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Abstract - Phase equilibrium calculations for fluids confined inside capillary tubes or porous media are 
formulated using the isofugacity equations. In this situation, the phase pressures are not equal and it is 
assumed that they are related by the Laplace equation. With this formulation, existing procedures for phase 
equilibrium calculations can be readily modified to include capillary effects. In this paper, we review some of 
the main authors who have studied the behavior of fluids inside porous media and perform bubble- and dew-
point calculations for pure components and mixtures, using the Peng-Robinson equation of state to model the 
coexisting phases and several planar surface tension models. Comparisons with results from the literature 
indicate that the proposed formulation is adequate for representing phase equilibrium inside capillary tubes.  
Keywords: Phase equilibrium; Porous media; Surface tension; Confined fluids; Laplace equation. 

 
 
 

INTRODUCTION 
 

Calculation of phase equilibrium of fluids 
confined by solid walls is important for several 
applications. For instance, petroleum fluids occur 
naturally inside porous media. In this situation, due 
to capillarity, phase interfaces may be curved with an 
abrupt change in pressure. In addition, interfaces do 
not occur at well-defined heights as in regular phase 
equilibrium calculations. Instead, for deep reservoirs, 
differences in pore size give origin to transition 
regions known as gas-oil contact (GOC) and water-
oil contact (WOC) regions, which should be totally 
absent when only gravitational effects are considered 
(Wheaton, 1991). 

In reservoir engineering, the influence of porous 
media on the behavior of gas-condensate systems has 
been difficult to distinguish because of the dubious 
ability of packed PVT cells to represent actual 
porous rocky matrixes. Some authors have studied 

phase equilibrium of hydrocarbon mixtures in such 
systems and could not observe any considerable 
difference in their behavior due to capillary effects, 
at least for the pore size they were able to work with 
in their laboratories. 

Tindy and Raynal (1966) reported differences in 
bubble-point pressure for crude oils in conventional 
PVT cells and in porous media, but found none when 
dealing with a methane+n-heptane mixture in the 
same phase equilibrium cells. 

Sigmund et al. (1973) used packed (1-mm spheres) 
and unpacked cells but did not observe different vapor 
compositions and liquid saturations for methane+n-
butane and methane+n-pentane mixtures in a constant-
composition expansion (CCE) process. They also made 
calculations for more severe curvatures, using 
experimental surface tension values to predict its 
influence on the methane+n-pentane system. 

Lee (1989) presented other theoretical results on 
the process of constant-composition expansion 
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(CCE) of a multicomponent gas-condensate fluid. 
Liquid- and vapor-phase compositions are obtained 
as functions of the vapor-phase pressure and the 
curvature. Lee (1989) also presented an interesting 
algorithm to consider effects of both capillarity and 
gravity, reporting profiles for liquid- and gas-
pressure and composition with height.  

Tester and Modell (1996) and Firoozabadi (1999) 
present clear formulations of the equilibrium 
conditions for curved interfaces, providing some 
examples that will be discussed later in this paper.  

Moreover, porous media can be used to enhance 
fluid separation, as demonstrated by Al-Rub and 
Datta (1999). These authors used a semi-empirical 
model to predict the breakage of azeotropes in 
porous plates for systems with large differences in 
polarity, such as cyclohexane+ethanol in sintered 
stainless steel plates. 

Shapiro and Stenby (1997, 2001) derived a 
generalized form of the Kelvin equation for nonideal 
fluid mixtures. The derivation is based on the 
integration of the Clausius-Clayperon equation for 
mixtures. Shin and Simandl (1999) used this 
generalized form of the Kelvin equation to predict 
the phase behavior of some binary mixtures in the 
pores of glass plates. Although they obtained 
theoretical results that agreed well with their 
experimental measurements, their model has given 
rise to controversy (Shapiro and Stenby, 2000) 
because of the improper use of the equation in 
calculations for mixtures. Even though Shapiro and 
Stenby (1997) made an important contribution to the 
formulation of the phase equilibrium of confined 
fluids, the derivation and application of their 
generalized Kelvin equation introduces unfamiliar 
parameters such as average compressibility and 
mixed volume.  

Our objective in this work is to formulate a 
flexible algorithm for the calculation of the vapor-
liquid equilibrium of confined fluids, including the 
effect of surface tension. This approach is based on 
the isofugacity criterion and on the Laplace equation 
to compute the pressure difference between the 
liquid and vapor phases, as done by Tester and 
Modell (1996) for pure components. Here, we extend 
this formulation to mixtures. Unlike most of the 
authors of previous articles using similar approaches, 
we use models for predicting surface tension as a 
function of composition and density of both 
coexisting phases instead of constant values for this 
property. This adds to the complexity of the problem 
because the surface tension is a function of 
composition and density of both phases, which in 

turn are calculated from an equation of state (EOS). 
Moreover, depending on the type of specification, 
the Laplace and the isofugacity equations need to be 
simultaneously solved. In most of the published 
articles with similar approaches, the specifications 
adopted allow the Laplace equation to be solved after 
the isofugacity equations are satisfied. The algorithm 
developed handles the simultaneous solution of both 
types of equations, with surface tensions predicted 
from models, and therefore is more general than 
those proposed in the publications reviewed. 
 

 
FORMULATION 

 
We assume a mixture of cn  components with a 

vapor and a liquid phase in equilibrium inside a 
capillary tube of radius R  with a contact angle θ . 

The curvature radius, cr , is given by R
cosθ . The 

surface tension of the mixture is denoted by σ . The 
Laplace equation (Lee, 1989; Tester and Modell, 
1996; Sychev, 1981) relates the pressures in the 
liquid ( LP ) and vapor ( VP ) phases: 
 

V L2 cos
P P 0

R
σ θ

− − =             (1) 

 
Wettability effects can be introduced by 

specifying the value of angle θ a priori. For 
example, for gas-condensate mixtures, capillary 
pressure, CP , given by V LP P− , is positive, and 
therefore cos 0θ >  if oil is the wetting phase. For 
complex porous structures, a mean curvature value 
can be used, for example, by means of the Leverett J-
function (1941) and its later modifications 
(Garrouch, 1999; Wo et al., 2001). 

Phase equilibrium also implies that the fugacities 
of each component i  should be equal in the liquid 
( L

if ) and the vapor ( V
if ) phases, even if the phases 

are at different pressures, i.e., 
 

( ) ( )L L V V
i iln f T,P ,x ln f T,P , y 0− =           (2) 

  ci 1,..., n=   
 
It also holds that 
 

cn

i
i 1

x 1 0
=

 
  − =
 
 
∑                             (3) 
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cn

i
i 1

y 1 0
=

 
  − =
 
 
∑                             (4) 

 
  In equation (2), we use the ideal gas reference 
state for each component at 1 bar and at the 
temperature of the system. The fugacities of each 
component i  in the liquid or in the vapor phases are 
calculated using the Peng-Robinson EOS with the 
classical mixing rule. 
 

c cn n
1/ 2

i j i j ij
i 1 j 1

a x x (a a ) (1 K )
= =

= −∑∑                             (5) 

 
cn

i i
i 1

b x b
=

= ∑                             (6) 

 
where ijK  is the binary interaction parameter.  

In usual dew- and bubble-point calculations, the 
pressures in the two phases are equal. Therefore, one 
of the possibilities is to specify the temperature and 
mole fractions in one of the phases and solve the 
system of cn  instances of equation (2) and equation 
(3) (or (4)) to determine the pressure and mole 
fractions of the other phase. In calculations of 
capillary condensation, one of the possibilities is to 
specify the temperature, mole fractions in one of the 
phases and one of the phase pressures ( VP  or LP ). 
Equations (2) and (3) (or (4)) are solved for mole 
fractions and pressure of the other phase. This allows 
the calculation of the surface tension and then use of 
equation (1) to determine the R cosθ  ratio. This sort 
of specification, used by Shapiro and Stenby (1997), 
therefore allows the uncoupling of the Laplace 
equation (eq. (1)) from the other system equations. 
However, another important problem occurs when 
none of the phase pressures is specified, i.e., when the 
specifications are the temperature, mole fractions in 
one of the phases, and the R cosθ  ratio. In this case, 
the Laplace equation (eq. (1)) needs to be solved 
simultaneously with equations (2) and (3) (or (4)).  
 We solved this system of nonlinear equations 
using the Newton-Raphson algorithm with step-size 
control to prevent nonphysical values during the 
iterations, especially far from the solution. Analytical 
derivatives of all the necessary physical properties 
were automatically obtained using the Thermath 
program (Castier, 1999). It should be noted that, 
depending on the surface tension model, its 
analytical derivatives are rather involved, increasing 

the complexity of the algorithm. This will be 
addressed in the next section.  
 
Surface Tension Models 
 
 Several models have been developed since the 
proposal of McLeod (1923) and Sugden (1932), who 
introduced the parachor equation for pure 
substances: 
 

( )1 / 4 L VPσ = ρ − ρ                   (7) 

 
where P  is the parachor of the compound and Lρ  

and Vρ  are liquid and vapor densities, respectively. 
Pure-component parachors can be found elsewhere 
(Reid et al., 1987). 

The surface tension of pure substances can be 
calculated independent of the densities, as in the case 
of the model of Miqueu et al. (2000). In this model, 
the surface tension of a pure species, σ , is given by 
 

( )

( )

2 3
1.26A

c
c

0.5

N
kT 4.35 4.14 t

v

1 0.19t 0.25t

 
σ = + ω 

 

+ −
              (8) 

 

where k  is the Boltzmann constant, AN  is the 
Avogadro number, and ct 1 T T= − . The symbols 

cT , cv , and ω  denote the critical temperature, 
critical volume, and acentric factor, respectively.  
 The McLeod-Sugden equation was extended to 
mixtures by Weinaug and Katz (1943): 
 

( )
cn

1 /4 L V
i i i

i 1

P x y
=

σ = ρ − ρ∑                          (9) 

  
Danesh et al. (1991) reviewed some of the major 

contributions for predicting the surface tension of 
multicomponent systems, observing that eq. (9) is 
still one of the most widely used for this purpose. 
Danesh et al. (1991) also proposed a modification of 
the surface tension exponent, which was assumed to 
be a function of the difference between the density of 
the liquid and the vapor phases: 

 

( )
cn

1 /E L V
i i i

i 1

P x y
=

σ = ρ − ρ∑                       (10) 

 
where parameter E is given by 
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( )L VE 3.583 0.16= + ρ − ρ                        (11) 

 
The molar densities depend on temperature, phase 

pressure, and mole fractions. Therefore, the 
derivatives of the surface tension model may depend 
on terms that come from the equation of state 
adopted for the system.  
 It should be emphasized that equations (8), (9), 
and (10) provide surface tension expressions for 
planar surfaces. When system dimensions reach the 
order of magnitude of tens of nanometers, interface 
curvature begins to affect surface tension, since the 
extension of the layer of transition between phases 
becomes of the same order of magnitude of 
molecular dimensions. Precise evaluation of this 
kind of influence remains a challenge in surface 
phenomena. The pioneering work of Tolman (1948, 
1949) introduced a characteristic length ( )δ , which 
represents the distance from the Gibbs surface of 
tension (Tolman, 1948) to another specific dividing 
surface within the transition layer for which the 
molar surface density vanishes (Tolman, 1949). With 
the Tolman length, it is possible to estimate the 
surface tension correction by means of the following 
relation (Tolman, 1949): 
 

R

plane

1
2

1
R

σ
=

δσ +
            (12) 

 
where planeσ  is the surface tension for planar 

surfaces and Rσ  is the corrected value. 
Several authors (Blockhuis and Bedaux, 1992; 

Bykov and Zeng, 1999a, 1999b) have presented 
expressions for the computation of δ  and planeσ  

based on statistical mechanics approaches. Their 
results were corroborated by molecular dynamic 
simulations for pure-component systems. 
Malyshenko and Dunikov (2002) recently proposed a 
series expansion for pure-component surface tension 
correction in small-sized systems, as well as a simple 
expression for the Tolman length, which should be 
useful for engineering calculations. 

The extension of Tolman’s approach to mixtures 
should include a composition-dependent term in eq. 
(12). Robust constitutive equations for this extension 
to mixtures are not available in the literature 
reviewed. Therefore, in this work, we used equations 
(8), (9), and (10) for calculating surface tensions 
directly, without using the Tolman length to account 
for the effect of curvature. It should be noted that in 

the work of Sigmund et al. (1973), Lee (1989), 
Tester and Modell (1996), Firoozabadi (1999), and 
Shapiro and Stenby (1997), whose calculations were 
similar to ours, surface tension corrections due to the 
influence of curvature were also neglected. 
Moreover, these authors adopted constant surface 
tension values in their calculations, contrary to what 
is done in our work. 

Indeed, curvature will indirectly affect our 
calculated surface tension values because of the 
coupling of isofugacity, Laplace, and surface tension 
model equations. However, such surface tension 
values should be regarded with caution, especially 
for small-sized systems with curvature radii on the 
order of tens of nanometers.  
 
 

RESULTS AND DISCUSSION 
 
 We present results for pure species and for 
mixtures. In all cases, the Peng-Robinson EOS was 
used. Critical properties, acentric factors, and group 
parameters for calculating the parachors (when 
needed) were taken from Reid et al. (1987). 
 
Example 1 
  

Tester and Modell (1996) present a problem 
whose objective is to determine the radius of a 
spherical ethane bubble in liquid ethane at 1 bar and 
270 K . In solving this problem, they assumed that 
the vapor pressure of ethane was 22.1 bar  and its 
liquid molar volume and surface tension were 

57.38 10−×  3m gmol  and 3.5 mN m , respectively. 
Assuming the liquid to be incompressible, they 
obtained a pressure inside the gas bubble of 20.6 bar  

and a bubble radius of 93.571 10−×  m . We specified 

the same temperature, a radius of 93.571 10−×  m  
and imposed a contact angle 0θ = , given that the 
pressure of the vapor phase is higher than that in the 
liquid. In accordance with Firoozabadi (1999), we 
then assume that a bubble in equilibrium within a 
liquid mass is analogous to a wetting liquid rising in 
a capillary tube. No phase pressures were specified. 
The surface tension was calculated using the 
correlation of Miqueu et al. (2000) (eq. 8). Our 
calculations resulted in a surface tension of 3.502 
mN m , and pressure values for the vapor and the 
liquid phases of 20.06 bar  and 0.45 bar , 
respectively. As should be expected, the phase 
pressure difference ( V LP P− ) is the same as that 
obtained by Tester and Modell (1996), i.e., 19.6 bar . 
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The phase pressures are in good agreement with 
those of Tester and Modell (1996), even though they 
are not identical because, in our case, they were 
calculated using the Peng-Robinson EOS. For the 
sake of comparison, the vapor pressure of ethane at 
270 K  predicted by the Peng-Robinson EOS is  
22.22 bar  in the absence of any capillary effect. 
  
Example 2 
  

Let us consider the theoretical calculations of 
Sigmund et al. (1973) for the methane+n-pentane 
binary system. These authors used isofugacity 
equations with different phase pressures, using an 
equation of state for the vapor phase and an excess 
Gibbs free-energy model with Poynting correction 
for the liquid phase (Prausnitz and Chueh, 1968). 
The unsymmetrical convention was adopted for the 
activity coefficients. Specifying curvature, 
temperature, and liquid-phase composition, they 
could use the two equilibrium equations and the 
Laplace relation to obtain one independent mole 
fraction in vapor phase and both liquid- and vapor-
phase pressures. Their algorithm is relatively simple 
because it uses experimental values of surface 
tension, which depend only on the specified liquid-
phase composition (Stegemeier, 1959). 

 Here we used surface tension models, which 
increase the complexity of the procedure because of 
density and compositional derivatives, and the Peng-
Robinson EOS to perform our calculations. The 
temperature was set at 310.93 K.  Surface tensions 
were calculated using either the Weinaug and Katz 
(1943) parachor method or its modification by 
Danesh et al. (1991). In Figures 1 and 2 respectively 
the behavior of the gas-phase pressure and of the 
vapor-phase mole fractions are presented for 
different specifications of the liquid mole fractions. 
There is excellent agreement with the results of 
Sigmund et al. (1973). Our results using both 
methods for predicting the surface tension are nearly 
identical, and for this reason, they are not 
distinguishable in the figures. The results for 
calculated surface tension are compared to the 
experimental values of Stegemeier (1959) (Sigmund 
et al., 1973) in Figure 3. In this figure, it is possible 
to observe the effect of curvature radius on surface 
tension, even though it is not pronounced for the 
radii considered. For r=10-8 m, we found that 
negative liquid-phase pressure values may occur for 
methane mole fractions less than 0.12, which is the 
starting point of our curve. It should be remarked 
that cubic equations of state can show this behavior, 
as reported by Shapiro and Stenby (2001).   

 
 
 
 

 
Figure 1: Gas-pressure × xCH4 diagram for C1+nC5 system. 
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Figure 2: Equilibrium curves for C1+nC5 system. 

 

 
Figure 3: Comparison of surface tension for C1+nC5 system. 

 
 
 

Example 3 
 

In this example, we test our algorithm in a gas-
condensate system presented by Lee (1989), whose 
complete characterization (including parachors) is 
reproduced in Tables 1 and 2. Lee (1989) performed 
several types of calculations, but the ones relevant 
for comparison with our work are those in which he 
specified the temperature, vapor-phase composition, 
and curvature, obtaining vapor- and liquid-phase 
pressures as well as liquid-phase composition. 
Curvature values were specified by arbitrarily 

varying the connate water saturation in an adequate 
Leverett J-function (Lee, 1989). 

Specifying the same temperature (384.26 K), 
vapor-phase composition, and curvature values 
( r , 66, 10, 0.4, 0.1= ∞ mµ ) as those reported by 
Lee (1989), we calculated phase pressures and liquid 
compositions, using the modified Weinaug and Katz 
(1943) parachor equation of Danesh et al. (1991). 
We also set 0θ =  (oil is the wetting phase).  

Our results are compared to those of Lee (1989) 
in Table 3. As we used the same thermodynamic 
model (Peng-Robinson), differences in pressures and 
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compositions could be attributed to the Taylor 
expansion used by Lee (1989) to approximate the 
liquid-phase chemical potentials, thereby obtaining a 
modified isofugacity condition (eq. 6 of Lee’s 
paper). This equation may be thought of as a 
modified Kelvin equation to compute effects of 
composition and pressure. It is also unclear how Lee 
(1989) accounted for the effect of pressure on the 

parachor equation for surface tension. Nevertheless, 
it should be stressed that our results follow the same 
trend as those of Lee (1989): the vapor-phase 
pressure at the dew point increases as the radius is 
reduced, which is expected for retrograde systems. 
Agreement with the trends reported by Lee (1989) 
for the methane and C7+ liquid mole fractions was 
also observed. 

 
Table 1: Characterization of the gas-condensate system of Example 3 (Lee, 1989). 

 
Component Tc (K) Pc (bar) w Parachor % mol 

1 CO2 304,2 73,9 0,2250 79,700 8,64 

2 C1-N2 189,8 45,9 0,0129 77,265 71,56 

3 C2-C3 330,9 46,2 0,1329 123,538 13,48 

4 C4-C6 444,8 35,8 0,2000 211,442 3,28 

5 C7-C10 576,3 28,3 0,3055 351,971 1,95 

6 C11-C15 705,6 20,1 0,4716 542,143 0,60 

7 C16-C23 788,9 15,1 0,6464 769,400 0,38 

8 C24-C31 857,6 11,6 0,8512 1148,167 0,09 

9 C32+ 929,6 8,6 1,2292 1767,000 0,03 

 
 

Table 2: Nonzero binary interaction parameters ijK , defined  

in eq. (5), for Example 3 (Lee, 1989). 
 

  1 CO2 2 C1-N2 3 C2-C3 4 C4-C6 

2 C1-N2 0,09918  - -  -  

3 C2-C3 0,13221 0,00017 -  -  

4 C4-C6 0,12689 0,00037 -  -  

5 C7-C10 0,12075 0,03501 0,01448 0,00241 

6 C11-C15 0,12075 0,05602 0,03132 0,00907 

7 C16-C23 0,12075 0,07785 0,04877 0,01657 

8 C24-C31 0,12075 0,10139 0,06691 0,02487 
Where iiK 0=  for ∀  i 1,2,...,9=    

and i jK 0< =  for ∀  i 5,6,7,8=  

 
 

Table 3: Vapor-phase pressures and liquid-phase compositions  
of the gas-condensate system of Example 3. 

 
r = infinity r = 66 mm r = 10 mm r = 0.4 mm 

 Lee (1989) This work Lee (1989) This work Lee (1989) This work Lee (1989) This work 

Pd (bar) 400.01 369.16 400.02 369.16 400.11 369.16 403.21 369.27 
xC1 0,48729 0,49365 0,48731 0,49365 0,48743 0,49366 0,49129 0,49382 

xC7+ 0,26740 0,25558 0,26737 0,25557 0,26722 0,25557 0,26232 0,25537 
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Example 4  
 

In this example, we deal with a binary mixture of 
methane and n-decane and specified the same 
temperature (310.93 K), liquid composition (99.894 
mole % C1), and radii (ranging from 0.01 to 100 µm) 
as those presented by Firoozabadi (1999). Again, we 
set 0θ = . In our calculations we used both the 
Weinaug and Katz parachor equation (1943) and its 
modification by Danesh et al. (1991). Our results for 
phase pressure and liquid-phase composition are 
presented in Figures 4 and 5.  For the dew-point 
pressure and the methane mole fraction curves, our 
results with both surface tension models are lower 
than those reported by Firoozabadi (1999), who used 
a constant value for surface tension of 9.76 mN/m. 
However, all results show the same qualitative trend. 

For instance, for radii greater than 0.1 µm, variations 
in phase pressure and liquid composition are small in 
all cases. Our dew-point pressure (97.4 bar) at 
infinite radius is slightly lower than the value 
reported by Firoozabadi (1999) (98.2 bar) and both 
are lower than the experimental value of 100 bar. In 
Figure 6 we also show our surface tension values. 
Both parachor equations provide values of surface 
tension lower than 9.76 mN/m, which is the constant 
value used by Firoozabadi (1999). As previously 
mentioned, the calculated surface tension values for 
small-sized systems should be regarded with caution; 
the behavior of  σ  models in Figure 6 are in 
qualitative agreement with the statements of Tolman 
(1949), who predicted that surface tension should 
decrease as we reduce the radius (at least for pure 
compounds).  

 
Figure 4: Influence of curvature radius on gas-phase pressure for C1+nC10 system. 

 

 
Figure 5: The influence of curvature radius on liquid-phase composition of C1+nC10 system. 
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Figure 6: The influence of curvature on surface tension values for C1+nC10 system. 

 
 
Example 5  

 
In this last example, we applied our algorithm to 

a binary methane+n-butane system studied by 
Shapiro and Stenby (1997), who presented the so-
called modified Kelvin equation: 

 

( )
( ) ( )

DC mix
avD L

v P , yP
Z y ln 1

P v y
= − χ + χ −        (12) 

 
where DP  is the dew-point pressure; mixv  and Lv  
are the mixed and liquid volumes, respectively; avZ  

is the average compressibility factor between LP  

and DP ; and χ  is the relative pressure  V DP P . 
The mixed volume is given by 
 

nc
Vmix D
ii

i 1

v x v
=

= ∑                         (13) 

 
where D

ix   is the liquid mole fraction of component i 

at the noncapillary dew point and 
V
iv  is the partial 

molar volume of component i in vapor phase.  
 Demonstration of eq. (12) is somewhat complex, 
dealing with unfamiliar variables like mixed volume, 
relative pressure and average compressibility factor, 
but the calculations presented by Shapiro and Stenby 
(1997) using this approach are quite simple. 

Knowing a “noncapillary” dew-point condition, 
i.e., DP , y , and its respective liquid-phase 

composition, Shapiro and Stenby (1997) varied the 
relative pressure arbitrarily, so that they could 
compute the respective CP  values. Then, using the 
surface tension model proposed by Danesh et al. 
(1991), they could easily solve the uncoupled 
Laplace equation to obtain the curvature radii. They 

presented their results, plotting CP  versus V DP P  

and r  versus V DP P  for three different dew-point 

pressures, namely, DP  = 80, 100, and 120 bar. 
According to the Peng-Robinson EOS, at 300 K, 

the dew-point pressure of a vapor phase of a 
methane+n-butane mixture containing 85.9 mole 
percent of methane is 120 bar. Therefore, we set the 
temperature at 300 K and varied curvature radius 

from 1010−  to 610− m, specifying 
4CHy 0.859= . For 

each curvature radius, we obtained the pressures of 
the two phases as well as the liquid-phase 
composition. We emphasize that our algorithm 
couples the Laplace equation with isofugacity 
equilibrium conditions. Again, we used the equation 
of Danesh et al. (1991) for calculating surface 
tension. 

Figure 7 presents some of our results in a r -

versus- V DP P  graph. As we reduce the radius from 
610− m to approximately 910− m, our profile shows 

(although only qualitatively) Shapiro and Stenby’s 
(1997) monotonic behavior. Below this value, 
relative pressure reaches a maximum value and then 
drops to values lower than one. Shapiro and Stenby 
(1997) only predicted a monotonic behavior of the 
same type as that of the upper part of the curve 
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shown in Fig. 7, probably because they specified a 

priori that the V DP P  ratio is always greater than 1. 
According to our calculations, as shown in Figure 7, 
there are two capillary radii which are solutions of 
the equilibrium equations in the region 

V D1 P P 1.04< < .  

Figure 8 shows that surface tension varies over a 
relatively wide range (-95% to +55%) around the 
single value (0.206 mN/m) used by Shapiro and 
Stenby (1997). Again, the behavior of σ  follows the 
qualitative trend stated by Tolman (1949) (at least 
for pure compounds), i.e., it decreases as the radius 
of curvature decreases. 

 

 
Figure 7: Profile of relative pressure with radius for C1-nC4 system. 

 
Figure 8: Profile of surface tension with radius for C1-nC4 system at 300 K  

(calculated using the model of Danesh et al. (1991)). 
 

 
CONCLUSIONS 

 
An algorithm coupling the isofugacity conditions 

for different phase pressures with the Laplace 
equation was proposed. It was used for calculation of 
phase equilibrium in systems whose surface tension 

was calculated by thermodynamic models, instead of 
adopting constant values. The algorithm is more 
general than others reviewed in this article, and 
allows more flexible specifications. Although there 
is no experimental data to validate the results 
reported either by us or by the authors reviewed, our 
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results agree very reasonably with those of Tester 
and Modell (1996), Sigmund et al. (1973), Lee 
(1989) and Firoozabadi (1999). Of all the examples, 
there is qualitative discrepancy only in the case of 
the methane+n-butane system studied by Shapiro 
and Stenby (1997). We credit the deviations to the 
different kind of specifications, thermodynamic 
formulation, and in our case, the use of a model for 
calculating the surface tension instead of adopting a 
constant value. An interesting suggestion for future 
work is to derive an extension of Tolman’s approach 
to mixtures and include it in the formulation 
presented here. 
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NOMECLATURE 

 
a  Peng-Robinson parameter 
b  Peng-Robinson parameter 

L
if  Fugacity of component i in liquid 

phase 
V
if  Fugacity of component i in vapor 

phase 
k  Boltzmann constant 

ijK  Binary interaction parameter 

AN  Avogadro number 
CP  Capillary pressure 
DP  Dew-point pressure 
LP  Liquid-phase pressure 
VP  Vapor-phase pressure 

iP  Parachor of component i 

Cr  Curvature radius 
R  Capillary radius 
T  Temperature 

CT  Critical temperature 

C
Tt 1 T= −  (Miqueu et al. (2000) parameter) 

Cv  Critical volume 
V
iv  Partial volume of component i in 

vapor phase 
Lv  Liquid-phase molar volume 

mixv  Mixed volume of Shapiro and 
Stenby (1997) 

x  Liquid-phase mole fractions 

y  Vapor-phase mole fractions 

avZ  Average compressibility factor 
 
Greek Letters 
 

δ  Tolman length 
Lρ  Liquid-phase density 

Vρ  Vapor-phase density 

σ  Surface tension 
θ  Contact angle 
ω  Acentric factor 

V
D

P
P

χ =  Relative pressure of  Shapiro and 
Stenby (1997) 
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