φ = 

nu naΦ∈ℜ

Table 1. Output variables and control zones (IHMPC).

0

0

Φ 
 Ψ =  
 Φ 



( )yW diag 1 0 0 0 0 0 0 0 0 0=

( )uW diag 100 1 0 1 1 1 1 15000=

( )2W diag 45 60 100 150 1.5 1.3 1 4200=

( ) 6
3W diag 1 1 1 1 1 1 1 1 1 1 10= ×

Observing these parameters, it is clear that, except 
input u3 (stripping steam to N-507), all the inputs 
have targets that are defined by the RTO layer. The 

(20)
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remaining degree of freedom is allocated to output y1, 
which has an optimizing target instead of a control 
zone. The definition of which inputs and outputs 
should have targets was made in a previous study and 
is not included here.

Some values of Wu call our attention. The weight 
corresponding to input u8 is very large (Wu(8,8) = 
15000), which means that the target of the outlet 
temperature of the furnace should be prioritized with 
respect to all other input targets to follow the optimum 
value (uRTO,8) defined by the RTO layer. The crude 
feed flow rate (u1) has the second largest value of 
Wu, and is prioritized to follow the target defined by 
the RTO layer. Also, the large value of the parameter 
W2 corresponding to the furnace outlet temperature 
(W2(8,8) = 4200) means that this manipulated variable 
should be moved very smoothly when the optimum 
value is approached. 

From Table 2, one observes that the range of u1 
is very narrow (only 1 m3/d), which means that the 
crude oil flow rate is nearly fixed and is not a degree 
of freedom in the optimization and control of the crude 
distillation unit. 

In the first operating scenario considered here, the 
RTO layer starts producing an optimum operating point 
that corresponds to the following variables yRTO,1=5.7 
kg/m3, uRTO,1=9300 m3/d, uRTO,2=128 C, uRTO,4=119 C, 
uRTO,5=1350 m3/d, uRTO,6=4856 m3/d, uRTO,7=1000 m3/d 
and uRTO,8=363 C. Observe that the optimum point is 
defined by the values of 8 variables (1 output and 7 
inputs), which is the number of degrees of freedom of 
the crude distillation unit studied here. 

With the values of yRTO and uRTO defined by the 
RTO layer, the last implemented input u(k-1), the 
predicted output at steady-state y(k + ∞ | k - 1) and the 
parameters defined in (20), the problem defined in (1) 
to (5) was solved to define the values of ydes and udes 
that are passed to the IHMPC layer where the problem 
defined through equations (6) to (12) is solved. 

Inside the MPC the inputs and outputs are 
normalized considering the following factors:

The normalization of the variables inside the 
controller may be interesting for a better numerical 
conditioning of the optimization problem that defines 
the controller and to facilitate the controller tuning.

Then, considering the normalized variables and 
adopting the tuning method of Yamashita et al. (2016), 
the tuning parameters of the IHMPC defined in (6) to 
(12) are the following:

Control horizon m=4, sampling period T = 1 min

Table 2. Input variables, bounds and maximum increment values (IHMPC).

[ ]uE 9000 200 5 200 2500 8500 1800 500=

[ ]yE 14.1 2447 5743 179 477 51 10 530 471 1.8=

( )yQ diag 5 2 1 3 50 5 5 7 10 20=

( )uQ diag 1 1 0 1 1 1 1 1=

( )R diag 0.1 6 3 5 1 6.6 1 142=

( ) 6
yS diag 1 1 1 1 1 1 1 1 1 1 10= ×

( ) 6
uS diag 1 1 1 1 1 1 1 1 10= ×

From the above set of tuning parameters, we observe 
that the elements of Qu that penalize the distance 
between the input value and the desired value are the 
same for all the normalized input variables. The only 
exception is Qu(3,3)=0 because u3 has no optimizating 
target. Also, similarly to the target calculation layer, in 
the IHMPC layer, any movement in the furnace outlet 
temperature (u8) is heavily penalized through R(8,8). 

In the operating window captured here the CDU 
plant starts from the following initial operating point:

( )Ty(k) 5.8 302 1104 182 370.9 33.8 172.3 1409 1237 15.7=

( )Tu(k) 9300 128 1.8 119 1340 4860 997 363=

Observe that this initial point is very close to the 
optimum operating point defined by the RTO layer. 
Figure 3 shows the controlled outputs of the crude 
distillation along a period of nearly 6 hours with the 
control system starting from the initial point defined 
above and trying to follow the RTO targets. The 

(21)
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corresponding inputs are represented in Figure 4 along 
the same period of time. These data were collected 
from the process data base that is connected to the 
Digital Control System of the CDU.

Table 3 presents the four optimum operating points 
computed by the RTO layer along the period of time 
considered in Case I. One can observe that these 
operating points only differ in the optimum values of 
stripping steam that is injected into the atmospheric 
column (y1), the diesel reflux flow rate (u5) and the 

diesel pumparound flow rate (u6). The optimum values 
of these variables are not at their bounds, while the 
remaining five other targets lay on the max or min 
bounds of the corresponding inputs. However, we 
observe that other outputs such as the Diesel ASTM 
D-86 95% (y5) and the naphtha end point (y7) also lie 
at the bounds. This means that the RTO layer is really 
playing a minor part in optimization of the CDU, as 
the optimum operating point is basically defined by 
the constraints. 

—— (y), ̶  ̶  ̶ (ymin),  ̶̶ ·  ̶ ·  ̶ (ymax), —— (yRTO)
Figure 3. Outputs of the Crude Distillation Unit (IHMPC Case I), 

Continues on the next page
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Table 3. Optimum steady-states of the CDU in Case I.

—— (u), ̶  ̶  ̶ (umin),  ̶̶ ·  ̶ ·  ̶ (umax), —— (uRTO), —— (udes)
Figure 4. Inputs of the Crude Distillation Unit (IHMPC Case I).

From Fig. 3 and Fig. 4, it can be observed that the 
IHMPC tends to follow most of the RTO targets of the 
variables listed in Table 3, particularly the targets of 
y1, u5 and u6. Fig. 3 shows that outputs y2, y3, y6, y8, y9 
and y10 remain inside their control zones and never get 
close to their bounds in this period of time. Output y4 
was kept inside its control zone, but eventually touched 
its minimum bound, and outputs y5 and y7 were kept at 
their maximum and minimum bounds, respectively, 
with acceptable variances.

Concerning the behavior of the other inputs of the 
CDU system, Fig. 4 shows that u1, u2, u7 and u8 follow 
the targets defined by the RTO layer satisfactorily. 
Since there is no RTO target for input u3, this variable 
is mainly used for the control of output y1. However, 
from Fig 4, one observes that, although uRTO,4 remained 
at its maximum bound along the whole time window 
of Case I, the value of udes,4 oscillated and was followed 
by u4 that also oscillated. Based on the observation of 

other operating windows that were not included here, 
one concludes that u4 does not stabilize and would tend 
to increase the oscillation amplitude if its operating 
range was enlarged. This behavior indicates that the 
integration approach adopted here is not nominally 
stable like the approach proposed in Alvarez & Odloak, 
(2010). Their method includes additional constraints 
that are not present in the target calculation layer of the 
conventional MPC that was adopted in the control of 
the CDU system. As discussed in the previous section, 
the interaction is mainly associated with the adopted 
tuning of the target calculation layer, which results in 
a slow dynamics for the static layer and a consequent 
interaction between the target calculation layer and the 
IHMPC layer.

As commented before, the interaction between the 
Target Calculation layer and the IHMPC layer can be 
motivated by the inclusion of the constraints defined in 
equations (10) to (12) that force the objective function 
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of the IHMPC to be bounded. Observe that the predicted 
output at steady-state y(k + ∞ | k) appears in eq. (10) of 
the dynamic problem and y(k + ∞ | k - 1) appears in eq. 
(2) of the static problem that calculates the targets. One 
should also note that the slack δy,k is heavily penalized 
in the objective function of the IHMPC (eq. 6). This 
means that the controller pays great attention to the 
predicted steady-state of the output. The consequence 
is that, with the infinite horizon controller, the two 
layers can interact and produce instability in the 
presence of model uncertainty. Although it is not 
possible to reproduce the same scenario as the one 
considered in Case I, it would be interesting to include 
Case II to verify if the same sort of interaction was 
observed with the conventional finite horizon MPC 
that was used to control the CDU for several years 
before the implementation of the IHMPC. 

To compare the performance of the IHMPC 
considered in Case I with the conventional MPC defined 
as Case II, one considers some plant results collected 
a few years before the implementation of the IHMPC. 
These results correspond to a case where the target 
calculation problem defined in equations (1) to (5) with 
the same tuning parameters as in Case I is solved and 
provides the targets to the conventional MPC defined in 
(13) with the same normalized variables as the IHMPC 
and the following tuning parameters:

Control horizon m=4; output horizon p=90; 
sampling period T=1 min.

Qy and Qu are the same as in Case I and 

From Figures (5) and (6), one can note that the 
operating conditions corresponding to Case II are not 
close to the conditions of Case I. For instance, the 
crude flow rate in Case II is about 20% smaller than in 
Case I. Also, the naphtha produced at the top of the pre-
flash column (N-507) in Case II is significantly lighter 
than in Case I (ASTM D-86 end point is about 15C 
smaller). This shows that the CDU studied here can 
face quite different scenarios, which may correspond 
to different dynamic models leading to a robustness 
problem related to the model uncertainty. This 
problem seems to be critical in the results reported in 
Case II. We observe that the operator has changed the 
bounds of outputs y4 and y5 and input u6. Apparently, 
he is trying to force the CDU system to follow a more 
suitable pattern. The troubled operation is evidenced 
by the responses of input u4 that is cycling as in Case 
I and input u7, which is moved along all its operating 
range. From these results, we conclude that instability 
in the multilayer integration of RTO and IHMPC 
mainly results from the interaction between the 
static target calculation layer and the infinite horizon 
controller. The strong interaction can be attributed to 
constraints related to the predicted steady-state that are 
included in both layers. This conclusion is confirmed 
by simulation results, not included here, considering 
the ideal model case. These simulations show that 
IHMPC and the target calculation layer considered in 
this work can become unstable even when the model is 
perfect. The interaction can be minimized by a proper 
tuning of the static layer. An alternative to prevent 
this interaction is to adopt the method of Alvarez and 
Odloak (2010), where the target calculation layer and 
the IHMPC layer are modified in order to not disrupt 
other steady-state predictions. In the case of the finite 
horizon MPC, the instability seems to result from the 
larger sensitivity of the conventional controller to 
model uncertainty as the simulation of the ideal case 
shows no oscillation of the multilayer system with the 
finite horizon controller. 

Apparently, the correct approach to integrate RTO 
and MPC in the CDU is to adopt a robust structure 

( )R diag 0.1 6 3 5 0.15 4 1 20=

Continues on the next page

Then, with the exception of weights Sy and Su of 
the slack variables, which are not present in the finite 
horizon MPC, the remaining tuning parameters of 
the conventional MPC are not too different from the 
tuning parameters of the IHMPC of Case I. The input 
move penalization weights R(5,5), R(6,6) and R(8,8) 
are smaller for the MPC, indicating that the controller 
can take faster responses than the IHMPC.
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—— (y), ̶  ̶  ̶ (ymin),  ̶̶ ·  ̶ ·  ̶ (ymax), —— (yRTO)
Figure 5. Outputs of the Crude Distillation Unit (MPC Case II), 

such as the one proposed in Alvarez & Odloak (2010). 
However, their approach is based on the multimodel 
representation of the process. This means that the 

process model needs to be identified at several 
operating points. The multimodel representation of 
the CDU is not available at this point, but will be the 



Paulo A. Martin et al.

Brazilian Journal of Chemical Engineering

1218

—— (u), ̶  ̶  ̶ (umin),  ̶̶ ·  ̶ ·  ̶ (umax), —— (uRTO), —— (udes)
Figure 6. Inputs of the Crude Distillation Unit (MPC Case II)
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subject of a future research work. Another option to 
reduce the interaction between the two layers of the 
control structure is to retune the target calculation 
layer that in cases I and II prioritizes too heavily the 
feed flow rate (u1) and the oil heater outlet temperature 
(u8). In Case III, the IHMPC is implemented with a 
target calculation layer with new matrices Wy and Wu 
as follows:

ranges of the manipulated and controlled outputs were 
slightly different from the ranges of Case I. The new 
ranges were set by the operators to accommodate a 
different operating scenario.

The time window that characterizes Case III 
corresponds to a period of 8.3 h where the process 
variables were collected with a sampling time of 1 
minute. Table 4, shows the three optimum operating 
points that were computed by the RTO layer along this 
period of time. As in Case I, one observes that these 
operating points are close to each other and show 
small differences in the values of yRTO,1, uRTO,2, uRTO,4, 
uRTO,5, uRTO,6 and uRTO,8. The other RTO targets remained 
in the bounds of the corresponding inputs. 

Figure 7 shows that y1 followed yRTO,1 very closely, 
while output y5 was controlled at its maximum bound 
and y7 was kept near to its minimum bound. The 
remaining outputs were kept inside their control zones.

Figure 8 shows that, except for input u3, all the other 
inputs followed the targets udes that were computed 
in the Target Calculation Layer. These targets also 

( )yW diag 5 0 0 0 0 0 0 0 0 0=

( )uW diag 300 20 0 50 5 20 20 1000=

Table 4. Optimum steady-states of the CDU in Case III.

Continues on the next page

One can observe from (22) that, in Case III, a more 
balanced tuning was adopted as the difference between 
the elements of Wu, which is not as large as in cases 
I and II. The remaining tuning parameters (W2 and 
W3) were kept the same as in the previous cases. Also 
the tuning parameters defined in (21) for the IHMPC 
remained the same. As shown in Tables I and II, the 

(22)
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—— ( y), ̶  ̶  ̶ (ymin),  ̶̶ ·  ̶ ·  ̶ (ymax), —— (yRTO)
Figure 7. Outputs of the Crude Distillation Unit (Case III).

Continues on the next page
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——— (u), ̶  ̶  ̶ (umin),  ̶̶ ·  ̶ ·  ̶ (umax), ——— (uRTO), ——— (udes)
Figure 8. Inputs of the Crude Distillation Unit (Case III).

followed the optimum values uRTO provided by the 
RTO layer. 

Finally, it is important to note that with the tuning 
parameters defined in (22), a significant interaction was 
not observed between the static intermediary layer that 
defines the different steady-states considered in Case 
III. This means that on-line retuning of the parameters 
of the control structure may be a requirement to 
preserve the stability of the multilayer structure, if 
only a single model of the process is available.

CONCLUSION

This work reports some practical results related to 
the multi-layer integration of RTO and MPC in the 

industrial Crude Distillation Unit of the oil refinery at 
Capuava (Brazil). The main novelty is the consideration 
of an Infinite Horizon MPC, which is nominally 
stable, in an industrial Crude Distillation Unit of the 
oil refinery at Capuava (Brazil). The practical results 
collected from the Process Data Base of the refinery 
show that the multi-layer structure with IHMPC is 
not significantly better than the multi-layer structure 
with the conventional finite horizon MPC. However, if 
properly tuned, the IHMPC performs efficiently and can 
be used in practice with good results. This means that 
tuning of the intermediary static layer needs attention, 
otherwise the infinite horizon MPC can interact with 
the intermediary static layer that computes the feasible 
targets to the controller. This can lead to oscillations, 
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lack of convergence or instability. This indicates that 
it may be justifiable to implement a robust controller 
where model uncertainty is implicitly considered. 
Also, when only the nominal model is considered 
and the IHMPC is implemented, special care should 
be taken with tuning of the multilayer structure. An 
integrated approach needs to be developed to help 
practitioners to implement such controllers. This work 
can be interpreted as an intermediate step in the process 
of the development and industrial implementation of a 
robust MPC, which may have a superior performance 
when model uncertainty is significant.
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