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Abstract - This work deals with a new numerical methodology to solve the Navier-Stokes equations based on 
a finite volume method applied to structured meshes with co-located grids. High-order schemes used to 
approximate advective, diffusive and non-linear terms, connected with multiblock partition techniques, are the 
main contributions of this paper. Combination of these two techniques resulted in a computer code that 
involves high accuracy due the high-order schemes and great flexibility to generate locally refined meshes 
based on the multiblock approach. This computer code has been able to obtain results with higher or equal 
accuracy in comparison with results obtained using classical procedures, with considerably less computational 
effort. 
Keywords: Finite volume method; Navier-Stokes; High-order interpolation schemes; Multiblock partition 
techniques. 

 
 
 

INTRODUCTION 
 

Using computational fluid dynamics (CFD) in a 
safe and reliable way must attend to several 
prerequisites, such as the development of a 
mathematical model able to describe the process 
under consideration and the application of 
appropriate numerical tools to solve the proposed 
model. Mechanistic modeling includes mass, energy, 
and momentum conservation laws, coupled with 
state and constitutive equations. A great number of 
methodologies have been applied to solve these 
equations, the most popular are: Finite Difference 
Methods (FDM), Finite Element Methods (FEM) 
and Finite Volume Methods (FVM) (Hirsch, 2007). 

The FVM is currently the most common method 
used to solve fluid flow problems (Cebeci et al., 
2005). This popularity is directly related to its 

conservative nature, since in flow simulations it is 
extremely important to satisfy the conservation laws 
at all levels, avoiding generation/consumption of 
mass, energy, or momentum due to artificial terms 
inside the control volume, independent of the mesh 
size. The same is not guaranteed in finite difference 
and finite element methods. 

The use of interpolation schemes to approximate 
the property values located at the boundaries of the 
control volumes are necessary when FVM is applied, 
using as interpolation nodes the correspondent 
properties located at the center of the adjacent 
control volumes. Low-order schemes are commonly 
considered, due to their numerical stability and 
readiness of implementation (Patankar, 1980; 
Versteeg and Malalasekera, 2007). However, these 
schemes demand the use of a high degree of 
refinement of the meshes due their lack of accuracy. 
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Low order interpolation schemes can lead to 
inaccurate results provoked by numerical diffusion 
effects (Hirsch, 2007; Patankar, 1980; Versteeg and 
Malalasekera, 2007). 

Alternatively, high-order interpolation schemes 
produce more accurate solutions with low 
computational costs (Muniz et al., 2008; Piller and 
Stalio, 2004; Leonard, 1995). However, to maintain 
the global order of the approximation, it is important 
that all approximation formulas for the advective, 
diffusive and nonlinear terms have the same order of 
accuracy (Leonard, 1995). 

When applying high-order schemes to nonuniform 
meshes, it is necessary to keep in mind several 
precautions in the development of interpolation 
formulas, since interpolation schemes were originally 
developed for uniform meshes (Lacor et al., 2004). 

Multiblock treatment allows mesh refinement in 
selected regions of the problem domain that should 
not be necessarily extended to other regions. This is 
a desirable characteristic of mesh refinement 
techniques, making the multiblock treatment a more 
efficient procedure in comparison with single block 
techniques, especially when applied to complex 
geometries problems (Farrashkhalvat and Miles, 
2003; Serón and Sabadell, 2000). Interconnection 
between adjacent blocks with different degrees of 
mesh refinement, avoiding loss of accuracy and/or 
creation of discontinuities, is the main challenge in 
computer implementation of multiblock procedures 
(Serón and Sabadell, 2000; Berger, 1987; Liu and 
Shyy, 1996; Chen et al., 1997). 

The development of a high-order finite volume 
method and a multiblock partition technique of the 
problem domain to solve the Navier-Stokes 
equations are the main objectives of this paper, as 
described in Sections 3 and 4, respectively. This new 
procedure applies the basic principles of the finite 
volume method (FVM) using structured meshes and 
co-located grids of problem variables, described in 
the next section. The combination of these two 
techniques resulted in the development of a 
computer code that associates the better accuracy of 
higher-order schemes with the greater flexibility of 
the multiblock treatment. This code was capable of 
solving several benchmarks problems like the ones 
presented in Section 5, with low computational costs 
in comparison with traditional procedures. 

MATHEMATICAL MODEL AND APPLICATION 
OF THE FINITE VOLUME METHOD 

 
In order to illustrate the proposed numerical 

procedure to solve the Navier-Stokes equations, the 
stationary and isothermal flow of an incompressible 
Newtonian fluid was considered and modeled by 
mass and momentum conservation equations, 
presented below in a dimensionless form: 
 

( )* 0∇⋅ =v                (1) 

 

( )* * * 2 *Re p⎡ ⎤∇ ⋅ = −∇ +∇⎣ ⎦v v v          (2) 

 
where *

0/ v=v v  represents the dimensionless 

velocity vector, * 2
0p p / v= ρ  the dimensionless 

pressure, 0 0Re v L /= ρ μ  the Reynolds number, μ  
the Newtonian viscosity, ρ the density, 0L  and 0v  
the characteristic length and velocity of the problem, 
respectively. 

The application of FVM consists basically of 
subdividing the problem domain into elementary 
control volumes, as illustrated in Figure 1, and 
integrating each of those partial differential 
equations in these volumes, resulting in a nonlinear 
algebraic system, composed, in the two-dimensional 
case, by the equations presented below:  

 
 

Figure 1: Representation of the control volume. 
 
 

( ) ( ) ( ) ( )y y x x
x x y y1 1 1 1i 1, j i, j i , j 1 i , j

2 2 2 2

v v y v v x 0
+ + + + + +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− Δ + − Δ =
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦                                                                           

(3)
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( ) ( ) ( ) ( )

( ) ( )

y y x x
x x x x y x y x1 1 1 1i 1, j i, j i , j 1 i , j

2 2 2 2

y y
y y x x

1 1i 1, j i, j 1 12 2 i 1, j i, j
2 2

Re v v v v y v v v v x

v vp p y y
x x

+ + + + + +

+ + +
+ + +

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− Δ + − Δ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎢ ⎥∂ ∂⎢ ⎥ ⎜ ⎟ ⎜ ⎟− − Δ + − Δ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦

                                                     
(4) 

 

( ) ( ) ( ) ( )

( ) ( )

y y x x
x y x y y y y y1 1 1 1i 1, j i, j i , j 1 i , j

2 2 2 2

y y
y yx x

1 1i , j 1 i , j 1 12 2 i 1, j i, j
2 2

Re v v v v y v v v v x

v v
p p x y

x x

+ + + + + +

+ + +
+ + +

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− Δ + − Δ =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎢ ⎥∂ ∂⎜ ⎟ ⎜ ⎟⎢ ⎥− − Δ + − Δ⎢ ⎥

∂ ∂⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦

                                                     (5) 

 
 
In this contribution, a structured uniform volume 

was considered, i.e., the points located at the vertex 
of the control volume are equally spaced from the 
control volume center with distances ∆x and ∆y. 
Fractional index values represent points located at 
the control volume center and integer index values 
represent points located at the faces. The terms 

( )x
1i , j
2

+
ϕ , ( )y

1i, j
2

+
ϕ  e ( )xy

1 1i , j
2 2

+ +
ϕ  represent, 

respectively, the average value of a property in the 
control volume face parallel to the x direction, the 
average value of a property in the control volume 
face parallel to the y direction, and the average value 
of a property in the control volume center, according 
to the following expressions: 
 

( ) ( )
i 1

i

x
x

1i , j
x2

x x ,y d
+

+
ϕ Δ = ϕ + δ δ∫         (6) 

 

( ) ( )
j 1

j

y
y

1i, j
y2

y x,y d
+

+
ϕ Δ = ϕ + ξ ξ∫         (7) 

 

( ) ( )
j 1i 1

i j

yx
xy

1 1i , j
x y2 2

x y x ,y d d
++

+ +
ϕ Δ Δ = ϕ + δ + ξ δ ξ∫ ∫     (8) 

 
Usually, the values of the variables in each 

control volume face are assumed to be their 
corresponding values in the center of the control 

volume face. Because this assumption presents an 
approximation order of two, its use limits the global 
approximation order to the same order. 

In the methodology proposed in this paper, the 
average values of the variables are computed directly 
as described by Equations (3), (4) and (5), and, in a 
post-processing stage, nodal values of the variables are 
recovered through deconvolution techniques. Direct 
use of the average values avoids numerical 
approximation schemes for the integrals involved, 
reducing, as a consequence, the number of 
discretization points and making the proposed 
procedure faster and more accurate than conventional 
procedures (Muniz et al., 2008; Pereira et al., 2001). 
Values of the variables in each of control volume face 
are obtained by polynomial interpolation using values 
of the corresponding variable at the center of 
neighboring control volumes. 

The discretized system of equations represented 
by Equations (3), (4) and (5) was solved directly by 
using the code DASSLC Version 3.2 (SECCHI, 
2007). This code applies Newton’s method to the 
solution of nonlinear systems of equations, using 
sparse LU factorization in the solution of linear 
systems. As all equations are solved simultaneously, 
the pressure-velocity coupling is ensured. 
 
 
HIGH-ORDER INTERPOLATION SCHEMES 

 
Using high-order schemes allows one to obtain a 

solution with equal or better accuracy than low-order 
interpolation schemes considering less-refined 
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meshes, hence, as a consequence reducing simulation 
processing time (Muniz et al., 2008; Piller and Stalio, 
2004; Leonard, 1995; Kobayashi, 1999; Pereira et al., 
2001). Fourth-order Lagrange interpolation schemes 
have been considered in this paper. 

The numerical procedure was developed using the 
same approximation order for advective, diffusive and 
nonlinear terms (Leonard, 1995), considering also the 
same approximation order inside and at the 
boundaries of the domain (Kobayashi, 1999). 

Average variable values at the control volume 
walls obtained by fourth-order Lagrange 
interpolation can be defined by: 
 

( ) ( ) ( )

( ) ( )

y xy xy
1 3 1 1 1i, j i , j i , j
2 2 2 2 2

xy xy
1 1 3 1i , j i , j
2 2 2 2

a b

c d

+ − + − +

+ + + +

ϕ = ϕ + ϕ +

ϕ + ϕ

     (9) 

 

To complete this approximation procedure, the 
coefficients are determined as follows: Step 1: 
Expand the variable in a Taylor series around a point 
(x0, y0). 

Step 2: Calculate all the average values presented 
in Equation (9) through Taylor expansions 
determined in Step 1. 

Step 3: Substitute all average values obtained in 
step 2 in Equation (9). 

Step 4: Identifying terms of equal derivative order 
in the equation obtained in Step 3, a linear system of 
algebraic equations can be built and solved, where 
the unknowns are the coefficients of the 
approximation. 

Step 5: In addition, it is possible to estimate the 
approximation error, applying the coefficients 
obtained in Step 4 in Equation (9), and calculating 
the difference between this approximation and the 
value obtained by Taylor series expansion. 

Applying the procedure described to determine 
the coefficients a, b, c and d in Equation (9), the 
following expression was obtained. 
 

( ) ( ) ( )

( ) ( )

y xy xy
1 3 1 1 1i, j i , j i , j
2 2 2 2 2

xy xy
1 1 3 1i , j i , j
2 2 2 2

1 7
12 12

7 1
12 12

+ − + − +

+ + + +

ϕ = − ϕ + ϕ +

ϕ − ϕ

(10) 

 

When the above expression is applied to regions 
near the boundaries, such as i=0, 1, N−1and N, the 
approximation scheme requires information related 
to points outside the problem domain. To avoid this 

undesirable behavior, new interpolation schemes 
have been proposed, where only internal 
interpolation points are considered.  The coefficients 
of these schemes were obtained using the same 
procedure described above and the results are 
presented in the Appendix section.  

The same fourth-order Lagrange interpolation 
procedure has been applied to calculate diffusive 
terms, resulting in the following equation: 
 

( ) ( )

( ) ( )

xy xy
3 1 1 1i , j i , jy 2 2 2 2

1 xy xyi, j
1 1 3 12 i , j i , j
2 2 2 2

1 5
12 4

1
x x 5 1

4 12

− + − +

+
+ + + +

⎛ ⎞ϕ − ϕ +⎜ ⎟
⎛ ⎞ ⎜ ⎟∂ϕ⎜ ⎟ = ⎜ ⎟⎜ ⎟∂ Δ ⎜ ⎟⎝ ⎠ ϕ − ϕ⎜ ⎟⎜ ⎟

⎝ ⎠

 

(11) 

 

Again, the above equation cannot be directly 
applied in regions near the boundaries. In this case, 
the same new interpolation scheme was applied and 
is detailed in the Appendix section. 

Nonlinear terms are commonly founded in 
Navier-Stokes equations, such as products of 
velocity components, xxvv , yxvv  and yyvv , normally 
present in momentum conservation equations. 
Normally the average values of these products are 
considered as the product of the average value of 
each parcel. However, this simplification limits the 
approximation order to two, and may cause a 
reduction in the global order of the approximation. 

Expanding the nonlinear product term in a Taylor 
series, Pereira et al., (2001) concluded that the error 
between the average value of the product of the 
variables and the product of the average value of 
each parcel is equal to the product of the derivative 
of each parcel followed by a fourth-order term, as 
presented below: 
 

( ) ( ) ( )

( )

y y y
1 2 1 21 1 1i, j i, j i, j

2 2 2

2
41 2

1 1i, j i, j
2 2

y O h
12 y y

+ + +

+ +

ϕ ϕ ≈ ϕ ϕ +

⎛ ⎞⎛ ⎞
Δ ∂ϕ ∂ϕ⎜ ⎟⎜ ⎟ +⎜ ⎟⎜ ⎟∂ ∂⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

    

(12) 

 

Based on this expression, a fourth-order 
procedure was proposed to approximate the average 
values of variable products, adding to the product of 
the averages of each variable a new term involving 
the derivatives of these variables, as shown in the 
Appendix section. 

A fourth-order Lagrange deconvolution formula 
was developed, allowing the recovery of nodal 
values of the variables through the substitution of the 
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values of the coefficients a, b, c and d in the 
approximation formula, as given by the equation: 
 

( ) ( ) ( )

( ) ( )

x x
3 1i, j i , j i , j
2 2

x x
1 3i , j i , j
2 2

1 7
12 12

7 1
12 12

− −

+ +

ϕ = − ϕ + ϕ +

ϕ − ϕ

    (13) 

 
Equivalent deconvolution expressions applied to 

boundary and near boundary node points are detailed 
in the Appendix section. 
 
 
MULTIBLOCK CONNECTION TECHNIQUE 

 
The main disadvantage of using structured grids is 

the inability to refine only a specific region of the 
problem domain without extending the refinement to 
other regions, Figure 2a. An alternative to revert this 
limitation is the application of a multiblock treatment, 
which consists of the partitioning of the problem 
domain into a determinate number of blocks or 
subdomains. For each one of these blocks, a different 
degree of refinement is allowed, refining regions of 
interest while using coarser grids in other regions, 
Figure 2b. 

The partitioning of the spatial domain into 
subdomains implies a series of benefits such as: 
reduction of the numerical complexity by solving 
subproblems of smaller dimensions, the solution of 
problems in complex geometries can be obtained 
more efficiently in simpler subdomains, and each 
subdomain can be assigned to a different processing 
unit of a cluster, accelerating the solution procedure 
(Serón and Sabadell, 2000). 

The different alternatives for exchanging

information between blocks are classified according 
to the topology and the constraints used during the 
mesh generation, the most widely used in the 
literature being: patched meshes and chimera or 
overlapped meshes. In the patched meshes, there is 
no overlap between the blocks and the only 
connection that exists occurs through the common 
frontier. In the overlapped meshes, the blocks are 
positioned in an overlapping structure and the 
information is exchanged between the blocks using 
interpolation functions. 

Over the past decades, several techniques have 
been developed for generation of structured grids in 
complex geometries. It is generally agreed that the 
implementation of conservative schemes is more 
suitable for the faces where there are shock waves 
and high gradients, and most studies apply linear 
interpolation formulas (Berger, 1987) or bilinear 
interpolation formulas (Liu and Shyy, 1996; Chen et 
al., 1997). A block-structured local refinement 
method based on a conservative finite volume was 
applied by Barad and Colella (2005) using the 
classical Mehrstellen methods. 

The development of a computational procedure that 
applies the multiblock partition technique should be 
able to deal efficiently with the transfer of information 
between blocks when connecting blocks with different 
degrees of refinement. Each block should be able to 
recognize the kind of boundary (wall, inlet, outlet, 
symmetry, or other block) its face is connected to. 
Beyond these characteristics, the connection procedure 
should be able to maintain the approximation order of 
interpolations on the interface between blocks. The 
maintenance of the approximation order is extremely 
important because the errors associated with a possible 
order reduction derived from the multiblock connection 
technique can be propagated through the domain 
decreasing the accuracy of the procedure. 

 

  
(a) (b) 

Figure 2: Illustrative representation of: (a) structured nonuniform grid and (b) multiblock 
structured grid.  
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The technique developed for block connection 
with different degrees of refinement uses the fourth-
order Lagrange interpolation for connecting the 
blocks, ensuring the maintenance of the global order 
of approximation. The application of this technique 
was only possible due to the methodology developed 
for mesh generation that allows the direct connection 
between blocks.  

Recalculating the interpolation schemes by writing 
their coefficients as functions of the degree of mesh 
refinement was not able to maintain the order of 
accuracy of the original scheme, being reduced to a 
second order. Thus, for this interpolation scheme be 
applied, the number of interpolation points should be 
greater than that applied in the fourth-order Lagrange 
interpolation formula, which would increase the 
computational effort. 

A better approach was to make refinements using 
only odd multiples for ∆x and ∆y, the length and 
height of the control volumes, respectively. The 
great advantage of this procedure is that the control 
volume centers of the blocks are located on the same 
symmetry line in the connection interface, making it 
possible to use the same Lagrange interpolation 
formula. In this approach, it was only necessary to 
develop a procedure that identifies the points that are 
located at the control volume centers of the more 
refined mesh located at the same distances ∆x or ∆y 
of the less refined mesh. From this condition, a 
formula was developed for block connection that

could be done in a simple and automatic way, with 
the fundamental requirement of maintaining the 
approximation order of the interpolation scheme. 

In order to facilitate the computational 
implementation of the refinement procedure, a block 
refinement index (IR) was defined, relating the size 
of the control volumes of a block to a reference size. 
Multiples of three were chosen for mesh refinement, 
where the size of the control volumes of a block is 
calculated by the following expressions:  
 

Base
Block

IR
xx
3

Δ
Δ =

 

Block BlockIR 0 x x= ⇒ Δ = Δ   

(14)
 Base

Block
IR

yy
3

Δ
Δ =

 

Block BlockIR 0 y y= ⇒ Δ = Δ   

 
As all the blocks that form the computational mesh 

are generated using multiples of ∆x and ∆y, it is 
possible to perform the direct connection between 
blocks, it only being necessary to identify the points in 
the neighboring meshes that have the same values of 
∆x or ∆y in which the interpolation formulas must be 
evaluated. 

The boundary between blocks can occur in three 
different ways: the block refinement index is equal to 
(Figure 3a), less than (Figure 3b) or greater than 
(Figure 3c) the refinement index of its neighboring 
block. 

 
 

Δx Δx

ΔyΔy

 
(a) 

Δx/3 Δx

Δy

Δy/3

 
(b) 

Δx/3Δx

Δy

Δy/3

 
(c) 

Figure 3: Illustrative representation of connections between blocks:
(a) mesh of equal refinement, (b) block with lower index of refinement and
(c) block with higher index of refinement. 
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Using the mesh refinement described above, the 
interpolation formulas applied near the interface 
between blocks were formulated using two points 
inside of the block domain and two points located in 
the neighboring block, as shown in Figure 4. 

Because fourth-order interpolation schemes were 
used in this work, the points located at volume faces 
near the interface can also be part of multiblock 
connection, Figure 5, thereby increasing the amount 
of information transferred between blocks and 
improving the convergence procedure. 

However, for points near the interface in which the 
block is more refined than the neighboring block, it is 

not worthwhile to exchange information between 
meshes, because the use of any set of points belonging 
to the less-refined neighboring mesh does not result in 
a scheme that will be able to keep the required 
approximation order. For this case, it is better to apply 
an interpolation scheme that uses only points inside of 
the block domain, as shown in Figure 6. 

For the points near the interface in which the 
block presents less refinement than the neighboring 
block, two approaches are possible: the first one does 
not consider points of the more refined mesh, Figure 
7a, while the second one includes the information 
from the more refined mesh, Figure 7b. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4: Illustrative representation of the multiblock connection 
applied to meshes: (a) of equal refinement, (b) block with lower index 
of refinement and (c) block with higher index of refinement. 

 
 

 
Figure 5: Illustrative representation of the points located at volume 
faces near to the interface that can be included in the connection 
between blocks. 

 
 

 
Figure 6: Illustrative representation of the multiblock connection 
applied to meshes with higher index of refinement for the points near 
to the interface connection. 
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(a) 

 
(b) 

Figure 7: Illustrative representation of the multiblock connection 
applied to meshes with lower index of refinement for points near to 
the interface connection using: (a) only internal points and (b) with 
information of the neighboring block. 

 
The interpolation functions for approximating the advective terms according to Figures 4a, 4b, 4c, 6, 7a, and 

7b, are given, respectively, by: 
 

( ) ( ) ( ) ( ) ( )bl blv blv bl bl
y xy xy xy xy

3 1 1 30, j Nx , j Nx , j , j , j
2 2 2 2

1 7 7 1
12 12 12 12− −

ϕ = − ϕ + ϕ + ϕ − ϕ

               
(15) 

 

( ) ( ) ( ) ( ) ( )bl blv blv bl bl
y xy xy xy xy

1 30, j Nx CR2, j Nx CR1, j , j , j
2 2

1 7 7 1
12 12 12 12− −

ϕ = − ϕ + ϕ + ϕ − ϕ
              

(16) 

 

( ) ( ) ( ) ( ) ( )bl blv blv bl bl
y xy xy xy xy

3 10, j Nx , j Nx , j CR1, j CR2, j
2 2

1 7 7 1
12 12 12 12− −

ϕ = − ϕ + ϕ + ϕ − ϕ
              

(17) 

 

( ) ( ) ( ) ( ) ( )bl bl bl bl bl
y xy xy xy xy

1 3 51, j 0, j , j , j , j
2 2 2

1 13 5 1
4 12 12 12

ϕ = ϕ + ϕ − ϕ + ϕ
                       

(18) 

 

( ) ( ) ( ) ( ) ( )bl bl bl bl bl
y xy xy xy xy

1 3 51, j 0, j , j , j , j
2 2 2

1 13 5 1
4 12 12 12

ϕ = ϕ + ϕ − ϕ + ϕ
                   

(19) 

 

( ) ( ) ( ) ( ) ( )bl blv bl bl bl
y xy xy xy xy

1 3 51, j Nx CR1, j , j , j , j
2 2 2

1 7 7 1
12 12 12 12−

ϕ = − ϕ + ϕ + ϕ − ϕ
                

(20) 

 
 
where bl refers to the block and blv refers to its 
neighboring block, CR1=3IR/2 and CR2=3IR+1/2. 

The values of the faces of the control volumes 
located in the mesh with greater refinement that do 
not present coincident control volume centers are 
approximated by a linear interpolation formula using 
the values of the mesh of the smallest refinement, as 
shown in Figure 8. The original fourth-order Lagrange 
interpolation formulas are only applied to the common 

points of the meshes. It is important to emphasize that 
the use of a first-order interpolation formula may be a 
source of undesired errors. Thus, a comparison of the 
values obtained by application of multiblock 
connection using this linear interpolation with the 
values using the full degree of refinement was carried 
out. Note that this interpolation formula is not a 
limitation of the proposed procedure, because higher-
order interpolation formulas can be used. 
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Figure 8: Schematic representation of the 
interpolation procedure for mesh of higher degree of 
refinement. 
 

The interpolation formulas in Equations (15) to 
(20) were applied to the left face of the block, and 
similar formulas were also developed for the top, 
bottom and right faces, as well as for the other linear 
and nonlinear terms, not presented here.  

Although only the fourth-order Lagrange 
interpolation scheme (LAG4) has been used in this 
work, the procedure developed for multiblock 
connection can be extended to schemes with higher 
or lower orders. 
 
 

RESULTS 
 

Examples from the literature, commonly used for 
testing and evaluation of numerical procedures, were 
considered for evaluation of the higher-order 
technique with multiblock treatment proposed in this 
work. The examples used were: the flow between 
parallel plates preceded by a free-slip surface (slip-
stick), the outlet flow between parallel plates for a 
free-slip surface (stick-slip), and the flow in a square 
cavity under the action of a sliding plate (lid-driven). 
 
Slip-Stick Flow 
 

This problem consists of a fluid flow between two 
plane and parallel plates. Initially, the flow happens on 
a free-slip surface and is followed by a non-slip 
condition applied on the plate surface, Figure 9. The 
main feature of this problem is the presence of 
singularity when the boundary conditions changes from 
the free-slip condition to the no-slip condition. 
 

 
 

Figure 9: Schematic representation of slip-stick 
flow. 

Since the problem is symmetric along the x-axis, 
it is possible to reduce the size of the computational 
grid, using the symmetry condition at the central 
horizontal section, simulating in this way only half 
of the initial domain. As input condition, a constant 
velocity profile was applied, for a Reynolds number 
of 10. In the output, the pressure was specified as 
zero and the established flow condition was 
considered. The length of the plate before the 
singularity is L1=3 and after the singularity is L2=7 
and the plate half height is H=1. The dimensionless 
positions x and y are taken from the point where the 
horizontal line of symmetry (y=0) and the beginning 
of the flow (x=0) are located. 

The profiles presented in Figure 10 compare the 
results for the horizontal line y=0.9 obtained by the 
LAG4 scheme using different mesh refinements with 
the results obtained by the central differences 
scheme (CDS) using 60x40 and 120x80 meshes.  

Comparing the profiles presented in Figure 10, it 
can be seen that the solution using the LAG4 
procedure with the 60x40 mesh presents a similar 
result to the 120x80 mesh indicating a converged 
mesh. The result obtained by the LAG4 scheme 
using the 60x40 mesh presents a solution similar to 
the solution obtained by the CDS scheme using the 
120x80 mesh, showing the advantage of a higher 
order scheme. The most significant differences are 
observed only for the velocity profile vy, Figure 10b, 
with the presence of overshoot in the numerical 
solution obtained by the LAG4 scheme using the 
30x10 and 30x20 meshes, which is characteristic of 
the application of high-order approximations. This 
problem can be minimized by increasing the 
computational mesh refinement, as can be observed 
for the 60x10, 60x20, 60x40, 120x60 and 120x80 
meshes, where these oscillations no longer occur. 

Comparing the computational time to find 
solutions with the same degree of accuracy, using a 
computer with a 3.20 GHz Intel i5 processor with 8.0 
GB of memory, it is possible to observe the better 
performance of the LAG4 scheme, where the 
application of a 60x40 mesh spent 480 seconds to 
obtain the solution, while the CDS scheme with the 
application of a 120x80 mesh spent 1135 seconds. 
These results clearly demonstrate the superiority of 
the higher-order schemes. 

Figure 11 presents the velocity and pressure 
contour plots obtained by the application of the 
multiblock partition technique to the problem. In this 
case, the mesh was only refined in the required 
regions, i.e., near the singularity and the wall, as 
shown in Figure 11a, resulting in a mesh composed 
of 3600 control volumes. 

In order to better compare the solutions obtained 
by the multiblock procedure, the problem was also 
simulated using the same degree of refinement used 
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in the region near the singularity for all the domain, 
resulting in the 120x60 mesh. Figure 12 compares 
the profiles of horizontal velocity vy at different y 
cuts and Table 1 shows the root mean square 
difference between the solutions, where it is possible 
to observe that there are no significant discrepancies 
between the obtained solutions. 

It is important to note that the computational 
effort for the multiblock procedure is much less than 

the full refinement, because in the latter 7200 control 
volumes were used, while only 3600 control volumes 
were necessary for the multiblock. This considerable 
reduction of the mesh size decreases the 
computational time from 1770 seconds for the full 
refinement to 851 seconds for the multiblock 
procedure without compromising the quality of the 
solution, clearly demonstrating the advantage of 
using a block structured mesh. 
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Figure 10: Profiles obtained for position y=0.90 by applying the CDS and LAG4 schemes with 
different mesh refinement: (a) Velocity vx; (b) Velocity vy and (c) Pressure. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11: Contour plots obtained for the slip-stick flow using the multiblock procedure: (a) Mesh; 
(b) Contour plot for velocity vx; (c) Contour plot for velocity vy and (d) Contour plot for pressure. 
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Figure 12: Comparison between the velocity profiles vy for different y cuts using the homogeneous 
refined 120x60 mesh (represented by lines) and multiblock mesh (represented by dots). 

 
Table 1: Normalized difference between the solutions obtained by application of the multiblock technique 
and the solutions obtained using the homogeneous degree of refinement for the slip-stick flow. 
 
 ref

x x
ref
x

v - v

v
 

ref
y y

ref
y

v - v

v
 

ref

ref

p - p

p
 

y=0.1 3.6786×10-4 2.1848×10-4 2.0658×10-3 
y=0.3 2.0745×10-4 7.7912×10-4 4.5808×10-3 
y=0.5 7.8678×10-4 1.5522×10-4 5.2507×10-3 
y=0.7 7.3347×10-4 1.6401×10-4 2.3105×10-3 
y=0.9 6.1248×10-4 4.7034×10-4 9.2009×10-2 
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Lid-Driven Flow 
 

The flow in a square cavity consists of a liquid 
initially at rest, which has the upper surface of the 
cavity in contact with a sliding plate that moves with 
constant velocity V, Figure 13. For this example two 
flow conditions are studied: the first considering the 
Reynolds number of 100 and the second considering 
the Reynolds number of 400. 

 
Figure 13: Schematic representation of lid-driven flow. 
 

Table 2 presents the results for Re=100 obtained 
by Botella and Peyret (1998) using a spectral method 
with Chebyshev collocation, Deng et al. (1994)

using FVM with Richardson extrapolation, Ghia et 
al. (1982) and Bruneau and Jouron (1990) using the 
finite difference method with multigrid technique, 
Yapici et al., (2009) using FVM with CDS scheme, 
and Muniz et al. (2003) using FVM with fourth-
order Lagrange and Padé interpolation schemes. The 
values of the minimum speed vx, taken at the vertical 
center line (x=0.5), followed by the corresponding y 
value and also the values of the maximum and 
minimum velocity vy in the central horizontal line 
(y=0.5) followed by the corresponding x values, are 
presented. Table 3 shows the values of minimum and 
maximum velocities at x=0.5 and y=0.5 obtained in 
this work using the LAG4 scheme with different 
mesh refinements. 

Comparing the results obtained by the LAG4 
scheme with the results taken from the literature, 
Table 3, it is possible to observe a good agreement 
between the results obtained. It is important to 
highlight the degree of accuracy obtained by the 
LAG4 scheme, that, even using meshes with a lower 
degree of refinement, was able to obtain satisfactory 
solutions, especially when comparing the results of 
Ghia et al. (1982) and Bruneau and Jouron (1990) 
using a 129x129 mesh with the results of LAG4 
using a 20x20 mesh, and the results of Yapici et al., 
(2009) using a 305x305 mesh with the results of 
LAG4 using a 60x60 mesh. 

 
 
Table 2: Values of the minimum and maximum velocities at x=0.5 and y=0.5 for the lid-driven problem 
from the literature for Re=100. 
 

Reference Mesh min
xv  miny  

max
yv  maxx  

min
yv  minx  

Botella et al., (1998) 96x96 -0.2140 0.4581 0.1795 0.2370 -0.2538 0.8104 
Deng et al., (1994) 64x64 -0.2131 ------ 0.1789 ------ -0.2533 ------ 
Ghia et al., (1982) 129x129 -0.2109 0.4531 0.1752 0.2344 -0.2453 0.8047 
Bruneau e Jouron, (1990) 129x129 -0.2106 0.4531 0.1786 0.2344 -0.2521 0.8125 
Yapici et al., (2009) 305x305 -0.2139 0.4565 0.1795 0.2383 -0.2537 0.8089 
Muniz, (2003) - LAG4 50x50 -0.2139 0.4575 0.1794 0.2375 -0.2537 0.8100 
Muniz., (2003) - Padé 40x40 -0.2142 0.4578 0.1798 0.2375 -0.2540 0.8109 

 
 
Table 3: Values of the minimum and maximum velocities at x=0.5 and y=0.5 by applying the LAG4 
scheme using different mesh refinement for Re=100. 
 

 Mesh min
xv  miny  

max
yv  maxx  

min
yv  minx  

LAG4 10x10 -0.2066 0.4750 0.1708 0.2360 -0.2382 0.8135 
LAG4 20x20 -0.2121 0.4591 0.1792 0.2393 -0.2519 0.8113 
LAG4 30x30 -0.2131 0.4575 0.1791 0.2422 -0.2538 0.8096 
LAG4 40x40 -0.2141 0.4563 0.1793 0.2371 -0.2538 0.8101 
LAG4 50x50 -0.2140 0.4563 0.1793 0.2378 -0.2538 0.8101 
LAG4 60x60 -0.2140 0.4564 0.1794 0.2380 -0.2536 0.8084 
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When the numerical solution is obtained using a 
mesh refinement sufficiently fine to ensure 
monotonic convergence, it is possible to estimate the 
order of the numerical scheme using the following 
expression (Ferziger and Peric, 2002): 
 

2h 4h

h 2h
log

p
log(r)

⎛ ⎞ϕ −ϕ
⎜ ⎟ϕ −ϕ⎝ ⎠=

                                           
(21) 

 
where p is the apparent order, r is the factor by which 
the grid density was increased, and hϕ  represents the 
solution using a grid with average spacing h. 

Using the numerical solution for the velocities vx 
and vy at (x, y) = (0.5, 0.5) presented in Table 4, it is 
possible to apply Equation (21) and compute the 
apparent order of the numerical solution. The 
estimated orders for the velocities vx and vy were, 
respectively, 3.82 and 3.89, which are in accordance 
with the fourth order of accuracy proposed in the 
formulation of the Lagrange schemes. 

Comparing the velocity profiles obtained by the

LAG4 scheme with a 30x30 mesh with the results of 
Patil et al. (2006), who applied the lattice Boltzmann 
equation method using 256 lattice nodes in each 
coordinate direction, Figure 14, it is possible to 
observe a good agreement between the profiles 
obtained, especially considering the lower mesh 
refinement applied to the LAG4 schemes. 

Figure 15 shows the velocity and pressure contour 
plots and the velocity vector for the lid-driven flow for 
Re=400, using the LAG4 scheme with a 50x50 mesh. 
Analyzing the contour plots for the velocity vx, Figure 
15a, it is possible to observe two distinct regions of 
flow, the first near the cavity surface and the second 
near the bottom of the cavity. The first region is formed 
due to the proximity of the moving plate and the second 
region arises from the recirculation of fluid at the 
bottom of the cavity. For the velocity vy the presence of 
two distinct regions is also observed, the first on the 
right side of the plate with negative values of vy and the 
second on the left side of the plate with positive values 
of vy (Figure 15b). This signal change occurs due to the 
recirculation of fluid in the cavity, as can be seen in 
Figure 15d. 

 
 

Table 4: Numerical solution for vx(0.5,0.5) and vy(0.5, 0.5) by applying 
the LAG4 scheme using refinements 20x20; 40x40 and 80x80 for 
Re=100. 

 
 Mesh xv (0.5,0.5)  yv (0.5,0.5)  

LAG4 20x20 -0.190863 0.053090 
LAG4 40x40 -0.207835 0.057267 
LAG4 80x80 -0.209040 0.057549 
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Figure 14: Comparison of the minimum and maximum velocities at x=0.5 and y=0.5 for the lid-driven 
problem for Re=400: (a) vx(0.5,y) and (b) vy(x, 0.5). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15: Contour plots obtained by applying the LAG4 scheme with a 50x50 mesh for Re=400: 
(a) Contour plot for velocity vx; (b) Contour plot for velocity vy; (c) Contour plot for pressure and 
(d) Velocity vector. 

 
 

CONCLUSION 
 

The application of higher-order interpolation 
schemes with multiblock partition was able to reduce 
considerably the computational effort employed in 
the simulation of all the problems tested. The 
application of the fourth-order Lagrange 
interpolation scheme was able to obtain solutions 
with the same degree of accuracy as other low-order 
procedures, requiring much less computational time 
by employing coarser grids. 

The multiblock procedure was able to properly 
connect meshes with different degrees of refinement. 
The most important aspect of this procedure is the 
direct use of the interpolation formulas, ensuring that 
the global order of the approximation is maintained 
and allowing the application of any other 
interpolation scheme. The results obtained by 
application of the procedure proved its effectiveness 
where it was possible to refine only the regions of 

interest, reducing significantly the simulation time 
without losing accuracy. 

The joint use of high-order schemes and the 
multiblock partition technique allowed the 
development of a computer code with the higher 
accuracy of the high-order interpolation schemes and 
the flexibility of multiblock partitioning, reducing 
significantly the computational effort compared to 
traditional procedures. 
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APPENDIX 
 
 
 
Fourth-order Lagrange interpolation formula for advective terms 
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Fourth-order Lagrange interpolation formula for diffusive terms 
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Fourth-order Lagrange interpolation formula for nonlinear terms 
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Approximation of the derivative with respect to x in the face of the control volume  
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Approximation of the derivative with respect to x in the face of the control volume  
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Approximation of the derivative with respect to y in the face of the control volume  
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Deconvolution formula for the fourth-order Lagrange interpolation 
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