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Abstract  -  Ensuring that industrial effluents meet quality standards to be released into water bodies is still one 
of the major environmental concerns. Liquid phase adsoption in fixed bed collumns is one of the most known 
treatments. Measurements are needed to monitor the process. However, as they are often corrupted by noise 
from the measuring equipment, performing an accurate analysis becomes an important challenge. The present 
work demonstrates the effectiveness of particle filter Sampling Importance Resampling as a fast and robust 
tool for monitoring a problem of sulfate ion removal. Experimental measurements were used to validate the 
methodology and the particle filter (PF) performance was evaluated by means of error metrics, computational 
time and compared to the Unscented Kalman Filter. The results show that the PF provides sequentially very 
accurate estimates for the sulfate adsorption breakthrough curve.
Keywords: State estimation; Particle filter; Modeling; Adsorption; Fixed bed.

INTRODUCTION

The pollution rate of water resources presents 
a major problem in nature, because the release of 
numerous chemical compounds affects the water cycle. 
This issue is mainly due to economic and population 
growth (Sajid et al., 2017). Among pollutants, sulfate 
(SO4

2-) is a common ion in natural waters and may be 
present in high concentrations in industrial effluents 
such as wastewater from mining, metallurgy, textiles, 
landfills and fertilizers (Dou et al., 2017). The highly 
soluble characteristic makes the removal of sulfate 
from water more difficult and consequently more 
costly. In addition, it may cause the appearance of 
odors, interference in the natural sulfur cycle, and 
cathartic effects and dehydration in human health at 

concentrations above 500 mg/L (WHO, 2008; Tait et 
al., 2009).

In this context, the search for effective treatments 
provides alternatives to the minimization of discharges 
of such pollutants, avoiding damage to health and 
the ecosystem (Abdulgader et al., 2013). Among the 
various technologies for the treatment of industrial 
effluents, adsorption and ion-exchange processes in 
fixed-bed columns stand out. These processes present 
advantages, such as an average operational cost and 
high efficiency, when compared to other techniques of 
membrane separation and electrodialysis (Haghsheno 
et al., 2009; Bhatnagar and Sillanpää, 2011).

However, it is known that measurements, generally 
taken at the outlet of an adsorption column, are 
corrupted by noise characteristic of the measuring 
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instruments (Khatibisepehr et al., 2013; Zhou et al., 
2017). Therefore, a satisfactory monitoring tool 
requires methods that are able to provide a more 
accurate analysis of the process. As a result, it is possible 
to describe the behavior of the adsorption, also known 
as the breakthrough curve (Shao et al., 2010). For this 
reason, the use of mathematical models combined with 
estimation tools may be considered as a great strategy 
to perform process monitoring (Khatibisepehr et al., 
2013; Zhou et al., 2017). With more reliable values, 
one can perform process analysis, unmeasured variable 
and parameter inference, and improve the input data to 
feedback controllers.

In a wider sense, optimization methods have been 
used in the estimation of parameters and the adsorption 
breakthrough curve, such as a particle swarm 
optimization algorithm in the studies of Burkert et al. 
(2011) and, more recently, genetic algorithms used by 
Emigdio et al. (2017) to construct the breakthrough 
curve of phenol adsorption on activated carbon. 
However, such optimization methods may face 
convergence problems, require more computational 
time and consequently have delayed responses, which 
would become impractical.

When the objective is online monitoring, it is 
interesting to apply Bayesian methods, which seek to 
approximate sequentially the posterior density function 
(PDF) of the desired variables from the measured 
data (Doucet et al., 2001). Therefore, it is possible to 
reduce uncertainties in measurements and to perform 
inference of the parameters and latent variables.

In this context, the Kalman Filter (KF) is the best-
known estimation tool, with applicability in systems 
that use the adsorption of gaseous compounds through 
pressure. Some examples are found in the works of 
Won and Lee (2012) and Fakhroleslam et al. (2016). 
However, the application of the KF is limited to 
Gaussian and linear (or linearized) systems. Even the 
extended (EKF) and unscented (UKF) versions, which 
can be applied to locally linearized and nonlinear 
problems, respectively, may not be suitable due to the 
complex process behavior and plant-model mismatch. 
An alternative to deal with such problems is the use 
of so-called Sequential Monte Carlo methods, also 
known as particle filters (PFs) (Doucet et al., 2000), 
which can be applied to a large class of systems.

PFs have received attention since the early 2000s 
to approximate estimation problems (Doucet et al., 
2000; Arulampalam et al., 2002; Chen et al., 2008; 
Shao et al., 2010; Khatibisepehr et al., 2013). For 
example, Shenoy et al. (2013) compared the EKF, 
UKF and PF for polymerization processes, which 
are highly nonlinear systems, and observed that PFs 
delivered more accurate estimates. The main reason 
is that the PF algorithms are indicated for nonlinear 
and non-Gaussian systems, as is the case of industrial 
applications (Chen et al., 2008).

The efficiency of such algorithms has been shown 
by several authors in the area of heat conduction 
(Orlande et al., 2008; Vianna et al., 2013; Silva et al., 
2016), of polymerization processes (Shenoy et al., 
2011; Shenoy et al., 2013) and in the realization of 
predictions of the life of lithium-ion batteries (Walker 
et al., 2015). Recently, Dias et al. (2017) proposed 
a virtual sensor comprising a PF algorithm for state 
estimation and an artificial neural network (ANN) to 
predict the final quality of the product obtained in a 
polymerization reactor.

The PF algorithms may demand high processing 
time when compared to the family of KFs. However, 
this problem can be overcome (or at least alleviated) 
if proper technology is deployed, such as parallel 
computing to accelerate the calculation (Lopez et al., 
2014; Schwiegelshohn et al., 2016). Lopez et al. (2015) 
found that the CPU time of the PF was “two orders 
of magnitude faster than the physical process even 
for calculations that involve millions of particles”. 
More recently, Stelzer et al. (2017) showed that the 
PF can provide accurate estimation in real-time state 
estimation. For a batch-fed bioprocess, they found that 
5000 particles took about 2.5 min of CPU time. Thus, 
the reader concerned about the online application, 
especially when the model complexity must be 
retained, can rely on new computing technologies, 
which are daily becoming faster with the advent of the 
Internet of Things (IoT) (Harjunkoski, 2017).

The fixed-bed adsorption process distributed 
problem is very common in engineering systems, such 
as flow through pipe-in-pipe lines, wildfire spread, 
natural heat convection, heat transfer in bio-systems, 
solidification front in phase change problems, and so 
on (Orlande et al, 2012; Silva et al, 2014; Marques 
et al., 2014). Despite the wide use of PF algorithms 
in distributed problems, to the best knowledge of the 
authors they have not yet been applied to fixed-bed 
adsorption processes. Specifically, there are no works 
dealing with the mathematical modeling and estimation 
of sulfate adsorption in ion-exchange columns.

To fill this gap, the present work proposes the use 
of a Bayesian approach with a PF in order to perform a 
more accurate analysis of the adsorption behavior over 
time. Specifically, this filter can be used for parameter 
estimation and real-time monitoring of latent states, 
as well as for reducing random measurement errors. 
Therefore, the technique proposed here is attractive in 
the context of adsorption processes, since nonlinear 
behavior and uncertainties from measuring devices are 
inherent in such applications.

In this work, the tasks of the PF (uncertainty 
reduction and observation of latent variables) are 
performed with the available measured data from 
Guimarães and Leão (2014a) and the dynamic system 
model. In this regard, the real measurements of sulfate 
concentration obtained at the outlet of the adsorption 
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column are to be filtered. At the same time, it is possible 
to observe the complete sulfate concentration profile 
along the column and also to estimate parameters 
related to the flow rate.

In the following section, a background of the 
adsorption process modeling is presented for 
simulation and monitoring purposes, followed by a 
presentation of the Bayesian approach for parameters 
and state estimation, describing briefly the fundamental 
principles and a particular algorithm: Sequential 
Importance Resampling (SIR). In the sequence, the 
necessary steps to implement the proposed estimation 
scheme are described, regarding the real data, the 
model formulation and the SIR algorithm. Then, 
the performance of the proposal is discussed in the 
results. Finally, the paper is concluded with the main 
conclusions obtained in the study.

MATHEMATICAL MODELING
OF THE ADSORPTION PROCESS

The mathematical model of the adsorption 
process in a fixed-bed column is used to predict the 
concentration profile over time and space for any 
changes defined in the initial and boundary conditions, 
such as feed concentration, temperature and flow 
rate. So, it is paramount to develop a first-principles 
model, considering relevant transport phenomena. The 
numerical simulation of such a model allows a better 
understanding of the behavior during the adsorption 
cycles and prediction of the breakthrough curve 
(Shafeeyan et al., 2013).

Since the data used in this manuscript were obtained 
through experiments carried out at 25  ºC and there 
were no feed-temperature disturbances and no heat 
exchanger around the column (Guimarães and Leão, 
2014a, 2014b), the process is isothermal. Besides that, 
the pressure drop was also neglected, mainly due to the 
small size of the column (0.09 m) and to the relatively 
large particles (770 mm). Thus, the mass balance was 
used to model the liquid-phase adsorption over the 
fixed bed. According to Equation 1, this model is 
characterized by only two independent variables, time 
(t) and column length (z) (Ruthven, 1984; Chu, 2010).

expression ∂q/∂t. In the literature, the Thomas’ and 
the Bohart-Adams’ models (Chu, 2010; Guzman et 
al., 2016; Dong and Lin, 2017) and the Linear Driving 
Force (LDF) model have been employed in several 
studies involving fixed-bed adsorption (Barros et al., 
2004; Otero et al., 2005; Souza et al., 2008).

However, such models consider different 
modelling assumptions. For instance, the Thomas’ 
and the Bohart-Adams’ models disregard intraparticle 
diffusion, resistance to external mass transfer and 
axial dispersion (Chu, 2010; Guzman et al., 2016). 
The wide applicability of these models is due to the 
ease of linearization to obtain analytically the curves 
representing the adsorption behavior (Asku and 
Gönen, 2004; Dong and Lin, 2017). On the other hand, 
the LDF model considers the resistance to diffusion in 
the liquid film as the controlling stage and that axial 
dispersion is important. 

Since the LDF model describes better the 
characteristics of the flow and provides results closer 
to reality (Ruthven, 1984), the term ∂q/∂t can be 
represented by Equation 2. In this expression, the 
parameter ke is the mass transfer coefficient in the 
liquid film external to the particle, av is the surface area 
of the adsorbent particle, and Ceq is the equilibrium 
concentration in the liquid phase.

2

L 0 L2
C C C 1 qD u
t z tz

∂ ∂ ∂ − ε ∂ = − − r ∂ ∂ ε ∂∂  

In this representation, u0 is the interstitial velocity 
of the fluid phase in the column, C is the adsorbate 
concentration of the liquid phase, ε is the bed porosity, 
rL is the adsorbent density, q is the average adsorbate 
concentration in the adsorbent and DL is the axial 
dispersion coefficient (Chu, 2010).

To solve this model, besides the initial and boundary 
conditions it is necessary to use a mass transfer rate 

( )e v eq
q k a C C
t

∂
= −

∂

STATE AND PARAMETER ESTIMATION 
USING THE PF

In some problems in engineering, it is not possible 
to measure directly all variables in the process. Thus, 
it becomes attractive to perform measurements of 
other variables and to obtain sequentially information 
of the unobserved variable (latent variables) through 
the mathematical model of the process. This indirect 
measurement of the variable of interest is called a state 
estimate (Shao et al., 2010).

Within the Bayesian framework, the dynamic 
problem is regarded as a Markovian process, using 
an evolution and an observation model as given by 
Equations 3a and 3b, respectively (Chen et al., 2005; 
Arulampalam et al., 2002; Ristic et al., 2004):

( )k k 1 kx f x , v−=

( )k k kz h x ,n=

In this representation, f is the nonlinear model of 
the dynamical problem accounting for the state vector 
xk ∈ Rn and the uncertainty vk ∈ Rn. The state vector 
contains the variables to be dynamically estimated at 

(1)

(2)

(3a)

(3b)
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each sampling time instant k. The function h is possibly 
nonlinear and describes the dependence between the 
measurements zk ∈ Rnz and the updated state variables 
and the uncertainty nk ∈ Rnz.

The approach to the problem by using a PF 
considers the estimation of the latent states from the 
observed or measured variables, so that after each 
sequential observation the state that gives rise to 
this observation is estimated (Arulampalam et al., 
2002). Therefore, the set of particles generated by the 
algorithm becomes the possible representation of the 
state (Speekenbrink, 2016).

For the measured data zk
obs at the time instant k, Np 

particles for the states,
(Cmeasured) are obtained by a sensor at the column outlet, 
and comprise the observation vector (zk

obs).
The initial data are used as a priori knowledge to 

draw the particles represented as( ){ } pNi
k 1

i 1
,x −

=

are drawn from a prior PDF. Such particles are 
propagated using the state evolution model and 
updated with the observation model in order to give 
the measurement estimates, 

( ){ } pNi
k

i 1
.z

=

Afterwards, a likelihood function assigns an 
importance weight, 

The set of the updated states and the weights, 

( ) ( )( )i i obs
kk kw z | z .∝ π

( ) ( ){ } pNi i
k k

i 1
,x , w

=

represents the approximation for the PDF.
A problem that may arise is the degeneracy 

phenomenon, which can be avoided with the particle 
resampling performed by the Sequential Importance 
Resampling (SIR) algorithm. The objective of this 
step is to replicate the particles with larger or more 
important weights (close to 1) and to eliminate those 
with smaller weights that have little effect on the 
estimates. For further details about the PFs, the reader 
is referred to Chen et al. (2005), Arulampalam et al. 
(2002), and Chatzi and Smyth (2009).

MATERIALS AND METHODS

The PF is used in this work to reduce measurement 
uncertainties and to allow monitoring of an adsorption 
column. According to Figure 1, from the initial data 
such as concentration (C0) and flow rate (Q0), the 
measurements of the effluent sulfate concentration 

Figure 1. Schematic representation of the monitoring 
of the adsorption column.

{ }i
k i 1, ,N

,x
= …

which are updated through dynamic simulation to give 

{ }i
k i 1, ,N

ˆ .z
= …

These estimates are compared with the measurements 
by means of the likelihood function, which assigns 
weights (wk

i) to the particles in order to perform 
the resampling and to estimate the states from the a 
posteriori distribution. Consequently, the estimation 
tool provides the estimated concentration of sulfate 
(Cestimated), not only at the outlet but the profile along 
the column. This procedure is carried out over time 
for each Cmeasured from the measuring device using the 
concentration profile estimated for the previous time.

Obtaining the measurements
Aiming at removing sulfates from industrial 

waters, Guimarães and Leão (2014a, 2014b) carried 
out an experimental study of the adsorption of SO4

2- 
at constant temperature in a fixed bed composed 
of Purolite A500 resin. Their data were used as 
information in the process models and in the PF. In 
addition, the concentration measurements obtained 
at the outlet of the column were considered as the 
observation zk

obs. Thus, it is possible to investigate 
the behavior of the adsorption and to reduce the 
uncertainties in the experimental data. The operational 
data are shown in Table 1.

Formulation required for the mathematical model
The models shown in Equations 1 and 2 were 

used to study the adsorption in this work. The LDF 
was proposed to model the mass transfer due to the 
satisfactory data fitting obtained by Guimarães and 
Leão (2014a) in the adsorption kinetics test. They 
showed that the pseudo-first-order model fits better 
the data obtained in the batch experiment of SO4

2- 
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adsorption, meaning that the diffusion mechanism is 
controlled by resistance to mass transfer to the outer 
film of the particle. To solve the model, the constitutive 
equations arranged in Table 2 were used.

In addition, it was necessary to determine the 
equilibrium concentration Ceq in the liquid phase used 
in the LDF model. The batch data from Guimarães and 
Leão (2014a) were adjusted using MATLAB software 
to the Langmuir model given in Equation  4, which 
assumes monolayer adsorption on an ideal surface (Wu 
et al., 2013). In this isotherm, qeq is the resin loading 
at equilibrium, Ceq is the equilibrium concentration of 
the adsorbate in solution, qmax is the maximum loading, 
and b is a constant related to the affinity between the 
resin and the adsorbate.

Thus, the modified model resulted in the equations 
shown in Table 3. In addition, mathematical expressions 
required for the model are given in Table 4.

The method of lines was applied for the numerical 
solution of the model, whose spatial derivatives were 
approximated by finite differences in order to obtain 
a set of ordinary differential equations (ODEs). The 
resulting equations can be solved numerically by a 
computational algorithm (Berardi and Vurro, 2015) 
such as ode15s in MATLAB. This method was chosen 
due to the simplicity of the explicit method and the 
advantage of stability (Shakeri and Dehghan, 2008).

It was necessary to perform a grid convergence 
analysis in order to define the number of points for 
the finite approximation of the spatial derivatives. 
Different numbers of discretization points were 
investigated along the axial direction of the column. 
To select a suitable grid, the relative simulation error 
(SErr) was considered according to Equation 5, which 
takes into account different values of the simulated 
concentration CN(t, x) according to the number of 
discretization points (N), the dimensionless time 
instants (t) and the axial position in the column (x). 
This error is calculated taking the grid with the highest 
degree of refinement (Nmax) as the reference.

Table 1. Operating parameters of the column and the 
process.

Table 2. Mathematical formulations of the LDF model.

eq
eq max

eq

C
q q

1 bC

 
=   + 

Different isotherms could be chosen to find the 
parameter Ceq. However, in our studies, it was found 
that, although some isotherms fit better the experimental 
data, such a choice does not have a significant effect on 
the quality of the estimates, mainly due to the presence 
of noise in the measurements.

Model scaling and dynamic simulation
In this section, model scaling was carried out 

with the aim of simplifying the physical problem and 
guaranteeing dimensional homogeneity according to 
the expressions t = (t . u0)/L, x = Z/L, and Pe = (L . u0)/
DL, in such a way as to give a nondimensional model.

Table 3. Nondimensional mathematical model of the 
adsorption column.

( ) ( ) ( ) ( )N max N N maxSerr , x, N C , x C , x / C , x  t = t − t t

To assure the grid convergence, the threshold of 
max(SErr) ≤ 5% should be satisfied. This error was 
observed in two different positions: in the central 
position (x = 0.5) and at the end of the column (x 
= 1.0); and at three dimensionless time instants (t): 
0.7174, 1.5245 and 2.3316. Such positions and time 
instants were selected throughout the simulations, 

(4)

(5)
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attempting to capture better the dynamic behavior of 
the sulfate concentration (mainly due to the breakpoint 
that moves along the column). It is important to 
highlight that values of error tolerance, as small as 1 
× 10-5, were set in the solver in MATLAB to provide 
accurate solution over time.

Particle filter implementation
As the measurements present uncertainties (noise), 

it was assumed that the standard deviation of the data 
of sulfate concentration at the outlet of the column 
was equal to 5% of the observed concentration. In 
most practical applications, information regarding 
measurement uncertainties is not available. However, 
the uncertainty level considered in this paper is superior 
to the specifications of the ICP-OES equipment 
(Spectro Cirus CCD) used to obtain the experimental 
measurements of Guimarães and Leão (2014a). This 
was selected intentionally, to evaluate the performance 
of the proposed tool when sufficient information is not 
available.

The estimated values for the states were obtained in 
the sampling step performed as a random walk given 
by xk = xk-1 + vk. In this equation, the vectors  xk-1 are 
the initial guesses or the prior estimates and vk is the 
uncertainty of the evolution model taken as a normal 
distribution, such that vk ~ N(0, s2

m).
After developing the computational code, the 

following conditions were analyzed:
a)	 Analysis of the number of particles (Np): 

according to Shenoy et al. (2013) and Chen, Morris 
and Martin (2005), the proper choice of the number 
of particles can improve the performance of the filter 
as much as the non-degeneration of the particles. 
But, high Np can result in high computational cost. 
Thus, to select the necessary number of particles, it 
was investigated by means of (i) the uncertainty of 
the model, (ii) the average CPU time and (iii) the 
error metrics. Firstly, since the evolution model may 
not represent adequately the physical process, the 
uncertainty (or degree of confidence) of the evolution 
model (sm) allows verifying whether it is necessary to 
broaden the search space around the model response 
in which the particles are generated. To approximate 

better the a posteriori distribution, the uncertainty sm 
was evaluated as 5%, 10% and 30% of the maximum 
expected value of the concentration. When the value 
of model uncertainty is high, the filter algorithm is 
able to generate particles not just in the vicinity of 
the model response. Secondly, the average CPU time 
is the elapsed time spent by the filter algorithm to 
calculate the estimates between the sampling times. It 
was also used to characterize the PF. Finally, the error 
metrics Root Mean Square (RMS) and Mean Absolute 
Deviation (MAD), according to Equations 6 and 7 
respectively, allow evaluating the quality of the fit 
between the measured and estimated values.

Table 4. Additional mathematical expressions of the model.

¹ Z+ e Z- are the positive and negative values of the loads of the ions involved. Do
Na and Doso4

- are the diffusivity of Na+ e SO4
- ions in aqueous solution, 

respectively, 1.3334·10-5 and 1.06·10-5 cm²/s (Ramos et al., 2010).

( )N i i
i 1 measured estimated

1RMS C C
N == Σ −

N i i
i 1 measured estimated

1MAD C C
N == Σ −

b)	 Feed flow rate estimation: the feed flow is the 
only time-varying parameter to be estimated. It was 
considered as a random variable, normally distributed, 
as Qk = Qk-1 + vk, vk ~ N(0, s2

q). This is necessary to 
account for the fluctuations in the pumping system 
during the operation. The uncertainty sq was assumed as 
5% of the initial value of the feed flow as the uncertainty.

c)	 Autocorrelation analysis: here the concept of 
scaled sample autocorrelation (Box et al., 1994) was 
used to verify whether the PF succeeded in removing 
the uncertainties from the measurements. The 
autocorrelation analysis allows checking the correlation 
(or the similarity) of the residue sequence resulting 
from the estimation. If the PF works as expected, the 
residue sequence has to be an uncorrelated signal of 
random variables with zero mean and finite variance. 
In this case, the autocorrelation should look like a 
pattern of white noise, which can be represented by 
a Dirac delta function. On the other hand, if different 
patterns can be identified within the residue sequence, 
one can say that the filter was mis-specified.

d)	 Performance comparison with the Unscented 
Kalman Filter (UKF): in order to discuss better the 
results obtained here with the PF, the UKF approach 

(6)

(7)
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was implemented to perform a comparison. Such a 
choice was motivated by the suitability for nonlinear 
systems without resorting to linearization procedures. 
The uncertainty of the model, the CPU time and the 
error metrics were also analyzed.

To avoid negative concentration in the confidence 
intervals, the acceptance/rejection method (also known 
as clipping) (Zhao et al., 2014) was used to handle the 
generation of particles with negative concentration. 
Particles within the expected limits were used for the 
estimation, whereas particles with negative values 
were discarded and others generated. This approach is 
important in the beginning of the concentration profile 
due to the values being close to zero.

In addition, the a posteriori distribution was 
reconstructed from the resampled particles, 
considering the best filter setting found in the analysis 
of the number of particles. For all the conditions 
tested, a 95% confidence interval was considered for 
the estimates. Finally, the tests were performed on 
a computer with an Intel Core™ i5-3570 processor, 
4 GB RAM and 64-bit Windows OS.

RESULTS AND DISCUSSION

Calibration of the Langmuir model
The equilibrium concentration is a necessary 

parameter to complete the mass transfer LDF model 
and it was obtained according to the Langmuir model. 
The fitting to the experimental data (Figure 2) led to the 
parameters b and qmax being equal to 0.04 and 60.32, 
respectively, with R2 of 95.5%. Considering the value 
of adsorbate per unit of adsorbent of 57.2519  mg/L 
(Guimarães and Leão, 2014a), the equilibrium 
concentration was 427.8 mg/L.

As expected, the relative errors decreased according 
to the increase in the number of discretization points. 
This means that increasing refinement leads the 
simulated concentration steadily to the reference 
condition. Moreover, with the time increase, the 
relative errors also decreased. In this case, the process 
tends to reach the saturation condition due to the 
movement of the breakthrough curve toward the 
column outlet. Thus, the concentration rises up to the 
feed concentration. For this reason, regardless of the 
number of discretization points, the relative errors 
tend to zero. Consequently, the discretization was 
performed with 50 points in the axial direction of the 
column, since the errors were less than 1.5% when 
compared to the most refined grid.

Analysis of the number of particles (Np)
Because one of the drawbacks of PFs is the 

computational time, it is important to find the ideal 
number of particles, especially when the CPU time of 
the filter must be shorter than the process sampling time. 
The analysis performed considered the uncertainty of 
the model, the average CPU time and the error metrics, 
resulting in the data shown in Table 6.

It can be observed that the error metrics decrease 
as the number of particles increases, demonstrating an 
improvement in the filter performance. Although the 

Figure 2. Fitting of the Langmuir model to the batch 
data from Guimarães and Leão (2014a).

Grid convergence analysis (N)
Due to the application of the method of lines, the 

number N of discretization points was evaluated. The 
results of the relative simulation errors are presented 
in Table 5.

Table  5. Grid convergence analysis based on the 
relative simulation errors, regarding 1000 points as the 
reference.

Table 6. Analysis of the number of particles (Np), 
according to the uncertainty of the model, the average 
CPU time and the error metrics (RMS and MAD).
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way that each error metric is calculated is different, 
they are based on the difference between the measured 
and estimated values. This result also indicates that 
the estimation accuracy of the PF is improved as well. 
The CPU time of the filter increased according to the 
number of particles. However, in all cases, the time 
spent was much less than the process sampling time 
(which was 10 min in the studies by Guimarães and 
Leão, 2014a). This means that a filter with a high 
number of tested particles would not be a limiting 
factor for use as an online estimation tool.

Considering the effect of the uncertainty of the 
model, the error metrics decreased as the uncertainty 
increased from 5% to 30%. This relates to the fact 
that the filter needs a broader search space around 
the model response to draw the particles, in order to 
estimate more effectively the sulfate concentration.

To understand this, it is necessary to note that the 
filter with a model uncertainty of 5% or 10%, even 
with the increase in the number of particles, did 
not experience much reduction of RMS and MAD. 
This means that the lower uncertainty value of the 
evolution model cannot represent the whole dynamics 
of the process. Thus, in this case, good information is 
required to ensure better performance of the algorithm. 
However, when such information is weak, the use of 
greater uncertainty values can broaden the search space 
for the generation of the particles, which increases the 
feasibility of a better approximation of the a posteriori 
distribution.

Indeed, with model uncertainty of 30%, the values 
of the error metrics decreased considerably. However, 
between the cases with 500 and 1000, such particle 
metrics changed very little, at the expense of increasing 
the CPU time by approximately 70%.

Thus, in the face of this analysis, the filter with 500 
particles and 30% model uncertainty was selected to 
perform the estimation. Such a configuration showed 
a CPU time of about 11 s and the lowest values of the 
RMS and MAD, which meets the needs of a monitoring 
scheme arranged online.

Estimation of the dynamic behavior with the PF
To give support to the best configuration of the PF 

found in the previous section, Figure  3 presents the 
dynamic behavior, also called the breakthrough curve, 
of the SO4

2-adsorption in the fixed-bed column. This 
curve considers only the experimental data of sulfate 
adsorption at the column outlet obtained by Guimarães 
and Leão (2014a). It can be seen that the estimated 
values of the sulfate concentration were obtained with 
great accuracy, within a confidence interval of 95%. 
This shows that the filter used was able to filter the 
uncertainties from the measuring equipment.

Figure 4 shows the dynamic behavior of the 
estimation for the feed flow rate. This input parameter 

Figure 3. Filtering of the sulfate concentration 
measured at the column outlet with the SIR filter, using 
500 particles and model uncertainty of 30%.

Figure 4. Estimation of the feed flow rate of the 
column with the SIR filter, using 500 particles and 
model uncertainty of 30%.

was also satisfactorily estimated under the framework 
studied here. The mean value of the estimate of this 
variable exhibits a slight increase with time. However, 
with a 95% confidence level, the feed flow could be 
taken as a constant input.

The PF also allows estimation of the latent states, 
which are not measured. In this case, the breakthrough 
curve can be presented, but indicating the behavior of 
the sulfate removal at different bed positions over time 
(Figure 5). As the axial domain was discretized into 
100 points, the behavior of the adsorption along the 
column could be visualized through curves generated 
at the beginning of the bed region in which adsorption 
was initiated (z = 0); at intermediate positions, (z = 
[0.2245, 0.4988, 0.7347]T); and finally at the outlet (z 
= 1).
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In Figure 5, at the beginning of the contact between 
the feed stream and the adsorbent bed, the sulfate 
loading in the resin is practically total since the bed 
presents free adsorption sites. This process happens 
until the moment that this adsorption zone begins to 
saturate, which is indicated by the stability of the lines 
over time.

This behavior was also confirmed by Calero et al. 
(2009), who reported that, as these adsorption zones 
run through the column, the adsorbent bed tends to be 
loaded. When the adsorption front reaches the last bed 
position, the final sulfate concentration in the effluent 
solution from the column tends to increase until the 
initial or affluent concentration is equal to that in the 
column. The reason is the lack of adsorption sites, 
indicating the need for regeneration or exchange of the 
resins.

Autocorrelation analysis of the residue
In addition to the results shown here, another way 

to show the performance of the filter in filtering the 
uncertainties is to use an autocorrelation function of 
the difference between the estimated and the measured 
values. This difference represents the residue sequence 
resulting from the estimation. Since the measured 
values can be considered as the exact value with 
added measurement noise, and the estimated value is 
expected to be the value without noise, the difference 
between them is expected to represent the measurement 
noise. As shown Figure 6, it is possible to illustrate the 
correlation of noise.

It is noted in Figure 6 that the residue signal only 
presents significant autocorrelation (red stems) at the 
time lag of zero, where it equals unity. Elsewhere, for 
any other time-lagged copies of the signal, the result 
suggests that the autocorrelation is significantly null, 
since the values lie inside the 95% confidence bounds 
(blue lines). As expected, this result is similar to a 
Dirac delta function, which is the pattern of white 
noise correlogram. This indicates that the filter was 
able to estimate values by removing the uncertainties 

associated with the measurements, since the 
estimation residue shows no correlation with its time-
lagged series. If the estimator had failed in filtering 
such uncertainties, correlations could be seen all over 
the time lags. Clearly, the proposed autocorrelation 
analysis in this context confirmed that the filter used 
in this study was able to remove all the uncertainties.

Performance comparison to the UKF
The comparison is given in Table 7, considering the 

best number of particles; that is, 500 particles for the 
PF. The average CPU time of the PF is about 7.5 times 
greater than that of the UKF. The results also show that, 
with a model uncertainty of 5% and 10%, the UKF 
performs better, since the error metrics are less than 
those of the PF. This is because the PF needs a broader 
search space to estimate more effectively the sulfate 
concentration, as already discussed. Thereafter, when 
the model uncertainty is increased to 30%, the error 
metrics for the PF become much smaller compared to 
the UKF. If it is recalled that the measurements were 
obtained with a sampling time of 10 min, the result 
of the PF with model uncertainty of 30% is very 
satisfactory at filtering the measurements.

Moreover, Figure 7 shows the performance over time 
for the UKF and the PF. A model uncertainty of 30% 
and measuring uncertainty of 5% of the measured value 

Figure 5. Behavior of sulfate removal at different 
positions of the adsorbent bed over time.

Figure 6. Autocorrelation for the residue sequence 
resulting from the estimation.

Table 7. Performance results for the PF with 500 
particles and the UKF.
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similar to a Gaussian distribution. Compared to Figure 
3, the mean of each reconstructed distribution equals the 
filtered sulfate concentration at the respective time. This 
confirms the performance in filtering the uncertainties 
and suggests that the mean of the resampled particles 
represents the estimate of the state variable.

Moreover, one could also suggest that a tool 
from the family of KFs would suffice to estimate 
the variables in this case. This is due to the fact that 
these filters are indicated exclusively for Gaussian 
systems. However, recalling the uncertainties of 
the estimates shown in Figure 7B, one can see that, 
even though the reconstructed distributions look like 
a Gaussian distribution, the UKF did not provide 
accurate estimates. On the contrary, the PF succeeded 
at approximating more accurately the a posteriori 
distribution of the state variables. This result was 
expected, since the PF is a more general tool.

CONCLUSIONS

Computational tools are paramount in the search 
for improvements in industrial processes. These 
tools are able to provide important information about 
dynamic behavior, as well as assisting in more accurate 
monitoring.

In this study, the SIR PF was proposed for the 
estimation of states and parameters of a fixed-bed 
adsorption column capable of removing sulfate from 
industrial water. The results obtained were quite 
satisfactory, showing that the PF was able to remove 
the uncertainties in order to approximate the actual 
process behavior from the experimental measurements.

Finally, it is important to emphasize the great 
applicability of the PF in the field of effluent treatment 
processes, more specifically in adsorption columns, 
as it is capable of providing fast results for real-time 
monitoring. Moreover, since no published articles 
applying such methodology in the monitoring of 
adsorption columns were found, this work presents a 
great academic contribution.

A.

B.

Figure 7. Comparison of the Particle Filter (PF) with 
the usual Unscented Kalman Filter (UKF): A) the 
adsorption breakthrough curve; B) uncertainties of the 
estimates for each filter.

were considered, in order to observe how the estimation 
tools represent the adsorption breakthrough curve. 

As indicated in Table 7, the PF approximated very 
accurately the measurements of sulfate concentrations 
within the degree of uncertainty of the data (Figure 
7A). The UKF can also represent the process; however, 
it failed at the breakpoint (i.e., the moment at which 
saturation of the fixed bed begins). But, as shown in 
Figure 7B, this result is reached at the expense of the 
highest-value uncertainties of the estimates, which is 
not satisfactory. Thus, it is clear that the PF performed 
very accurately, and would lead to a narrower 
confidence interval for any confidence level when 
compared to the UKF.

A posteriori distribution reconstruction
The previous results were shown in terms of 

the arithmetic mean of the particles. However, the 
representativeness of the mean as the estimative 
depends on the shape of the a posteriori distribution 
approximated by the resampled particles at each time. 
In this regard, Figure 8 presents the reconstruction of 
the a posteriori distribution for the concentration at 
the column outlet at different time instants.

It can be observed that the particle probability is 

Figure 8. Reconstruction of the posteriori distribution.



Estimation of Parameters and States Using a Bayesian Particle Filter for the Sulfate Ion Adsorption Process in a Fixed Bed Column

Brazilian Journal of Chemical Engineering, Vol. 36, No. 03,  pp. 1223 - 1236,  July - September,  2019

1233

ACKNOWLEDGEMENTS

Financial support from the funding agencies 
FAPES, FINEP, FAPEMIG, CNPq, CAPES (Finance 
Code 001) and Vale is gratefully appreciated.

NOMENCLATURE

av 	 Surface area of the adsorbent particle (m²)
b 	 Langmuir’s constant (m³/mg)
C 	 Concentration of adsorbate in the liquid phase
	 (mg/m³)
C0 	 Initial concentration (mg/m³)
Ceq 	 Equilibrium concentration of the adsorbate
	 in solution (mg/m³)
Cj 	 Concentration of the specie j in the liquid
	 phase (mg/m³)
DL 	 Axial dispersion’s coefficient (m²/min)
Dm 	 Solute’s molecular diffusivity in the fluid
	 phase (m2/min)
Do

Na 	 Sodium molecular diffusivity (m²/min)
Do

SO4 	 Sulfate molecular diffusivity (m²/min)
dp 	 Particle diameter (m)
ke 	 Coefficient of mass transfer in the liquid film
	 external to the particle (m/min) 
L 	 Bed height (m)
Pe 	 Peclet number (dimensionless)
Q 	 Flow rate (m³/min)
qeq 	 Amount of adsorbate adsorbed by the
	 adsorbent (mg/g)
qmax 	 Maximum amount of adsorbed adsorbed
	 (mg/g)
Re 	 Reynolds number (dimensionless)
rp 	 Particle radius (m)
S 	 Cross-sectional area of the column (m²)
Sc 	 Schmidt number (dimensionless)
Sh 	 Sherwood number (dimensionless)
t 	 Column operating time (min) 
u0 	 Interstitial velocity (m/min)
vs 	 Surface velocity (m/min) 
x 	 Spatial coordinate (dimensionless)
z 	 Axial coordinate along the column (m)
ρL 	 Density of the adsorbent or bed (mg/m³)
µm 	 Viscosity of the mixture (mg/m.min)
ε 	 Bed porosity (dimensionless)
q 	 Mean concentration of adsorbate in the
	 adsorbent (mg/m³)
τ 	 Coordinate of time (dimensionless)
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