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Abstract - In the present study, transalkylation of 1,4-diispropylbenzene (DIPB) with benzene in the presence 
of modified beta zeolite was performed to produce cumene in a fixed bed reactor. Beta zeolite was exchanged 
with cerium in order to modify its catalytic activity. Activity of the modified catalyst was evaluated in the 
range of temperature 493K–593K, space time 4.2 kg h/kmol–9.03 kg h/k mol and benzene/1,4-DIPB molar 
ratio 1–15 to maximize the reactant conversion and selectivity of cumene. The activity and selectivity of the 
modified catalyst was found to increase with increase in cerium loading. Maximum selectivity of cumene 
(83.82%) was achieved at 573 K, benzene/1,4-DIPB 5:1 at one atmosphere pressure. A suitable kinetic model 
for this reaction was proposed from the product distribution pattern following the Langmuir–Hinshelwood 
approach. Applying non-linear regression, the model parameters were estimated. The activation energy for the 
transalkylation reaction was found to be 116.53 kJ/mol. 
Keywords: Cerium; Beta zeolite; Kinetic study; Transalkylation; DIPB; Benzene.  

 
 
 

INTRODUCTION 
 

Cumene is a colorless liquid, also known as 
cumol or isopropyl benzene having the boiling-range 
motor fuel of high antiknock value. It is of industrial 
demand for the production of high molecular weight 
hydrocarbons such as cymene and polyalkylated 
benzene. The main end uses for cumene are for the 
production of phenolic resins, bisphenol A, and ca-
prolactam. However, 5-10 wt% diisopropylbenzene 
(DIPB) isomers are produced as low value byproduct 
during the isopropylation of benzene to cumene (Leu 
et al., 1990; Sridevi et al., 2001; Reddy et al., 1993). 
The by-products, DIPB isomers, can be recycled for 
cumene production, making this process more eco-
nomical. With the liquid catalysts, there are inherent 
problems of product separation, recycling and corro-
siveness (Maity and Pradhan, 2006; Barman et al., 

2005; Ercan et al., 1998). In that respect, zeolites can 
exhibit acidities close to those of traditional mineral 
acid solutions and hence proved to be better catalyst 
(Best and Wojciechowski, 1978; Slaugh, 1983; Bakas 
and Barger, 1989). Moreover, the number and strength 
of acid sites in zeolite can be changed to a great ex-
tent by exchanging its H+/Na+ ions with rare earth 
cations in the zeolite framework. A comparative study 
was carried out on transalkylation of DIPB with ben-
zene over Y, beta and mordenite with different Si/Al 
molar ratios in supercritical CO2 and liquid phase 
(Sotelo et al., 2006). The influence of Si/Al ratio on 
the activity of catalyst was explained in terms of cu-
mene selectivity and yield considering the competi-
tive isomerization and by-product formation. The use 
of supercritical CO2 did not show superior catalytic 
transalkylation activity for the Y zeolite. In Mobil 
Oil Corp., USA, production of cumene was carried 
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out by introducing the feed to a transalkylating zone 
over beta zeolite/alumina and then feeding to an 
alkylating zone where MCM-22/alumina catalyst was 
used (Collins et al., 1999). Transalkylation of DIPB 
has also been carried out over large pore zeolites, 
which proved to be very active catalysts (Pradhan and 
Rao, 1993). In another process, DIPBs were recycled 
for transalkylation in the reactor containing a single 
catalyst bed of beta catalyst. The combined alkyla-
tion and transalkylation was performed for alkyl 
aromatic production to evaluate the performance of 
different catalysts like MCM-22 and beta zeolite 
based on their Si/Al ratio, selectivity, and pore size 
for liquid phase production of cumene (Perego and 
Ingallina, 2004). The catalysts such as zeolite X, 
MCM-22, MCM-49, PSH-3, SSZ-25, zeolite Y, beta 
zeolite (Yeh et al., 2008; Barger et al., 1989; Huang 
et al., 1997) were used in transalkylation reaction. 
These studies show that choice of catalyst, its Si/Al 
ratio and the acidity of the catalyst highly affect the 
process. 

 Kinetics of transalkylation of diisopropylbenzene 
were studied over Ca modified YH zeolite catalyst 
which proved to be a good active catalyst (Grigore et 
al., 2001). Cumene synthesis over beta zeolite has 
been reported in the literature (Bellussi et al., 1995; 
Perego et al., 1996; Smirnov et al., 1997; Halgeri 
and Das, 1999). Therefore, further investigation was 
necessary to carry out transalkylation of DIPB with 
benzene over the modified beta zeolite to obtain 
higher cumene selectivity and reactant conversion. 
Replacement of sodium ions in zeolites with polyva-
lent cations like rare earth metals (La, Ce, etc.) has 
been reported to produce materials of superior cata-
lytic activity (Venuto et al., 1966; Rabo et al., 1968; 
Hunter and Scherzer, 1971). However, very scarce 
literature is available on the use of rare earth metal 
modified beta zeolite for cumene synthesis. It was, 
therefore, thought desirable to investigate the ki-
netics of this commercially important reaction over 
zeolite H-beta modified by exchanging H+ ions with 
cerium ions. A further objective of this study was to 
develop a suitable kinetic model for the synthesis 
reactions. 
 
 

MATERIALS AND METHODS 
 
Materials  
 

Beta zeolite, 1.5 mm extrudates, used in the pre-
sent study, was obtained from Sud chemie, Vadodra, 
India. Ceric ammonium nitrate (99% pure) was pro-
cured from CDH chemicals, India. Benzene and 1,4-

DIPB of analytical reagent grade ((>99% pure) were 
obtained from Sigma Aldrich Pvt. Ltd., India. Nitro-
gen gas (grade –I, 99.999% pure) was obtained from 
Sigma gases and services (India). 
 
Catalyst Preparation  
 

The commercially available H-beta zeolite con-
taining H+ ions was modified with Ce4+ ions. At first, 
the zeolite extrudates were calcined for 3 h at 623 K. 
Calcined zeolite was then refluxed with the required 
percentage of ceric ammonium nitrate solution at 
363 K for 24 h, thereby modifying H-beta zeolite 
into the Ce-beta form. The catalyst particles were 
then filtered and washed several times with deion-
ized water and then dried at 393 K for 14 h. Finally, 
they were calcined for 4 h at 723 K to remove the ex-
cess ions. The cerium-exchanged zeolite was charac-
terized by TPD, XRD and FTIR. Beta zeolite treated 
with 4%, 6%, 8%, and 10% cerium ammonium ni-
trate solution (CeB4, CeB6, CeB8, and CeB10) was 
used for the present study. 
 
Determination of Cerium in the Exchanged Cata-
lysts  
 

The amount of cerium ions exchanged with the 
H+ ions was calculated analytically (Krishnan et al., 
2002). Freshly calcined cerium modified beta zeolite 
was taken in a flask and digested for 1 h in concen-
trated HCl. The digested catalyst was diluted with 
distilled water and filtered. The filtrate was trans-
ferred to a beaker and its volume was made up to 
about 250 ml by adding distilled water. 50 ml of 
saturated oxalic acid solution was mixed with this 
solution, which produced a white precipitate of ce-
rium oxalate. The precipitate was then filtered using 
a Whatman no.40 ashless filter paper and washed 
with distilled water. The filter paper was ignited in a 
previously weighed silica crucible at 1173±10 K to a 
constant weight. On heating, cerium oxalate was 
converted to cerium oxide. From the weight of ce-
rium oxide the percentage of cerium was then calcu-
lated. CeB4, CeB6, CeB8 and CeB10 were found to 
have been loaded with 2.87%, 4.46 wt%, 6.64 wt% 
and 8.34 wt% of cerium respectively. 
 
Experimental Setup for Transalkylation Reactions 
 

Vapor phase transalkylation reaction was carried 
out in a fixed-bed, continuous down-flow, stainless 
steel (SS 316) reactor. The reaction conditions were 
maintained at atmospheric pressure. A preheater was 
fitted with the reactor in the upstream and a condenser 
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in the downstream. A thermowell extending from the 
top of the reactor to the centre of the bed was used to 
measure the temperature of the reactor. Typically, 
0.002 kg of the catalyst supported on a wire mesh 
was loaded into the reactor. Before conducting the 
experiments, catalyst activation was done at a tem-
perature 100 K higher than the reaction temperature 
(maintained according to reaction conditions), for 3 h 
under the atmosphere of nitrogen. A dosing pump 
was used to introduce the reactant feed mixture into 
the reactor. Nitrogen gas was flown through the reac-
tor at the rate of 0.565 L/h to activate the catalyst 
before experimental runs. However during all experi-
mental runs, the nitrogen to feed flow rate ratio was 
kept constant at 0.2. The reactants were vaporized in 
the preheater, which is maintained at a temperature 
30 K lower than the reaction temperature. The vapor-
ised reactant feed mixture passes through the catalyst 
bed in the reactor at proper reaction conditions. The 

product vapors, along with the unreacted reactants, 
were condensed in the condenser (277 K-279 K). 
The samples were collected and analyzed in a gas 
chromatograph (Bruker, Model: 436 GC Scion) using 
a fused silica capillary column having 10 m × 0.53 mm 
× 1.5 µm dimensions. The sample was introduced 
through a micro syringe into the injector port of the 
GC. The temperature of the injector was set at 493 K 
during the analyses. The column temperature was 
initially set at 323K, and then increased to 523 K at a 
rate of 10 K/min. The flow rate of carrier gas (nitro-
gen) was maintained at 1.5 L/h. A Flame Ionisation 
Detector was used at 553 K to detect the products. 
Peaks were identified by retention time matching 
with known standards. Various products like aliphatics 
(propene), benzene, toluene, xylene (C8), cumene, 
cymene (C10), isomers of DIPB were found. The 
selectivity of cumene, 1,3 DIPB and conversion of 
1,4 DIPB were calculated as:  

 
 

(1,4 DIPB in feed 1,4 DIPB in exit)1,4 DIPB conversion  100
(1,4 DIPB in feed)

−= ×  

 
(Cumene in product mixture)Cumene selectivity  100

(aromatics in product excluding 1,4 DIPB and benzene)
= ×  

 
( )

( )
1,3 DIPB in product mixture

1,3 DIPB selectivity  100
aromatics in product excluding 1,4 DIPB and benzene

= ×  

 
 

The mechanism of transalkylation of 1,4 DIPB with benzene is shown in Figure 1. 
 

 
Figure 1: Mechanism of transalkylation of 1,4-DIPB with benzene. 
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tion of 1,4 DIPB with benzene is a complex reaction 
which is followed by isomerization and dispropor-
tionation reactions. 
 
i) 1,4-DIPB transalkylation: 
 

+

CH3H3C

CH3H3C CH3H3C

2
k1

1,4 DIPB Benzene Cumene      (1) 
 
ii) Isomerisation: 
 

CH3H3C

CH3H3C

1,4 DIPB

k2

CH3H3C

CH3

CH3

1,3 DIPB        (2) 
 
iii) Dispropotionation: 
 

CH3H3C

CH3H3C

1,4 DIPB

+ Aliphaticsk3

Benzene       (3) 
 
iv) 
 

Benzene

+ Alipathics k4 C8 + C10

        (4) 
 

For the above reactions, the possible rate equa-
tions based on different mechanisms are presented 
below. k4 is not considered while developing the 
model because the model is in terms of conversion of 
1,4-DIPB and this reaction does not involves DIPB. 
k3 is also not considered since only those reactions 
whose product yield is significant are taken into con-
siderations.  

Dual-site mechanism: 

2 2 
1       

⎡ ⎤⎛ ⎞
− = +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
DIPB v B B DIPB DIPB DIPB DIPB

v

kr C k k p k p k p
C

(5) 

 
where,  
 

1
(1      ) 

=
+ +v

B B DIPB DIPB
C

k p k p
         (6) 

 
Single-site mechanism: 
 

1 2 [      ]− = +DIPB v B DIPB DIPB DIPB DIPBr C k p k p k k p   (7) 
 
where,  
 

1
(1   ) 

=
+v

B B
C

k p
             (8) 

 
Stoichiometric model:  
 

[ ]1 2      − = +DIPB B DIPB DIPBr k p p k p        (9) 
 

The partial pressure of 1,4 DIPB and benzene are 
related to the fractional conversions and the total 
pressure (P) by these following equations: 
 

( ) 1 /  7.2= −DIPB DIPBp X P         (10) 
 

( )5 /  7.2= −B Bp X P           (11) 
 

( ) / 7.2=c cp X             (12) 
 

The optimum values of the parameters were ob-
tained by minimizing the objective function given by 
the equation:  
 

( ) 2
(  –  )⎡ ⎤= ⎣ ⎦∑ pred expf X i X i        (13) 

 
Model Selection 
 

By using the values of the constants for Equation 
(5) for the dual site mechanism, as shown in Table 5, 
the standard error of estimate for the rate of disap-
pearance of 1,4-DIPB was ±3.14 x 10-4. For Equation 
(6), with the values of the constants from Table 6, the 
standard error was ± 2.41 x 10-3. For Equation (7), 
with the values of the constants from Table 7, the 
standard error was ± 9.92 x 10-3. By comparing the 
standard errors, model Equation (5) was considered 
to be the best for representing the reaction system 
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process more economic. The kinetic model derived 
for the reactions can provide the necessary infor-
mation to scale up the reactor for large scale produc-
tion in industry. 
 
 

NOMENCLATURE 
 
B  benzene 
C cumene 
DIPB  diisopropyl benzene 
k1, k2, 
k3, k 4 

kinetic constant (kmol/kg atm2 h) 

KB  adsorption constant for benzene (atm-1) 
KDIPB  adsorption constant for DIPB (atm-1) 
KC adsorption constant for cumene (atm-1) 
P total pressure (atm) 
PDIPB  partial pressure of DIPB (atm) 
pB  partial pressure of benzene (atm) 
pC  partial pressure of cumene (atm) 
τ  space-time (kg h/kmol) 
XDIPB  fractional conversion of DIPB 
XB  moles of benzene reacted (kmol) 
XC moles of cumene formed (kmol) 
Xexpt experimentally measured fractional 

conversion of DIPB 
Xpred  model predicted fractional conversion of 

DIPB 
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