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Abstract - Artificial neural networks are applied to high-pressure vapor liquid equilibrium (VLE) related 
literature data to develop and validate a model capable of predicting VLE of six CO2-ester binaries (CO2-ethyl 
caprate, CO2-ethyl caproate, CO2-ethyl caprylate, CO2-diethyl carbonate, CO2-ethyl butyrate and CO2-
isopropyl acetate). A feed forward, back propagation network is used with one hidden layer. The model has 
five inputs (two intensive state variables and three pure ester  properties) and two outputs (two intensive state 
variables).The network is systematically trained with 112 data points in the temperature and pressure ranges 
(308.2-328.2 K), (1.665-9.218 MPa) respectively and is validated with 56 data points in the temperature range 
(308.2-328.2 K). Different combinations of network architecture and training algorithms are studied. The 
training and validation strategy is focused on the use of a validation agreement vector, determined from linear 
regression analysis of the plots of the predicted   versus experimental outputs, as an indication of the 
predictive ability of the neural network model. Statistical analyses of the predictability of the optimised neural 
network model show excellent agreement with experimental data (a coefficient of correlation equal to 0.9995 
and 0.9886, and a root mean square error equal to 0.0595 and 0.00032 for the predicted equilibrium pressure 
and CO2 vapor phase composition respectively). Furthermore, the comparison in terms of average absolute 
relative deviation between the predicted results for each binary for the whole temperature range and literature 
results predicted by some cubic equation of state with various mixing rules and excess Gibbs energy models 
shows that the artificial neural network model gives far better results. 
Keywords: Vapor liquid equilibrium; High pressure; Artificial neural networks; Carbon dioxide; Esters. 

 
 
 

INTRODUCTION 
 

The interest in high-pressure phase equilibrium is 
increasing due to its importance for many chemical 
processes that are conducted at high pressures in 
various industries (pharmaceutical, cosmetic, food, 
petroleum, natural gas etc.) and particularly 

supercritical-fluid extraction processes. Christov and 
Dohrn (2002) have reviewed the literature published 
between 1994 and 1999 on high-pressure fluid phase 
equilibrium in terms of the experimental methods 
used and systems investigated. That review shows 
that from the 1336 systems investigated 626 (47%) 
were carbon dioxide systems (350 binary and 191 
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ternary systems). Carbon dioxide is the most 
commonly used supercritical fluid for extraction, and 
material processing owing to its availability, 
inertness, non-flammability, non-toxicity, low cost 
and low critical temperature and pressure. 
Fundamentals and applications of supercritical fluid 
technology have been described by McHugh and 
Krukonis (1994) and Brunner (1994).  

Information about the phase behavior of fluid 
mixtures can be obtained from direct measurement 
of phase equilibrium data or by the use of equation 
of state and/or activity coefficient based 
thermodynamic models. Direct measurement of 
precise experimental data is often difficult and 
expensive, while the second method, which includes 
a large number of equation of states and excess 
Gibbs free energy models, is tedious and involves a 
certain amount of empiricism to determine mixture 
constants, through fitting experimental data and 
using various arbitrary mixing rules, making difficult 
the selection of the appropriate model for a particular 
case. 

On the other hand artificial neural networks 
(ANN), which can be viewed as an universal 
approximation tool with an inherent ability to extract 
from experimental data the highly non linear and 
complex relationships between the variables of the 
problem handled, have gained broad attention within 
process engineering as a robust and efficient 
computational tool. They have been successfully 
used to solve problems in biochemical and chemical 
engineering (Baughman and Liu, 1995). Such 
applications include bioreactor control with unstable 
parameters (Syu and Tsao, 1993), fault detection and 
predictive modelling (Ferentinos, 2005), modelling 
and simulation of a fermentation process, (Hongwen 
et al., 2005), dynamic modelling, simulation and 
control of fixed-bed reactor (Shahrokhi and 
Baghmisheh, 2005), modelling of a continuous 
fluidized bed dryer (Satish and Setty, 2005), 
polymerization processes (Fernandes and Lona, 
2005), modelling of liquid-liquid extraction column 
(Chouai et al., 2000), modelling and simulation of 
CO2-supercritical fluid extraction of black cumin 
seed oil (Fullana et al., 1999), and black pepper 
essential oil (Izadifar and Abdolahi, 2005), and 
recovery of biological products from fermentation 
broths (Patnaik, 1999).  

As far as thermo physical properties and phase 
equilibria are concerned, Scalabrin et al. (2002) have 
used an extended corresponding state NN model to 
predict residual properties of several pure 
halocarbons. Chouai et al. (2002) have used an ANN 
model to estimate the compressibility factor for the 

liquid and vapor phase as a function of temperature 
and pressure for several refrigerants. Laugier and 
Richon (2003) have used two ANN models, one for 
the vapor phase and other for the liquid phase, to 
estimate the compressibility factor and the density of 
some refrigerants as a function of pressure and 
temperature.  Boozarjomehry et al. (2005) have 
developed a set of feedforward multilayer neural 
networks for the prediction of some basic properties 
of pure substances and petroleum fractions. 
Khayamian and Esteki (2004) have proposed a 
wavelet neural network model to predict the 
solubility of some polycyclic aromatic compounds in 
supercritical CO2. Tabaraki  et al. (2005) have also 
used a wavelet neural network to predict the 
solubility of azo dyes in supercritical CO2 and  
Tabaraki  et al. (2006) of 25 anthraquinone dyes in 
supercritical CO2 at different conditions of 
temperature and pressure. Havel et al. (2002) have 
proposed ANN for the evaluation of chemical 
equilibria. 

Applications of ANN for the prediction of VLE 
have been reported in a number of papers. Petersen 
et al. (1994) have used ANN to estimate activity 
coefficient based on group contribution methods. 
Guimaraes and McGreavy (1995) have reported the 
use of ANN to estimate VLE in terms of bubble 
point conditions of the benzene-toluene binary. 
Sharma et al. (1999), in a paper which emphasizes 
on the potential advantages of ANN over EOS 
models for VLE prediction, have reported the use of 
ANN models which take the equilibrium pressure 
and temperature as inputs to predict the liquid and 
vapor phase compositions for low pressure VLE of 
methane-ethane and ammonia-water binaries. In 
Urata et al. (2002) work two multilayer perceptrons 
have been used to estimate VLE of binary systems 
containing hydrofluoroethers and polar compounds. 
Ganguly (2003) has used ANN with radial basis 
functions to predict VLE of binary and ternary 
systems. Piowtrowski et al. (2003), however, have 
used a feedforward multilayer neural network to 
simulate complex VLE in an industrial process of 
urea synthesis from ammonia and carbon dioxide. 
Bilgin (2004) has also used feedforward ANN to 
estimate isobaric VLE in terms of activity 
coefficients for the methylcyclohexane–toluene and 
isopropanol–methyl isobutyl ketone systems. More 
recently, Mohanty (2005) has used multilayer 
perceptron ANN with one hidden layer to predict 
VLE in terms of liquid and vapor phase 
compositions given the equilibrium temperature and 
pressure for each of the three binary systems (CO2-
ethylcaprate, CO2-ethylcaproate and CO2-
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ethylcaprylate). In another paper Mohanty (2006) 
has reported the use of ANN to estimate the bubble 
pressure and the vapor phase composition of the 
CO2–difluoromethane system. In all the works 
reported herein regarding phase equilibrium ANN 
has been applied to a single binary system at various 
conditions of equilibrium pressure and temperature. 

In this work an attempt was made to estimate 
high pressure VLE of six CO2-esters binaries using a 
single ANN predictive model. Three pure component 
properties and two intensive state variables have 
been selected as the NN inputs in order to describe 
the VLE of the six binaries in one system. The 
experimental data used for training and validation of 
the NN are those reported by Hwu et al. (2004) for 
CO2-ethyl caprate, CO2-ethyl caproate and CO2-
ethyl caprylate systems, and by Cheng and Chen 
(2005) for CO2-diethyl carbonate, CO2-ethyl butyrate 
and CO2-isopropyl acetate systems. As mentioned by 
these authors, these systems are of importance for 
supercritical fluid extraction. Isopropyl acetate, ethyl 
butyrate and ethyl caprylate are used as perfumes or 
aroma additives in cosmetic and food industries, 
whereas diethyl carbonate, ethyl caproate and ethyl 
caprate are used in organic synthesis, in the 
production of essential oils and in the production of 
resin.  
  

 
NEURAL NETWORK MODELLING 

 
Feedforward Artificial Neural Networks Concept 

 
The idea of artificial neural networks was 

inspired in the way biological neurons process 
information. This concept is used to implement 
software simulations for the massively parallel 
processes that involve processing elements 
interconnected in network architecture. Learning in 
the human brain occurs in a network of neurons that 
are interconnected by axons, synapse and dendrites. 
A variable synaptic resistance affects the flow of 
information between two biological neurons. The 
artificial neuron receives inputs that are analogous to 
the electrochemical impulses that the dendrites of 
biological neurons receive from other neurons. 
Therefore, ANN can be viewed as a network of 
neurons which are processing elements and weighted 
connections. The connections and weights are 
analogous to axons and synapses in the human brain 
respectively. The ANN, simulating human brain 
analytical function, has an intrinsic ability to learn 
and recognize highly non-linear and complex 
relationships by experience. 

The artificial neurons are arranged in layers (Fig. 
1) wherein the input layer receives inputs (ui) from 
the real world and each succeeding layer receives 
weighted outputs (wij.ui) from the preceding layer as 
its input resulting therefore a feedforward ANN, in 
which each input is fed forward to its succeeding 
layer where it is treated. The outputs of the last layer 
constitute the outputs to the real world. 

In such a feedforward ANN a neuron in a hidden 
or an output layer has two tasks: 

 
 It sums the weighted inputs from several 

connections plus a bias value and then applies a 
transfer function to the sum as given by (for neuron j 
of the hidden layer): 
 

n
I

j h ji i hj
i 1

z f w u b ; j 1, 2, ... , m
=

 
= + =  

 
∑     (1) 

 
 It propagates the resulting value through outgoing 

connections to the neurons of the succeeding layer 
where it undergoes the same process as given by (for 
instance outputs jz of the hidden layer fed to neuron 
k of the output layer gives the output kv ): 

m
h

k O kj j ok
j 1

v f w z b ;

k 1, 2, ... , l

=

 
 = +
 
 

=

∑
                    (2) 

 
Combining equations 1 and 2 the relation between the 
output kv  and the inputs iu  of the NN is obtained: 
 

m n
h I

k O kj h ji i hj ok
j 1 i 1

v f w f w u b b ;

k 1, 2, ... , l

= =

  
 = + +     

=

∑ ∑
     (3) 

 
The output is computed by means of a transfer 

function, also called activation function. It is 
desirable that the activation function has a sort of 
step behavior. Furthermore, because continuity and 
derivability at all points are required features of the 
current optimization algorithms, typical activation 
functions which fulfill these requirements are: 

 
 Hyperbolic tangent sigmoid transfer function: 

 
a a

a a
e ef (a)
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−
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                            (4) 
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 Logarithmic sigmoid transfer function: 
 

a
1f (a)

1 e−
=

+
                               (5) 

 
 Pure linear transfer function: 

 
f (a) a=                                        (6) 
 

The number of neurons in the input and output 
layers is determined by the number of independent 
and dependent variables respectively. The user 
defines the number of hidden layers and the number 
of neurons in each hidden layer. Model development 
is achieved by a process of training in which a set of  

experimental data of the independent variables are 
presented to the input layer of the network. The 
outputs from the output layer comprise a prediction 
of the dependant variables of the model. The network 
learns the relationships between the independent and 
dependent variables by iterative comparison of the 
predicted outputs and experimental outputs and 
subsequent adjustment of the weight matrix and bias 
vector of each layer by a back propagation training 
algorithm. Hence, the network develops a NN model 
capable of predicting with acceptable accuracy the 
output variables lying within the model space defined 
by the training set. Consequently, the objective of ANN 
modelling is to minimize the prediction errors of 
validation data presented to the network after 
completion of the training step.  

 
 

 
Figure 1: Three-layer feedforward neural network.  

 
 
Selection of a Neural Network Model 
  

Although there is continuing debate on model 
selection strategies, it is clear that the successful 
application of ANN in modelling engineering 
problems is highly affected by four major factors:  
1. Network type (recurrent networks, feedforward 
backpropagation, wavelet neural network, radial 
basis functions, etc.), 

2. Network structure (number of hidden layers, 
number of neurons per hidden layer),  
3. Activation functions, 
4. Training algorithms.  

It is well established that the variation of the 
number of neurons of the hidden layer(s) has a 
significant effect on the predictive ability of the 
network. For Plumb et al. (2005) the most common 
way of optimizing the performance of ANN is by 
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varying the numbers of neurons in the hidden 
layer(s) and selecting the architecture with the 
highest predictive ability. According to Swingler 
(1996) a heuristic rule suggests that for multilayer 
NN with one hidden layer the hidden layer will never 
require neurons more than twice the inputs. 
However, Curry and Morgan (2006), who have 
discussed relating difficulties in the selection of a 
neural network structure, state that heuristic rules 
have little to offer and such rules, suggesting that the 
number of hidden neurons should be directly related 
to the number of inputs and outputs, have only 
historical interest, being popular immediately after 
the path finding work of Rumelhart et al. (1986).  
With regard to methods of choosing the number of 
hidden layers and hidden neurons in the design of a 
NN model, Curry and Morgan (2006) findings show 
that neither heuristics nor statistical concepts can be 
used conclusively. They concluded that the most 
simple, and probably still the most popular sensible, 
strategy (practitioner’s strategy as they labeled it) is 
to focus directly on minimizing the root mean square 
error. The obvious difficulty for this strategy is the 
excessive computational burden brought about by the 
time consuming process of experimenting different 
models: the cause is ‘combinatorial explosion’ in the 
number of different NN models which need to be 
run. Henrique et al. (2000) presented a procedure, for 
model structure determination in feedforward 
networks, which is based on network pruning using 
orthogonal least-squares techniques to determine 
insignificant or redundant synaptic weights, biases, 
hidden neurons and network inputs.  

As far as training algorithms are concerned, the 
following classes of algorithms, which are 
implemented in MATLAB® neural network toolbox, 
are the most commonly used algorithms: Levenberg-
Marquardt backpropagation (Hagan and Menhaj, 
1994); Bayesian regularization backpropagation 
(MacKay, 1992; Foresee and Hagan, 1997); 
conjugate gradient backpropagation (Moller, 1993; 
Powell, 1977); gradient descent backpropagation 
(Hagan et al., 1996); quasi-Newton (Battiti , 1992).  

A significant problem with ANN training is the 
tendency to over-train resulting in a lack of ability to 
predict, accurately, data excluded from the training 
set. To overcome this, test data set may be presented 
to the network during training in such a way that 
training will terminate at the point where the error of 
the test set predictions begins to diverge. This 
method is known as “stopped training” (Bourquin et 

al., 1997) or “attenuated training” (Plumb et al., 
2002; Plumb et al., 2005). Attenuated training is 
generally applicable to gradient descent, conjugate 
gradient and quasi-Newton training algorithms. 
Bayesian regularization training algorithm uses a 
modified performance function designed to minimize 
over-training by smoothing the error surface of the 
training set. Plumb et al. (2005) have compared these 
classes of algorithms and three different NN packages 
when applied to problems in the pharmaceutical 
industry. Amongst their conclusions, is that 
MATLAB/Bayesian regularization models train more 
successfully than MATLAB models using attenuated 
training. They too have proposed the trail and error 
strategy (practitioner’s strategy) for the selection of the 
best NN structure and training algorithms focusing on 
the goodness of fit, R2, determined for validation plots 
of the predicted versus observed data, as a measure of 
the predictive ability of the model. 

 
 

VLE MODELLING WITH NEURAL 
NETWORK 

 
In order to describe the phase behavior of the six 

CO2(1)-ester(2) binaries by one ANN model a total 
of seven variables have been selected in this work: 
four intensive state variables (equilibrium 
temperature, equilibrium pressure and equilibrium 
CO2 mole fractions in the liquid and vapor phases) 
and three pure component properties of the ester 
(critical temperature, critical pressure and acentric 
factor). The choice of the input and output variables 
was based on the phase rule, practical considerations 
(bubble or dew point computation) and the need to 
describe the six binaries by only one ANN model. 
Therefore, the equilibrium temperature, the CO2 
mole fraction in the liquid phase together with the 
pure component properties of the esters have been 
selected as input variables and the remaining as 
output variables (Fig.2). 

The experimental data reported by, Hwu et al. 
(2004) for CO2-ethyl caprate, CO2-ethyl caproate and 
CO2-ethyl caprylate systems and Cheng and Chen 
(2005) for CO2-diethyl carbonate, CO2-ethyl butyrate 
and CO2-isopropyl acetate systems, have been used 
for training and validation of the ANN model. The 
pure component properties of the six esters used in 
this work are listed in Table 1. The range of the 
intensive state variables and the number of data 
points for each binary are listed in Table 2.  
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Figure 2: Three-layer VLE feedforward neural network for the  

prediction of bubble pressure and vapor phase composition. 
 

Table 1: Pure component properties used in this work 
 

Component Tc (K) Pc (MPa) ω Reference 
Ethyl caprate 680.82 1.788 0.742 (Hwu et al., 2004) 
Ethyl caproate 611.62 2.548 0.555 (Hwu et al., 2004) 
Ethyl caprylate 648.64 2.118 0.653 (Hwu et al., 2004) 
Diethyl carbonate 576.00 3.390 0.485 (Cheng and Chen, 2005) 
Ethyl butyrate 566.00 3.060 0.463 (Cheng and Chen, 2005) 
Isopropyl acetate 538.00 3.580 0.355 (Cheng and Chen, 2005) 

 
Table 2:  Source and range of data used for training and validation of the artificial neural network model 

 
System T (K) P (MPa) x1 y1 N Reference 

308.2 1.665-7.109 0.2580-0.8454 0.9998 9 (Hwu et al., 2004)
318.2 1.699-7.891 0.2297-0.7775 0.9996-0.9998 10 (Hwu et al., 2004)CO2-ethyl caprate 
328.2 1.699-9.218 0.2068-0.7780 0.9992-0.9998 11 (Hwu et al., 2004)
308.2 1.699-6.462 0.2823-0.8480 0.9990-0.9994 8 (Hwu et al., 2004)
318.2 1.699-7.823 0.2301-0.8541 0.9976-0.9992 10 (Hwu et al., 2004)CO2-ethyl caproate 
328.2 1.733-9.218 0.2090-0.8463 0.9963-0.9987 12 (Hwu et al., 2004)
308.2 1.75-7.177 0.2786-0.8904 0.9995-0.9997 9 (Hwu et al., 2004)
318.2 1.699-7.823 0.2407-0.8063 0.9992-0.9997 10 (Hwu et al., 2004)CO2-ethyl caprylate 
328.2 1.699-9.218 0.2088-0.8156 0.9985-0.9996 12 (Hwu et al., 2004)

308.45 4.72-7.14 0.500-0.892 0.9947-0.9973 9 (Cheng and Chen, 2005)
313.45 4.50-7.69 0.450-0.840 0.9950-0.9983 9 (Cheng and Chen, 2005)CO2-diethyl carbonate 
318.55 4.30-8.20 0.400-0.780 0.9933-0.9977 10 (Cheng and Chen, 2005)
308.45 4.80-6.80 0.480-0.810 0.9940-0.9974 7 (Cheng and Chen, 2005)
313.45 4.60-7.90 0.430-0.820 0.9950-0.9983 8 (Cheng and Chen, 2005)CO2-ethyl butyrate 
318.55 4.55-8.90 0.395-0.860 0.9940-0.9985 8 (Cheng and Chen, 2005)
308.45 3.30-6.40 0.462-0.880 0.9933-0.9974 8 (Cheng and Chen, 2005)
313.45 3.08-7.16 0.400-0.897 0.9930-0.9973 8 (Cheng and Chen, 2005)CO2-isopropyl acetate 
318.55 3.06-7.80 0.360-0.899 0.9929-0.9967 10 (Cheng and Chen, 2005)

The six binaries 308.2-328.2     1.665-9.218    0.2068-0.899 0.9929-0.9998 168  
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The application of ANN modelling of VLE of the 
six CO2-ester binaries was performed using 
MATLAB® (version 6.1) and the strategy proposed 
by Plumb et al. (2005) as follows: 
1. The experimental data should be divided into a 
training set, a test set (when attenuated training is 
adopted) and a validation set. Each data set should be 
well distributed throughout the model space. 
2. Initially, the model should be trained using the 
default training algorithm and network architecture. 
The parameters of the equation of the best fit (the 
slope and the y intercept of the linear regression) or 
the goodness of fit (correlation coefficient, R2) are 
determined for validation plots of the predicted 
versus the experimental properties of the validation 
data set. These parameters are used as a measure of 
the predictive ability of the model. Where the 

agreement vector values approach the ideal, i.e. [α=1 
(slope), β=0 (y intercept), R2=1], little improvement 
in predictive ability is to be expected. The ANN 
model with the best agreement vector is retained and 
the procedure is stopped. 
3. Where the values of the parameters of the 
agreement vector vary greatly from the ideal and 
the model is poorly predictive, modification of the 
number of hidden layer neurons is then 
considered. 
4. If model performance remains unsatisfactory a 
systematic investigation of the effect of varying both 
the training algorithm and network architecture is 
required. 

Based on this global strategy, details of the 
different phases of the procedure followed in this 
work are depicted in Figure 3. 

 

 
Figure 3:  Procedure for vapor liquid equilibrium neural network modelling 

 
All the input and output data were scaled so as to 

have a normal distribution with zero mean and unit 
standard deviation using the following scaling 
equation: 

 
Scaled value = (Actual value-µ)/ σ               (7) 

 
Where µ and σ: are the mean and standard deviations 
of the actual data respectively. The values of µ and σ 
for the input and output data, referred to in Table 1 
and Table 2, are listed in Table 3. MATLAB neural 
network toolbox contains various pre and post data 

processing methods. When using the above scaling 
method, scaling and de-scaling are carried out by 
prestd and poststd MATLAB functions respectively. 
In order to have data sets well distributed throughout 
the model space, the data points referred to in Table 
2 were sorted in increasing order of the equilibrium 
temperature and CO2 mole fraction in the liquid 
phase, then two records have been used for training 
and the third for validation which resulted in a two 
third (112 data points) one third (56 data points) 
partitions for training and validation respectively. 
Whenever attenuated training was used, the initial 
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training set (112 data points) was divided, in the 
same way, into a training set (75 data points) and a 
test set (37 data points). 

The above strategy was implemented in a 
MATLAB program for ANN modelling of the VLE 
of six CO2(1)-ester(2) as described in Figure 2. 
Initially, the program starts with the default 
feedforward backpropagation NN type (newff 
MATLAB function), the Levenberg-Marquardt 
backpropagation training algorithm (trainlm 
MATLAB training function) and one hidden layer. 
Once the topology is specified the starting and 
ending number(s) of neurons in the hidden layer(s) 
have to be specified. The number of neurons in a 
hidden layer is then modified by adding neurons 
one at a time. The procedure begins with the 
logarithmic sigmoid activation function and then 

the hyperbolic tangent sigmoid activation function 
for the hidden layers and the linear activation 
function for the output layer. The results of 
different runs of the program show, as pointed out 
by Plumb et al. (2005), that the Bayesian 
regularization backpropagation, using Levenberg-
Marquardt optimization (BRBP) models, train more 
successfully than models using attenuated training. 
Table 4 shows the structure of the optimized NN 
model. The weight matrices and bias vectors of the 
optimized NN model are listed in Table 5, where wI 
is the input-hidden layer connection weight matrix 
(20 rows x 5 columns), wh is the hidden layer-
output connection weight matrix (2 rows x 20 
columns), bh is the hidden neurons bias column 
vector (20 rows) and bo is the output neurons bias 
column vector (2 rows).  

 
Table 3: Mean and standard deviation constants used for scaling and de-scaling of the data 

 
 T (K) x1 Tc (K) Pc (MPa) ω y1 P (MPa) 

µ 316.69 0.59353 607.23 2.7031 0.55126     0.99776 5.3557 
σ 7.1613 0.17636 49.381 0.6593 0.12754 0.0020015 1.8574 

 
Table 4:  Structure of the optimized ANN model 

 
Input layer Hidden layer Output layer Type of 

network 
Training  

Algorithm No. of  
neurons 

No. of  
neurons 

Activation 
function 

No. of  
neurons 

Activation 
function 

FFBP NN 
(newff 

MATLAB 
function) 

BRBP using Levenberg-
Marquardt optimization. 

(trainbr MATLAB function) 
5 20 

Logarithmic 
sigmoid (logsig 

MATLAB 
function) 

2 

Linear 
(purelin 

MATLAB 
function) 

 
Table 5:  Weights and bias of the optimized ANN model 

 
Input-Hidden layer connections Hidden layer -Output connections 

Weights Bias Weights Bias 
I
j1w  I

j2w  I
j3w  I

j4w  I
j5w  hjb  h

1jw  h
2 jw  

Okb  
0.5018 1.8396 -0.2878 0.7773 -0.5557 -4.0379 -3.0596 -2.2766 
1.2944 -2.4035 -0.4145 -2.7469 2.4579 0.5453 5.0129 -0.2689 
2.7849 0.2721 -0.5708 -0.6904 1.04 0.2338 -3.3433 0.0914 
3.7254 0.765 1.6882 1.4707 -0.1082 1.3218 2.8282 -0.0482 

-0.2008 0.6928 -2.7705 1.6505 4.4493 -0.2483 -0.0787 3.4188 
-1.3349 -1.5401 0.3496 -1.7726 -1.3159 0.1811 0.2522 -0.9687 
-1.6961 2.3225 -1.5449 -0.179 4.7975 -0.697 -6.1496 -0.0411 
-1.4897 2.4103 3.3415 -0.6834 -1.2443 -0.2042 4.1022 -0.0367 
1.8366 6.5943 -0.5975 -0.4448 3.6849 -2.0103 -4.0838 -0.321 

-0.1519 0.6817 2.59 -1.0644 0.8603 3.0209 1.9837 -0.7544 
2.2935 -2.9871 -3.3568 -1.0277 -3.8443 2.5532 -1.982 -0.0169 

-1.9632 -6.9732 -5.1545 -1.32 0.3744 1.9491 -3.828 -0.2611 
1.2156 1.9491 -0.0813 1.484 0.7212 -3.4609 -2.1424 2.2304 

-0.0732 2.6572 -2.2517 0.9033 0.796 -1.9423 5.6451 -0.3315 
0.8129 -0.6547 1.1751 1.8836 -0.0552 -1.4889 -1.3644 -1.217 

-2.7793 3.2036 -4.6268 0.0892 -2.2334 -1.4956 3.2525 -0.2122 
1.8867 -1.3888 1.1105 -0.8511 -0.1643 -3.1546 1.4405 -0.0771 
0.6958 0.4805 -1.2333 -3.0723 -1.67 0.6673 -0.9142 2.0869 
0.6806 -2.6749 -0.6764 0.3451 -0.4292 1.8682 -0.9104 0.0746 
-0.521 3.0896 2.7228 2.1312 -3.1468 -2.9222 -3.7429 0.0124 

1.0427 
-0.9527 
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RESULTS AND DISCUSSION 
 

The predictive ability assessment requires 
evaluation of data records excluded from the training 
set. Accordingly, the validation agreement vector and 
the validation agreement plot of the predicted versus 
the experimental outputs for the validation data set 
were used to evaluate the predictive ability of the NN 
model. The plot and the parameters of the linear 
regression are, straightforwardly, obtained using 
postreg MATLAB function. Figure 4 shows the 

validation agreement plot for the equilibrium pressure 
with an agreement vector approaching the ideal, [α, β, 
R2] = [1.01, -0.0235, 0.999]. Figure 5 shows the same 
plot for CO2 mole fraction in the vapor phase with an 
agreement vector equal to [0.884, 0.115, 0.971].  

Table 6 shows the validation agreement vector 
calculated per binary for the training and validation 
data sets. It shows that the least favorable regression 
parameters are those obtained for the prediction of 
the vapor phase composition of the CO2 (1)-ethyl 
caprylate (2) system. 
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 Figure 4: Validation agreement plot of the most predictive  

model of the equilibrium pressure 
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Figure 5: Validation agreement plot of the most predictive  

model of CO2 mole fraction in the vapor phase 
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Table 6: Validation agreement vector [α (slope), β (y intercept), R2 (correlation coefficient] of the NN 
outputs per binary for the training and validation phases 

 

 
CO2 (1) – 

ethyl  
caprate(2) 

CO2 (1) – 
ethyl  

caproate(2) 

CO2 (1) – 
ethyl  

caprylate (2) 

CO2 (1) – 
iethyl  

carbonate(2) 

CO2 (1) – 
ethyl  

butyrate(2) 

CO2 (1) -
isopropyl 
acetate(2) 

The six binaries

N 30 30 31 28 23 26 168 
P 1.0057 1.0103 1.0008 1.0012 0.9996 1.0002 1.0025 α y1 0.8756 0.7403 1.4475 0.9571 0.8727 0.9904 0.9575 
P -0.0231 -0.0346 0.0066 -0.0048 -0.0170 0.0068 -0.0088 β y1 0.1244 0.2594 -0.4474 0.0429 0.1269 0.0097 0.0425 
P 0.9999 0.9993 0.9998 0.9985 0.9979 0.9993 0.9995 R2 y1 0.8914 0.9584 0.7303 0.9801 0.9506 0.9383 0.9886 

 
 
Table 7 represents the commonly used deviations 

calculated for the two predicted outputs of the NN 
model (P: equilibrium pressure, y1: CO2 mole 
fraction in the vapor phase) for the whole data set: 
Average Absolute Relative Deviation: 
 

N exp cal

exp
i 1 i

100 P PAARDP(%)
N P=

−
= ∑                (8) 

 
exp calN

11
1 exp

i 1 1 i

y y100AARDy (%)
N y=

−
= ∑            (9) 

 
Average Absolute Deviation: 
 

N
exp cal

i 1 i

1AADP(%) P P
N

=

= −∑       (10) 

 
N

exp cal
1 11

i 1 i

1AADy (%) y y
N

=

= −∑           (11) 

 
Root Mean Square Error (square root of the 

average sum of squares): 
 

N
exp cal 2

ii
i 1

1RMSEP (P P )
N =

= −∑       (12) 

 
 

( )
N 2exp cal

1 11 i
i 1

1RMSEy y y
N =

= −∑           (13) 

 

The maximum of the Absolute Relative 
Deviation is equal to 4.95% and 0.19% for P and y1 
respectively. Similarly, the maximum of the 
Absolute Deviation is equal to 0.42 MPa and 0.0019 
for P and y1 respectively. 

Figures 6-11 show the bubble pressure and dew 
pressure curves for the six CO2(1)-ester(2) binaries. 
They include a comparison between experimental 
data and NN predicted results at three temperatures 
and two test temperatures inside the range of 
experimental data in order to show the interpolating 
ability of the ANN model. For the three experimental 
temperatures (shown as circles, squares and 
downward-triangles), the figures show excellent 
agreement between experimental literature data 
(shown as white face markers) and the NN predicted 
results (shown as dark face markers). For the two test 
temperatures (shown as dark face pentagrams and 
diamonds) the predicted bubble and dew curves 
follow exactly the trend of the experimental data of 
adjacent temperatures which suggests a good 
predictive ability of the NN model for temperatures 
within the range of temperature for which the model 
has been designed.  

The predictions of CO2 mole fraction in the vapor 
phase for the three temperatures for which 
experimental data are available and the two test 
temperatures are shown (Fig. 12) in term of the plots 
of the K-value of CO2 versus the CO2 mole fraction 
in the liquid phase for the sample case (CO2 (1)- 
isopropyl acetate (2) system) with the highest root 
mean square error (0.0005). Here also the 
comparison between the experimental data and the 
NN model predicted results shows a very good 
agreement and a good interpolating ability for 
temperatures within the range for which the model 
has been designed. 
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Table 7: Statistical analyses of the error of the predicted results for the training and validation phases 
 

 CO2 (1) – 
ethyl  

caprate(2) 

CO2 (1) – 
ethyl  

caproate(2) 

CO2 (1) – 
ethyl  

caprylate (2) 

CO2 (1) - 
diethyl 

carbonate(2) 

CO2 (1) – 
ethyl  

butyrate(2) 

CO2 (1) -
isopropyl 
acetate(2) 

The six binaries

N 30 30 31 28 23 26 168 
AARDP(%) 0.4518 0.9653 0.7736 0.7412 0.6439 0.7551 0.7243 
AARDy1(%) 0.0034 0.0101 0.0066 0.0144 0.0263 0.0203 0.0128 
MaxARDP 0.0129 0.0456 0.0388 0.0255 0.0495 0.0185 0.0495 
MaxARDy1 0.0003 0.0019 0.0008 0.0010 0.0012 0.0018 0.0019 
AADP(%) (Mpa) 2.2157 4.4016 3.1031 4.6785 4.0751 3.8961 3.6949 
AADy1 (%) 0.0034 0.0100 0.0066 0.0144 0.0262 0.0202 0.0127 
MaxADP (Mpa) 0.1020 0.4208 0.0772 0.1384 0.3363 0.1318 0.4208 
MaxADy1 0.0003 0.0019 0.0008 0.0010 0.0012 0.0018 0.0019 
RMSEP 0.0320 0.0854 0.0394 0.0587 0.0773 0.0496 0.0595 
RMSEy1 0.0001 0.0003 0.0002 0.0003 0.0004 0.0005 0.0003 

 
 

 
(a) 

 
(b) 

 
Figure 6: P-x-y curves for the CO2(1)-ethyl caprate(2) system at different temperatures : (a): 

P-x-y curves; (b) zoom of the dew curves (Exp: (Hwu et al., 2004), Cal: this work);  

 
(a) 

 
(b) 

 
Figure 7: P-x-y curves for the CO2 (1)-ethyl caproate (2) system at different temperatures: (a):  

P-x-y curves; (b): zoom of the dew curves (Exp: (Hwu et al., 2004), Cal: this work) 
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(a) 

 
(b) 

Figure 8: P-x-y curves for the CO2 (1)-ethyl caprylate (2) system at different temperatures: (a):  P-x-y curves; 
(b): zoom of the dew curves (Exp: (Hwu et al., 2004), Cal: this work) 

          
(a) 

 
(b) 

Figure 9: P-x-y curves for the CO2 (1)-diethyl carbonate (2) system at different temperatures: (a):  P-x-y curves; 
(b): zoom of the dew curves (Exp: (Cheng and Chen, 2005), Cal: this work) 

 
(a) 

 
(b) 

Figure 10: P-x-y curves for the CO2 (1)- ethyl butyrate (2) system at different temperatures: (a):  P-x-y curves; 
(b): zoom of the dew curves (Exp: (Cheng and Chen, 2005), Cal: this work) 
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(a) 

 
(b) 

Figure 11: P-x-y curves for the CO2 (1)- isopropyl acetate (2) system at different temperatures: (a):  P-x-y 
curves; (b): zoom of the dew curves (Exp: (Cheng and Chen, 2005), Cal: this work) 
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Figure 12: K-value of CO2 versus CO2 mole fraction in the liquid phase for the CO2(1)- isopropyl acetate(2) 

system at different temperatures (Exp: (Cheng and Chen, 2005), Cal: this work) 
 
In order to establish the developed NN model 

as plausible alternative to some cubic EOS and GE 
models for VLE data prediction of the CO2-ester 
systems studied herein, the results obtained by the 
ANN model were compared to the experimental 
data reported by Hwu et al. (2004) for CO2-ethyl 
caprate, CO2-ethyl caproate and CO2-ethyl 
caprylate systems, and by Cheng and Chen (2005) 
for CO2-diethyl carbonate, CO2-ethyl butyrate and 
CO2-isopropyl acetate systems. They relate the 
predicted results for each binary for the entire 
temperature range using Peng-Robinson (PR) and 

Soave-Redlick-Kwong (SRK) EOS, with the one 
and two parameters Van der Waals (VDW1 and 
VDW2) mixing rules (MR), and the 
Panagiotopoulos-Reid (PPR) mixing rules and also 
those predicted using NRTL and UNIQUAC 
combined with PR and SRK EOS with Huron-
Vidal (HV) mixing rules. The results of the 
comparison are shown in Table 8. It shows that the 
% deviations of the NN model predicted bubble 
pressure and CO2 mole fraction in the vapor phase 
are lower than those obtained by EOS and GE 

models for all the CO2-ester binaries. 
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Table 8: Comparison between the literature results ((Hwu et al., 2004); (Cheng and Chen, 2005)) 
predicted by some EOS and GE models and the present work for the entire data set 

 
 
 

CO2 (1)+ethyl 
caprate(2) 

CO2 (1)+ethyl 
caproate(2) 

CO2 (1)+ethyl 
caprylate (2) 

CO2 (1)+diethyl 
carbonate(2) 

CO2 (1)+ethyl 
butyrate(2) 

CO2 (1)+isopropyl 
acetate(2) 

 AARDP 
(%) 

AARDy1
(%) 

AARDP 
(%) 

AARDy1
(%) 

AARDP
(%) 

AARDy1
(%) 

AARDP
(%) 

AADy1 
(%) 

AARDP 
(%) 

AADy1 
(%) 

AARDP
(%) 

AADy1 
(%) 

PR EOS with 
VDW1 MR 1.85 0.02 1.79 0.03 1.99 0.02 0.91 0.17 0.65 0.75 1.15 0.41 

PR EOS with 
VDW2 MR 0.80 0.02 1.51 0.03 0.91 0.02 0.79 0.17 0.65 0.75 1.07 0.43 

PR EOS with 
PPR MR 0.80 0.02 1.53 0.03 0.93 0.02 0.79 0.18 0.65 0.75 1.07 0.34 

SRK EOS with 
VDW1 MR 1.82 0.02 1.77 0.04 1.93 0.02 0.84 0.17 0.68 0.73 1.25 0.34 

SRK EOS with 
VDW2 MR 0.77 0.02 1.53 0.04 0.84 0.02 0.78 0.17 0.66 0.73 1.13 0.36 

SRK EOS with 
PPR MR 0.78 0.02 1.55 0.04 0.87 0.02 0.78 0.17 0.66 0.73 1.14 0.37 

NRTL PR EOS 
with HV MR 4.50 0.02 2.23 0.03 3.56 0.02 / / / / / / 

NRTL SRK EOS 
with HV MR 3.92 0.02 2.08 0.04 2.97 0.02 / / / / / / 

UNIQUAC PR 
EOS with HV 
MR 

1.05 0.02 1.75 0.03 1.77 0.02 0.837 0.175 0.751 0.749 1.010 0.423 

UNIQUAC SRK 
EOS with HV 
MR 

0.98 0.02 1.76 0.04 1.10 0.02 0.820 0.171 0.702 0.728 1.068 0.358 

This work 0.45 0.0034 0.97 0.01 0.77 0.007 0.74 0.014 0.64 0.026 0.76 0.02 

 
 

CONCLUSIONS 
 

A feed forward artificial neural network model 
has been used to predict the bubble pressure and the 
vapor phase composition of six CO2-ester binaries 
(CO2-ethyl caprate, CO2-ethyl caproate, CO2-ethyl 
caprylate, CO2-diethyl carbonate, CO2-ethyl butyrate 
and CO2-isopropyl acetate) given the temperature, 
the mole fraction of CO2 in the liquid phase and the 
critical temperature, the critical pressure and the 
acentric factor of the ester, in contrast to previous 
works where ANN have been used to model only 
one binary. The optimized NN consisted of five 
neurons in the input layer, 20 neurons in the hidden 
layer and two neurons in the output layer. This was 
obtained by applying a strategy based on assessing 
the parameters of the best fit of the validation 
agreement plots (slope and y intercept of the 
equation of the best fit and the correlation coefficient 
R2) for the validation data set as a measure of the 
predictive ability of the model. The statistical 
analysis shows that the model was able to yield quite 
satisfactorily estimates. Furthermore, the deviations 
in the prediction of both the bubble pressure and the 
CO2 mole fraction in the vapor phase are lower than 

those obtained by PR and SRK EOS with Van der 
Waals type mixing rules and those obtained by 
NRTL and UNIQUAC models. Therefore, the ANN 
model can be reliably used to estimate the equilibrium 
pressure and the vapor phase compositions of the CO2-
ester binaries within the ranges of temperature 
considered in this work. This study also shows that 
ANN models could be developed for high pressure 
phase equilibrium for a family of CO2 binaries, 
provided reliable experimental data are available, to be 
used in supercritical fluid processes. Hence, at least for 
a non expert in selecting appropriate EOS for the 
application in hand, alternatives to EOS and activity 
coefficient models are offered to be used in a more 
reliably and less cumbersome way, in process 
simulators and processes involving real time process 
control. 
 
 

NOMENCLATURE 
 

AAD Average Absolute 
Deviation 

(-)

AARD Average Absolute 
Relative Deviation 

(-)
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ANN  Artificial Neural 
Networks 

(-)

b bias (-)
BRBP Bayesian Regularization 

Back  Propagation 
(-)

EOS Equation Of State (-)
f activation function (-)
FFBP Feed Forward Back  

Propagation 
(-)

HV Huron Vidal (-)
K K-value (-)
MaxAAD maximum of the Average 

Absolute Deviation 
(-)

MaxAARD maximum of the Average 
Absolute Relative 
Deviation 

(-)

MR Mixing Rules (-)
N number of data points (-)
NN Neural Networks (-)
P equilibrium pressure MPa
Pc critical pressure MPa
PPR Panagiotopoulos Reid (-)
PR Peng Robinson (-)
Psat vapor pressure (-)
RMSE Root Mean Square Error (-)
R2 correlation coefficient (-)
SRK Soave Redlich Kwong (-)
T equilibrium temperature K
Tc critical temperature K
u neural network input 

vector 
(-)

v neural network output 
vector 

(-)

VDW Van der Waals (-)
w weights (-)
x liquid phase mole fraction (-)
y vapor phase mole fraction (-)
z hidden layer output vector (-)
 
Greek Letters   
 
µ mean (-)
α slope of the linear regression 

equation 
(-)

β y intercept of the linear 
regression equation 

(-)

σ standard deviation (-)
ω acentric factor (-)
 
Subscripts   
 
1 component 1 (-)
2 component 2 (-)

h hidden layer (-)
i component i (-)
ij connection between jth input 

neuron and ith output neuron. 
(-)

o output layer (-)
 
Superscripts   
 
cal calculated  
exp experimental  
h hidden layer  
I input layer  
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