
 
 
 
 
 
 
 
 
 

  ISSN 0104-6632                         
Printed in Brazil 

www.abeq.org.br/bjche 
 
 

Vol. 31,  No. 03,  pp. 771 - 785,  July - September,  2014 
dx.doi.org/10.1590/0104-6632.20140313s00002625 

 
*To whom correspondence should be addressed  
 
 
 
 

Brazilian Journal 
of Chemical 
Engineering 

 
 

STATE ESTIMATION OF CHEMICAL 
ENGINEERING SYSTEMS TENDING TO 

MULTIPLE SOLUTIONS 
 

N. P. G. Salau1*, J. O. Trierweiler2 and A. R. Secchi3 
 

1Chemical Engineering Department, Universidade Federal de Santa Maria, UFSM, Av. Roraima 1000,  
Cidade Universitária, Bairro Camobi, CEP: 97105-900 Santa Maria, RS - Brazil. 

Phone: + (55) (55) 3220-8448, Fax: + (55) (55) 3220-8030 
E-mail: ninasalau@ufsm.br 

2Chemical Engineering Department, Universidade Federal do Rio Grande do Sul, Porto Alegre - RS, Brasil 
3Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, Brasil. 

 
(Submitted: March 26, 2013 ; Revised: September 5, 2013 ; Accepted: September 27, 2013) 

 
Abstract - A well-evaluated state covariance matrix avoids error propagation due to divergence issues and, 
thereby, it is crucial for a successful state estimator design. In this paper we investigate the performance of the 
state covariance matrices used in three unconstrained Extended Kalman Filter (EKF) formulations and one 
constrained EKF formulation (CEKF). As benchmark case studies we have chosen: a) a batch chemical 
reactor with reversible reactions whose system model and measurement are such that multiple states satisfy 
the equilibrium condition and b) a CSTR with exothermic irreversible reactions and cooling jacket energy 
balance whose nonlinear behavior includes multiple steady-states and limit cycles. The results have shown 
that CEKF is in general the best choice of EKF formulations (even if they are constrained with an ad hoc 
clipping strategy which avoids undesired states) for such case studies. Contrary to a clipped EKF formulation, 
CEKF incorporates constraints into an optimization problem, which minimizes the noise in a least square 
sense preventing a bad noise distribution. It is also shown that, although the Moving Horizon Estimation 
(MHE) provides greater robustness to a poor guess of the initial state, converging in less steps to the actual 
states, it is not justified for our examples due to the high additional computational effort. 
Keywords: Nonlinear state estimation; State covariance matrix; Noise distribution; Multiple solutions. 

 
 
 

INTRODUCTION 
 

It is well known that a suitable design of state es-
timators requires a representative model for captur-
ing the plant behavior and knowledge about the noise 
statistics, which are generally not known in practical 
applications (Valappil and Georgakis, 2000). How-
ever, some divergence issues such as numerical 
round-off, plant-model mismatch, and state unob-
servability also deserve special attention because 
they can lead to convergence failures (Brown and 
Hwang, 2012; Grewal and Andrews, 2008; Simon, 

2006). Any state covariance matrix equation is com-
posed of states, measurements, linear models and 
noise covariance statistics and, hence, all the men-
tioned divergence issues may increase the error 
propagation conveyed by this matrix.  

Even with an accurate dynamic nonlinear process 
model, the estimation of noise covariance statistics is 
of utmost importance to obtain a well-computed state 
covariance matrix and thereby avoid the EKF failure. 
While the measurement noise covariance matrix can 
be directly derived from the measurement device, the 
determination of the process-noise covariance matrix 
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is much less straightforward. The model accuracy is 
specified by tuning the Kalman filter that involves 
the selection of the process-noise covariance matrix. 
If this matrix is guessed low, the filter will believe 
the model excessively and will not use the on-line 
measurements properly to correct the states. This can 
lead to poor performance or even filter divergence. 
On the other hand, if the process-noise covariance 
matrix is guessed higher than the actual value, the 
state estimates will be noisy and uncertain, as this 
would lead to increased values of the state covari-
ance matrix (Valappil and Georgakis, 2000; Salau et 
al., 2013). In a few words, choosing the right value 
of the tuning parameters is very important for suc-
cessful application of EKF (Kalman, 1962). 

In contrast to the measurement noise covariance, 
information about the uncertainty of the initial state 
guess cannot be measured experimentally. In gen-
eral, the filter will not be fatally affected if the initial 
state guess is not close to the actual initial state, but 
convergence to the correct estimate may be slow. 
However, if the initial state estimate covariance ma-
trix is chosen too small or optimistic while initial 
state guess and actual initial state differ considerably, 
the Kalman filter gain becomes small and the esti-
mator relies on the model predictions more than it 
should. 

Thus, subsequent measurements do not have the 
impact on the estimator that they need to have. The 
filter might then learn the wrong state too well and 
diverge (Jazwinski, 1970). The importance of choos-
ing a consistent pair of an initial state estimate guess 
and initial state estimate covariance matrix is also em-
phasized by other authors (Valappil and Georgakis, 
2000). For instance, Vachhani et al. (2004) empha-
sized the role of a consistent choice of initial state 
estimate covariance matrix and consequently the use 
of alternate initial state information for their simula-
tions. Similarly, Prakash et al. (2010) silently adapt 
their initial state estimate to be more consistent with 
the original initial state estimate covariance matrix. 

In this work, however, we will show that some 
EKF formulations can indeed converge, even in the 
presence of poor initial guesses, as well as a poor 
initial state estimate covariance matrix. 

In the literature, several modified implementa-
tions of the EKF are presented in an effort to avoid 
the filter failure (Grewal and Andrews, 2008). The 
basic difference between these formulations is con-
cerned with the state covariance matrix computation. 
We can also find in the literature some contributions 
which show examples and outline conditions where 
other methods perform better than the standard 
EKF, MHE for instance (Rao and Rawlings, 2002; 

Haseltine and Rawlings, 2005). Otherwise, these 
works address comparison issues such as accuracy 
and computational expense and no efforts are made 
to avoid divergence or even instability by EKF state 
covariance matrix computation and thereby improve 
the filter performance.  

Due to the lack of literature concerning this 
problem, we investigate in this paper the perform-
ance of four EKF formulations, being three uncon-
strained: (i) the classical EKF formulation, called 
here discrete EKF (DEKF), (ii) EKF with the con-
tinuous Riccati equation (EKF-CRE) and (iii) re-
duced-rank extended Kalman filter (RREKF); and a 
constrained EKF (CEKF) formulation (Gesthuisen et 
al., 2001) to derive some results with two systems 
tending to multiple solutions giving insights into 
their numerical performance: a) a batch chemical 
reactor with reversible reactions whose system 
model and measurement are such that multiple states 
satisfy the equilibrium condition and b) a CSTR with 
exothermic irreversible reactions and cooling jacket 
energy balance whose nonlinear behavior includes 
multiple steady-states and limit cycles.  

In the next section we briefly review the state es-
timation formulations of interest. Then, we present 
two systems tending to multiple solutions and outline 
conditions that lead a classical EKF formulation   
to converge to physically unrealizable equilibrium 
points and to an undesired steady-state. Then, we 
demonstrate the potentiality of EKF-CRE and 
RREKF to handle the divergence issues by state 
covariance matrix computation. Otherwise, both for-
mulations may not prevent undesired states before 
eventually converging to the actual states. Although 
an ad hoc clipping strategy seems to be a reasonable 
solution to constrain the states, it disregards the as-
sumption that the measurement noise is a Gaussian 
random noise.  

Finally, we have shown that CEKF is in general 
the best alternative to EKF formulations due to the 
possibility of incorporating constraints into an opti-
mization problem, hence preventing the estimator 
from converging to undesired states and from bad 
noise distribution. Furthermore, this technique de-
mands a small computational effort and a perform-
ance comparable to the MHE. 
 
 

FORMULATION AND SOLUTION OF THE 
ESTIMATION PROBLEM 

 
Consider the following nonlinear dynamic and 

continuous-time system with discrete-time measure-
ments to be used in the state estimation formulations 
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( ) ( ), ,x f x u t t= +ω             (1) 
 

( ),k k k k ky h x t= +ν             (2) 
 
( ) ( )0,t N Q≈ω              (3) 

 
( )0,k kN R≈ν               (4) 

 
where u denotes the deterministic inputs, x denotes the 
states, and y denotes the measurements. The process-
noise vector, ( )tω , and the measurement-noise vector, 

kν , are assumed to be white Gaussian random proc-
esses with zero mean and covariance Q and Rk, re-
spectively.  

The system is linearized at each time step to ob-
tain the local state-space matrices as below: 
 

1
ˆ

k
k

k k

fF
x x

−

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
             (5) 

 

1
ˆ

k
k

k k

hH
x x

−

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
             (6) 

 
The filter algorithm is initialized by the initially 
expected state and state covariance: 
 

( )0 |0ˆ 0x E x= ⎡ ⎤⎣ ⎦              (7) 
 

( )( ) ( )( )0 |0 0 |0 0 |0ˆ ˆ0 0
T

P E x x x x⎡ ⎤= − −⎢ ⎥⎣ ⎦
      (8) 

 
Unconstrained EKF Formulations 
 

The equations that compose the different steps in 
the considered unconstrained EKF formulations are 
given below. 
 
State transition equation: 
 

( )1 1 1 1
ˆ ˆ ˆ, ,

k
k k k k k

x x f x u d− − − −
= + ∫ τ τ        (9) 

 
Kalman gain equation: 
 

1
1 1

T T
k k k k kk k k kK P H H P H R

−

− −
⎡ ⎤= +⎣ ⎦      (10) 

 

State update equation: 

( )1 1ˆ ˆ ˆ ,k k kk k k k k kx x K y h x t− −
⎡ ⎤= + −
⎣ ⎦

     (11) 

 
The basic difference of these formulations is con-

cerned with the state covariance matrix computation, 
as described below.  
 
Discrete Extended Kalman Filter 
 

DEKF considers discrete-time dynamics and dis-
crete-time measurements. This situation is often 
encountered in practice. Even if the underlying sys-
tem dynamics are continuous-time, the state estima-
tor usually needs to be implemented in a digital 
computer (Simon, 2006).   

The nonlinear dynamic system in continuous time 
(cf. Eq. (1)) can be approximated by a linear dy-
namic system in continuous time expressed in a gen-
eral form as a first-order vector of difference equa-
tion (Brown and Hwang, 2012; Grewal and Andrews, 
2008; Simon, 2006).  
 

1 1 1k k k kx x− − −= +ϕ ω            (12) 
 
where 1k−ϕ  is the state transition matrix for the state 
at time tk given as  
 

( )1
1

k k
k

F t t
e

− −
− =ϕ            (13) 

 
The state covariance matrix transition equation of 

the DEKF is given by 
 

1 1 11 1 1
T

k k kk k k kP P Q− − −− − −= +ϕ ϕ        (14) 

 
and the state covariance matrix update equation can 
be represented by one of the following equations: 
 

[ ] [ ]1
T

n k k n k kk k k k

T
k k k

P I K H P I K H

K R K

−= − −

+
    (15) 

 
1

1 1 1

1

−

− − −

−

⎡ ⎤= − +⎣ ⎦
T T
k k k kk k k k k k k k

k k k

P P P H H P H R

H P   
(16) 

 
[ ] 1n k kk k k kP I K H P −= −         (17) 

 



 
 
 
 

774                                    N. P. G. Salau, J. O. Trierweiler and A. R. Secchi 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

The first equation (Eq. (15)), called the Joseph 
form (Brown and Hwang, 2012; Grewal and Andrews, 
2008; Simon, 2006), has somewhat better numerical 
behavior than the other forms in unusual numerical 
situations (Brown and Hwang, 2012) since it guar-
antees that k kP will always be symmetric positive 

definite, as long as 1−k kP  is symmetric positive defi-

nite, and Kk does not need to be optimal. The third 
equation for k kP (Eq. (17)) is computationally simpler 

than the first equation, but its form does not 
guarantee symmetry or positive definiteness for k kP  

(Simon, 2006). However, we have formulated the 
DEKF using the Eq. (17) for comparison with the 
reference of our first case study (Haseltine and 
Rawlings, 2005). Equation 16 is just the substitution 
of Eq. (10) into Eq. (17) and is rarely implemented 
as written above (Simon, 2006), but will be useful in 
our derivation of the information filter in the next 
sections. 
 
Reduced Rank Extended Kalman Filter  
 

The reduced rank extended Kalman filter 
(RREKF) expresses the transition state covariance 
matrix in terms of its dominant eigenvectors. Ne-
glecting non-dominant eigenvectors of the covari-
ance matrix implies that the dimensionality of the 
confidence region is reduced. Measurement updates 
therefore have no effect on the directions of non-
dominant eigenvectors. If the actual state does not 
leave the attractor, the RREKF is advantageous since 
measurement updates are omitted in those directions 
of strongest attraction. Furthermore, this EKF modi-
fication is more robust against improper initializa-
tion, as claimed by Pham et al (1998). 

Although the RREKF is not applied or at least 
barely applied to chemical processes, we have se-
lected this formulation to show the benefits of a 
lower rank covariance approximation of the transi-
tion state covariance matrix (Eq. (14)) in the exam-
ples we are interested in. Except for this modifica-
tion, RREKF presents the same formulation as for 
DEKF. 

We briefly outline the implementation and impli-
cations of the low-rank covariance approximation. 
Let ,P kV  comprise the eigenvectors ,P iυ  of 1k kP −

    as columns and ,P kΛ  the corresponding eigenvalues 

,P iλ  on the diagonal. As the transition state covari-
ance matrix (Eq. (14)) is symmetric, it can be de-
composed as 

, , , , , ,1
1

n
T T

P k P k P i P i P i P ik k
i

P V V−
=

= Λ = ∑λ υ υ      (18) 

 
For ,1 ,2 ,P P P n< < <λ λ λ , the rank q < n 

approximation of the covariance matrix is given by 
 

, , ,, 1
1

q
T

P i P i P iq k k
i

P −
=

= ∑λ υ υ          (19) 

 
Geometrically, the lower-rank approximation is 

the orthogonal projection of the covariance ellipse or 
(hyper-)ellipsoid onto its q most dominant axes.  
 
Extended Kalman Filter with the Continuous-Time 
Riccati Equation 
 

In this section we introduce an EKF formulation 
referred to as EKF with the continuous-time Riccati 
equation (EKF-CRE). 

Before we define the EKF-CRE, a brief review 
about an alternate form for the EKF which applies 
the discrete-time Riccati equation (DRE) is neces-
sary (Simon, 2006). This approximation referred to 
here as EKF-DRE is computationally attractive be-
cause the state covariance matrix, P, is evaluated just 
once at each time step, i. e. the state covariance ma-
trix transition and update steps are carried out si-
multaneously. 

Considering Eq. (16) for the state covariance ma-
trix update, rewritten here for convenience: 
 

1
1 1 1

1

−

− − −

−

⎡ ⎤= − +⎣ ⎦
T T
k k k kk k k k k k k k

k k k

P P P H H P H R

H P
 (20) 

 
Applying Eq. (14) considering the next time 

steps, we can write the state covariance matrix tran-
sition as follows: 
 

1
T

k k kk k k kP P Q+ = +ϕ ϕ           (21) 

 
Substituting Eq. (20) into Eq. (21) gives 

 

1 1
11

1 1

− −
−+

− −

⎛ ⎞−
⎜ ⎟=
⎜ ⎟⎡ ⎤+⎣ ⎦⎝ ⎠

+

T
kk k k k

kk k T
k k k kk k k k

T
k k

P P H
P

H P H R H P

Q

ϕ

ϕ
  (22) 

 
Rearranging Eq. (22) and assuming that 1 1+ + =k kP
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1+k kP , because the state covariance matrix transition 

1( )k kP +  and update 1 1( )k kP + +  steps are carried out 

simultaneously, we obtain the equation for the one-
step state covariance matrix equation 
 

1 1

1

+ +

−

=

⎡ ⎤− +⎣ ⎦

+

T
k kk k k k

T T
k k k k kk k k k

T
k k kk k

P P

P H H P H R

H P Q

ϕ ϕ

ϕ

ϕ

   
  (23) 

 
Now, rewriting Eq. (23), considering one time 

step before, we arrive to the formulation called DRE 
 

1 11 1

1

1 1 1 1 1

1 11 1

− −− −

−

− − − − −

− −− −

=

⎡ ⎤− +⎣ ⎦

+

T
k kk k k k

T T
k k k k kk k k k

T
k k kk k

P P

P H H P H R

H P Q

ϕ ϕ

ϕ

ϕ

  (24) 

 
Note that the Kalman gain (Eq. (10)) requires 

1k kP −  and this term is not computed in this alternate 

EKF formulation. Thus, Eq. (10) can be modified by 
assuming that 1 1 1k k k kP P− − −= , resulting in 
 

1
1 1 1 1

T T
k k k k kk k k kK P H H P H R

−

− − − −
⎡ ⎤= +⎣ ⎦     (25) 

 
In spite of applying the one-step state covariance 

matrix equation and using a different equation for the 
Kalman gain, the EKF-DRE and the DEKF result in 
identical results and estimation-error covariances 
(Simon, 2006). To avoid a redundancy, the EKF-
DRE will be not compared in our examples.  

Alternatively, following the same steps, we can 
write a similar expression for the continuous case, 
which can be written as follows:  
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

11

− −

−−

=

⎡ ⎤+ ++ ⎢ ⎥
−⎢ ⎥⎣ ⎦

∫

k k k k

Tk
Tk

P P

F P P F Q d
P H R H P
τ τ τ τ τ τ
τ τ τ τ τ

 

(26) 

 
The equation above is known as the continuous-

time Ricatti equation (CRE). It is equivalent to the 
state covariance matrix transition equation of the 
continuous-time EKF found in the literature (Brown 
and Hwang, 2012; Grewal and Andrews, 2008; 
Simon, 2006). The basic difference between both 
formulations is concerned with the Kalman gain 
equation. For the continuous-time EKF, the Kalman 
gain equation considers that the measurement values 
remain constant during the entire time interval, 
which is suitable just for small sampling times. Fur-
thermore, the EKF-CRE considers continuous-time 
dynamics and discrete observation for update, i. e. 
discrete-time measurements.  
 
Moving Horizon Estimator (MHE) 
 

Before explaining the CEKF formulation, the ba-
sic aspects of the MHE (Muske and Rawlings, 1994; 
Robertson et al., 1996; Rao et al., 2003) are pre-
sented. As paper of Haseltine and Rawlings (2005), 
we examine the performance of MHE with local 
optimization and an arrival cost approximated with a 
smoothing update (Tenny and Rawlings, 2002).  
According to Tenny and Rawlings (2002) the 
smoothing scheme is superior to the filtering scheme 
because the filtering scheme induces oscillations in 
the state estimates through the unnecessary propaga-
tion of initial error. Further details regarding this 
MHE scheme can be found in the mentioned 
manuscript.   

The basic idea of MHE is to proceed with state 
estimation by using only the most recent N+1 
measurements, where N is the time horizon size.  

The moving horizon approximation of the objec-
tive function is given by 

 
 

( ) ( ) ( )
k N 1 k k 1 k

k N k k k

11 1 1
11 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ

ω , ,ω
ν , ,ν

min
− − −

−

−− − −
−− − − − − − −

= − = −

⎡ ⎤
= + +⎢ ⎥
⎢ ⎥⎣ ⎦

Ψ ∑ ∑
k k

T T T
k kk N k k N k k N k j k j k j k j k

j k N j k N

N P Q Rk ω ω ω ω ν ν   (27) 
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subject to the equality constraints 
 

( )

( )

1 1

1
1

ˆˆ ˆ

ˆˆ ˆ, , , , , 1

ˆˆ , , ,

− − − − −

+
+

= +

= + = − −

= + = −

∫

k N k k N k k N k

j
j k j kj

j j k j k

x x

x f x u d j k N k

y h x j k N k

ω

τ τ ω

ν   

(28) 

 
and the inequality constraints 
 

min max

min max1

min max

ˆ

ˆ ˆ ˆ , , ,

ˆ ˆ ˆ , , ,

j k

j k

j k

x x x

j k N k

j k N k

−

≤ ≤

≤ ≤ = −

≤ ≤ = −

ω ω ω

ν ν ν

    (29) 

 
From optimization, measurements and states are 

updated as follows 
 

( )

( )

*
1 1

1 *
1

*

ˆˆ ˆ

ˆˆ ˆ, , , , , 1

ˆˆ , , ,

− − − − −

+
+

= +

= + = − −

= + = −

∫

k N k k N k k N k

j
j k j kj

j j k j k

x x

x f x u d j k N k

y h x j k N k

ω

τ τ ω

ν   

(30) 

 
Rao et al. (2003) suggested computing the state 

covariance matrix equation N
k kP  (Eq. (31)) recursively 

using the discrete Riccati equation. One obtains this 
result by deriving the deterministic Kalman filter 
using forward dynamic programming (Cox, 1964).  
 

1 1

1
1 1 1 1

1 1

− −

−

− − − −

− −

=

⎡ ⎤− +⎣ ⎦

+

N N T
k kk k k k

N T N T
k k k k kk k k k

N T
k k kk k

P P

P H H P H R

H P Q

ϕ ϕ

ϕ

ϕ

   (31) 

 
Note that the equation above is the same as for 

Eq. (24) applied to each horizon step.    
We solve Eq. (27) using sequential quadratic pro-

gramming (SQP) as implemented in the medium-
scale algorithm of the fmincon function in MatLab.  
For the successive integration of Eq. (30) we use 
DASSLC (Differential-Algebraic System Solver in 
C) which does the multirate integration of systems of 
differential-algebraic equations (DAEs). The inte-
gration algorithm used in DASSLC is an extension 

of the DASSL code of Petzold (1983) to address 
high-index and large-scale problems, and the setup 
algorithm used in DASSLC is based on the DAWRS 
code (Secchi et al., 1991), a package to solve DAEs 
on parallel machines.  
 
Constrained EKF 
 

CEKF follows from the MHE when the horizon 
length is set to zero (Gesthuisen et al., 2001). Zero 
length implies that ODEs are not considered in the 
optimization problem, which simplifies the com-
plexity of solving a nonlinear dynamic optimization 
problem. 

Setting (N=0) in the MHE optimization problem 
(Eq. (27)), the resulting formulation is exactly the 
CEKF formulation problem: 
 

( )
( )k 1 k k k

1
1 1 1

1
1

ˆ
min

ω ,ν ˆ ˆ ˆ−

−

− − −

−
−

⎡ ⎤
⎢ ⎥= ⎢ ⎥

+⎢ ⎥⎣ ⎦

Ψ
T
k k k k

T
kk k k k k k

P
k

R

ω

ω ν ν
   (32) 

 
subject to the equality constraints: 
 

( )
1 1ˆˆ ˆ

ˆˆ

k k k k k k

k k k k k

x x

y h x

− −= +

= +

ω

ν
          (33)

 
 
and inequality constraints: 
 

min max

min max1

min max

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

k k

k k

k k

x x x

−

≤ ≤

≤ ≤

≤ ≤

ω ω ω

ν ν ν

         (34) 

 
From optimization, measurements and states are 

updated as follows: 
 

( )

*
1 1

*

ˆˆ ˆ

ˆˆ

k k k k k k

k k k k k

x x

y h x

− −= +

= +

ω

ν
          (35) 

 
If the measurement equation is linear, the result-

ing problem is a quadratic program (QP), which can 
be solved with small computational effort (Gesthuisen 
et al., 2001). We use the MatLab’s quadprog function 
to solve the quadratic programming problem as given 
below. 
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1ˆ ˆ ˆmin
k k

T T
k k k k k k k kS dk

−

Θ
= Θ Θ + ΘΨ       (36) 

 
where: 
 

1 1 1 0ˆ 0
0

k k k k
k k

k k k

w P
S d

v R

− − −⎡ ⎤ ⎡ ⎤
Θ = = =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
   (37) 

 
subject to: 
 

[ ] ( )1
ˆ ˆkk k k kH I y h x −Θ = −        (38) 

 
In contrast to the unconstrained EKF formula-

tions, state estimation with CEKF is formulated as an 
optimization problem, so that constraints on state 
variables can be incorporated in this problem. Fur-
thermore, it is not necessary to compute the Kalman 
gain (Eq. (10)) and therefore the state covariance 
matrix P is computed using the discrete Riccati 
equation as in Eq. (24).  

Although the CEKF belongs to a family of MHE 
estimators, we choose to call this formulation here 
CEKF, as introduced by Gesthuisen et al. (2001). 
Note that CEKF is similar to EKF because the latter 
also takes into account a zero-length horizon in the 
updating stage, i. e. the current state is estimated 
only using the current measurement on the horizon 
and it is equivalent to zero horizon length (N=0).  In 
the absence of any constraints and for low process-
noise uncertainties, these formulations are similar. 

Afterwards, Vachhani et al. (2005) have proposed 
essentially the same formulation as for CEKF with a 
different name: Recursive Nonlinear Dynamic Data 
Reconciliation (RNDDR). However, we have de-
cided to adopt the earlier nomenclature. 
 
 

EXAMPLES OF DIVERGENCE ISSUES BY 
STATE COVARIANCE MATRIX 

COMPUTATION 
 

In this section, we outline the conditions that gen-
erate divergence issues by state covariance matrix 
computation in two chemical engineering systems. 
The first one is a batch reactor with reversible reac-
tions whose system model and measurement are such 
that multiple states satisfy the equilibrium condition.  
The results obtained with this system (Figures 1 to 6) 
have been published in our previous work (Salau et 
al., 2009).  

The second one is a CSTR with exothermic irre-
versible reactions and cooling jacket energy balance 
whose nonlinear behavior includes multiple steady-
states and limit cycles.  
 
System Tending to Multiple Equilibrium Points 
 

The first example was introduced by Haseltine 
and Rawlings (2005) and consists of a gas-phase 
batch reactor with multiple equilibrium points con-
sidering the following reversible reactions:  
 

1

2

3

4
2

k

k

k

k

A B C

B C

⎯⎯→←⎯⎯

⎯⎯→←⎯⎯

+
            (39) 

 
The model equations and the model parameters 

are given below. 
 

1 2
A

A B C
dc k c k c c
dt

= − +           (40) 

 

( )2
1 2 3 42B

A B C B C
dc k c k c c k c k c
dt

= − − −      (41) 

 
2

1 2 3 4
C

A B C B C
dc k c k c c k c k c
dt

= − + −       (42) 

 
with 
 
[ ] [ ]1 2 3 4 0.5 0.05 0.2 0.01k k k k =     (43) 
 

Multiple states satisfy the equilibrium condition 
for a given measurement, which in this case is the 
system pressure at the equilibrium, evaluated by the 
following equation: 
 

( )A B Cy p c c c RT= = + +         (44) 
 

Table 1 shows the possible theoretical solutions, 
without measurement or state noise, at the equilib-
rium pressure given by the initial state:  
 

[ ]0 0.5 0.05 0 Tx =           (45) 
 
Table 1: Batch Reactor Equilibrium Points, No 
Measurement or Process Noise. 
 

Component EQ1 EQ2 EQ3 
cA 0.0122 -0.0267 -1967.4 
cB 0.1826 -0.2372 -9.9454 
cC 0.6669 1.1257 1978.2 

 
Note that only the solution EQ1 has physically 

realizable states (non-negative concentrations). 
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The state estimator parameters and the poor initial 
guess 0x  used for this example were obtained from 
Haseltine and Rawlings (2005): 
 

1 0.25k kt t t min−Δ = − =          (46) 
 

2
0 3x30.5P I=              (47) 

 
2

3x30.001Q I=             (48) 
 

20.25R =               (49) 
 

[ ]0 0 0 4 Tx =             (50) 
 

According to the authors, EKF fails in this exam-
ple because the system model and measurement are 
such that multiple states satisfy the equilibrium con-
dition and is given a poor initial guess of the initial 
state for the estimator. Nonetheless, we cannot assert 
that EKF fails because two equilibrium points (EQ1 
and EQ2 in Table 1) are possible due to the poor and 
incoherent guesses of the initial state and its covari-
ance matrix used in this example, as discussed in the 
next section.  
 
 

RESULTS AND ANALYSES 
 
Measurement Noise Perturbation 
 

First, uniform and normally distributed random 
measurement noises were simulated. Either solution 
EQ1 or solution EQ2 (i. e. the inconsistent solution) 
is obtained in accordance with the set of random 
measurement noise employed in DEKF. Thus, we 
have chosen a set of random measurement noise 
which leads DEKF to converge to the solution EQ1 
and added a noise measurement perturbation in order 
to lead it to converge to solution EQ2. As can be seen 
in Figure 1, a noise measurement perturbation of 
0.754 atm at t=0.5 min changes the estimated states 
trajectory from solution EQ1 to solution EQ2. 

We have also found that other divergence issues 
can lead DEKF to converge to solution EQ2, such as 
low-precision arithmetic, numeric system lineariza-
tion by finite differences, a poor guess of P0 and 
incorrect values of the tuning parameters: Q and R. 
 
Comparison Between Unconstrained EKF For-
mulations 
 

RREKF and EKF-CRE were applied to the batch 
reactor in order to prevent the state estimator from 
converging to EQ2. In spite of a measurement noise 

perturbation, both unconstrained EKF formulations 
converged to solution EQ1, as shown in Figure 2.  
 

 
(a) 

 
(b) 

Figure 1: Comparison between the performances of 
DEKF with and without a noise measurement per-
turbation of 0.754 atm at t=0.5 min: (a) until final 
batch time and (b) until t=1 min. 
 

 
Figure 2: Comparison between DEKF, EKF-CRE 
and RREKF performances for a system tending to 
multiple equilibrium points. 
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RREKF disregards non-dominant eigenvectors, 
which implies zero variance in the respective direc-
tions, and no effect of measurement updates. For this 
example, we use a rank-two approximation, so the 
confidence region is an ellipse instead of a (hyper-) 
ellipsoid, reducing the dimensionality of the confi-
dence region. After initial oscillations, the estimated 
states converge to the actual states. At the equilib-
rium point [ ]0.0124 0.1859 0.6634 T

eqx = , we ob-
serve that the eigenvector corresponding to the 
smallest eigenvalue or the non-dominant eigenvector 

[ ]2, -0.9827 0.1677 0.0793 T
eq =υ  is orthogonal to the 

tangent of the equilibrium curve (the scalar product 
approaches zero). This eigenvector is not considered 
in the rank-two covariance approximation and thus 
the filter applies no correction in this direction or-
thogonal to the attractor.  

EKF-CRE is not subject to errors due to model 
discretization. The state covariance matrix computed 
by EKF-CRE in a single stage (Eq. (26)) guarantees 
that it will always be symmetric positive definite, 
since it is derived from the called Joseph form 
(Brown and Hwang, 2012; Grewal and Andrews, 
2008; Simon, 2006), as discussed previously in the 
present article. Besides, the state covariance matrix 
of EKF-CRE presents a smaller condition number, i. 
e. it is less sensitive to perturbations than the states 
covariance matrices computed by DEKF (eqs 14 and 
17), as shown in Figure 3. The mentioned advantages 
of EKF-CRE over DEKF justify the convergence of 
this formulation to EQ1, even with a measurement 
noise perturbation. 
 

 
Figure 3: Comparison between the condition num-
ber of DEKF and EKF-CRE state covariance matri-
ces for a system tending to multiple equilibrium points. 
 

Although EKF-CRE and RREKF prevented 
physically unrealizable states at the final batch time, 
physically unrealizable states (negative concentra-

tions) were unavoidable during the batch. This fact is 
justified by the poor guesses of the initial state and 
its state covariance matrix.  

We also considered that the unconstrained for-
mulations fail when they converge to negative con-
centrations (EQ2) because they do not converge to 
the given plant measurements (that are consistent 
with positive concentrations - EQ1), but instead, 
converge to physically unrealizable states, a fact that 
could not be considered as a success from the chemi-
cal engineering point of view. In the next section it 
will be shown that constrained formulations can 
avoid such problems. 
 
Comparison Between Clipped DEKF and CEKF 
 

To prevent physically unrealizable states, we 
have constrained DEKF with an ad hoc clipping 
strategy (Haseltine and Rawlings, 2005) in which 
negative update values of the state are set to zero (i. 
e. if ˆk kx < 0, set ˆk kx = 0 ).  

The comparison between clipped DEKF and 
CEKF performances is shown in Figure 4. Note that 
before eventually converging to the actual states, the 
pressure filtered by the clipped DEKF is quite larger 
than the measured one. However, the clipped DEKF 
in our work presented a better performance when 
compared with the one presented by Haseltine and 
Rawlings (2005). In their paper, the clipped DEKF 
drives the predicted pressure 3 orders of magnitude 
larger than the measured pressure before eventually 
converging to the actual states on a longer time scale 
(1 order larger than the convergence time obtained in 
our work). This occurred because the authors over-
estimated P0 (cf. Eq. (47)). While the initial guess for 
the concentration of specie C is too far from its ac-
tual value, the same is not valid for the concentration 
of specie B.  Since the authors have chosen a P0 with 
the same weight for all initial guesses (diagonal ele-
ments of P0), this weight should be balanced be-
tween the initial guesses. We have selected, hence, a 
lower initial guess of the state covariance matrix: 
 

2
0 3x30.022P I=

 
           (51) 

 
Thus, due to a lower initial guess of the state co-

variance matrix, the clipped DEKF is shown as a 
reasonable alternative to prevent physically unrealiz-
able states.  

A clipped DEKF, however, disregards the as-
sumption that kν  is a Gaussian random noise and 
does not let the Kalman gain properly distributes the 
measurement residuals throughout the estimated 
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state and, thereby, corrects them. Another disadvan-
tage of such an approach is that clipped state esti-
mates violate the process model, as the negative state 
estimates were obtained from the model solution. 
 

 
Figure 4: Comparison between clipped DEKF and 
CEKF performances for a system tending to multiple 
equilibrium points until t=30 min. 
 

On the other side, CEKF swiftly converges to the 
actual states and minimizes kω  and kν  in a least 
square sense, incorporating constraints into an opti-
mization problem, which prevents bad noise distri-
bution. Figure 5 illustrates the distribution of kν  for 
the clipped DEKF and the CEKF. It means that the 
main difference between the clipped DEKF and 
CEKF is that the CEKF preserves the gaussianity, 
which is one of the main assumptions of the Kalman 
Filter Approach. 

 
Figure 5: Comparison between the distribution of kν  
for (a) clipped DEKF (non-Gaussian) and (b) CEKF 
(Gaussian). 
 

It is well known that the quality of the MHE esti-
mates is a function of the estimation horizon (Haseltine 
and Rawlings, 1970). Thus, we have enlarged the 

MHE estimation window to N=2 and compared its 
performance with the CEKF, as can be seen in 
Figure 6. In this comparison, CEKF and MHE are 
computed recursively using the discrete Riccati 
equation (DRE) (Eq. (31)). 
 

 
Figure 6: Comparison between CEKF and MHE 
(N=2) performances for a system tending to multiple 
equilibrium points until t=15 min. 
 

The Integral Time Absolute Error (ITAE) has 
been chosen as the performance criterion to compare 
CEKF and MHE. The results obtained with ITAE, as 
well as the computational expenses of both filters, 
are shown in Table 2. 
 
Table 2: Comparison between CEKF and MHE: 
ITAE and Computational Expenses.  
 

ITAE  
cA cB cC 

average CPU time 
per time step (s) 

CEKF 0.81 4.03 4.74 0.06 
MHE  (N=2) 0.71 3.24 3.77 2.61 
MHE  (N=4) 0.69 3.24 3.74 9.42 

 
Even with the MHE considering a size horizon of 

4, the average CPU time per time step is smaller than 
the sampling period (0.25 min). Thus, both CEKF 
and MHE are suited for this case study. 

However, MHE presented a computational effort 
2 orders of magnitude larger than CEKF and, hence, 
it is not justified for this process as the improvement 
of estimation results is marginal: from 12 to 20% 
considering a size horizon of 2 and from 15 to 20% 
considering a size horizon of 4.  Therefore, due to 
the small computational effort of CEKF, the possi-
bility of incorporating constraints into an optimiza-
tion problem, and the estimation results comparable 
to MHE, this approach seems to be the best choice 
for such a case study. 
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System Tending to Multiple Steady-States and Limit 
Cycles 
 

As a benchmark example, we have chosen a 
CSTR, as introduced by Torres and Tlacuahuac 
(2000). The following two exothermic irreversible 
first-order reactions in series take place in the reactor: 
 

1 2k kA B C⎯⎯→ ⎯⎯→           (52) 
 

The reactor volume and physical parameters are 
assumed to remain constant; perfect mixing is also 
assumed. In addition the dynamics of the cooling 
jacket are taken into account. 

The dimensionless model equations are given 
below and the dimensionless parameters are defined 
in Table 3. More details on the model can be found 
in Torres and Tlacuahuac (2000). 
 

( ) ( )1
1 1 1 3f

dx q x x x x
d

= − − η φ
τ

       (53) 

 

( ) ( ) ( )2
2 2 2 2 3 1 3= − − +f

dx q x x x S x x S x
d

φ η φ η
τ

  (54) 

 

( ) ( )

( ) ( )

3
3 3 4 3

1 3 2 2 3

= − − −

+ +⎡ ⎤⎣ ⎦

f
dx q x x x x
d

x x x x S

δ
τ

βφ η α η
     (55) 

 

( ) ( )( )4
1 4 4 2 3 4c f

dx q x x x x
d

= − + −δ δ δ
τ

    (56) 

 
where x1 is the dimensionless concentration of reac-
tant A, x2 is the dimensionless concentration of reac-
tant B, x3 is the dimensionless reactor temperature, 
and x4 is the dimensionless cooling jacket tempera-
ture. The dimensionless cooling water volumetric 
flowrate, qc, is the manipulated variable. 

Torres and Tlacuahuac (2000) have analyzed 
input/output multiplicities of the full model using qc 
as continuation parameter. In the bifurcation diagram 
of Figure 7, five steady-states and a bifurcation point 
were observed for x3 when qc=2.3. 

 
 

Table 3: Dimensionless Parameters of the CSTR (Torres and Tlacuahuac, 2000). 
 

1 A A fox C C=  ( )( )3 fo fox T T T= − γ  4 c fo fox T T T= − γ  
2 B A fox C C=  

1 foE RT=γ  
2 1E E=ψ  ( )oQ V t=τ  oq Q Q=  

c c oq Q Q=  p oUA C Q=δ ρ  
1 cV V=δ  2 p c pcC C=δ ρ ρ  

( ) ( )2 1fo foS k T k T=  ( ) ( )1o foV Q k T=φ  a A fo p foH C C T= −Δβ γ ρ b aH H= −Δ −Δα  

1 f A f A fox C C=  ( )( )3 f f fo fox T T T= − γ  ( )( )4 f cf fo fox T T T= − γ  2 f B f A fox C C=  

( ) 3
3 3exp 1 xx x

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
η

γ
 ( ) 3

2 3 3exp 1 xx x
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

η ψ
γ

   

 

 
 

Figure 7: Bifurcation diagram of CSTR with two 
Hopf bifurcation points and five steady-states: (—) 
stable steady-state, (- - -) unstable steady-state, (■) 
Hopf bifurcation. 
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The CSTR model parameter values used for 
generating Figure 7 are shown in Table 4. 
 
Table 4: CSTR Model Parameter Values (Torres 
and Tlacuahuac, 2000). 

 

β Ф δ q α S ψ δ1 δ2 γ x1f x2f x3f x4f 

8 0.133 1 1 1 0.01 1 10 1 1000 1 0 0 -1 

 
We define the state and measurements to be: 

 
[ ]1 2 3 4

Tx x x x x=           (57) 
 

[ ]1 2
Ty x x=             (58) 

 
[ ]0 0.01 2 8 6 Tx =           (59) 

 
We consider state estimators with the following 

parameters: 
 

2
0 4 40.05 xP I=             (60) 

 
1 0.1k kt t t −Δ = − =            (61) 

 
( )2 20.0001 0.001R diag=         (62) 

 
2

0 4 40.001Q I ×=             (63) 
 

[ ]T0 0.11 0.3 6 4x =          (64) 
 
 

RESULTS AND ANALYSES 
 

In this section we analyze the state estimator 
performances considering the operating region in 
which five steady-states and a Hopf bifurcation point 
were observed for x3 when qc=2.3 (cf. Figure 7). 
 
Comparison Between Unconstrained EKF For-
mulations 
 

The poor initial guess 0x  given by Eq. (64) was 
selected because it leads DEKF to converge to an 
undesirable steady-state. In the absence of any meas-
urement noise perturbation, RREKF and EKF-CRE 
were also applied to the CSTR. As shown in Figure 
8, both unconstrained formulations converged to the 
actual steady-state, which in fact is a limit cycle. 
Likewise for the first example, RREKF presents a 

slower convergence to the actual steady-state when 
compared to EKF-CRE. 
 

 
Figure 8: Comparison between DEKF, EKF-CRE 
and RREKF performances for a system tending to 
multiple steady-states. 
 

As mentioned before, RREKF disregards non-
dominant eigenvectors. For this example, we use a 
rank-one approximation and three non-dominant 
eigenvectors were eliminated: 
 

-1 -5

1, -1 -1

6.9199 10 6.6802 10

-2.1715 10 6.8848 10

T

eqυ
⎡ ⎤× ×

= ⎢ ⎥
× ×⎢ ⎥⎣ ⎦

 

 
-1 -3

2, -1 -1

-7.1769 10 3.9471 10

-3.0988 10 -6.2360 10

T

eqυ
⎡ ⎤× ×

= ⎢ ⎥
× ×⎢ ⎥⎣ ⎦  

 
-2 -2

3, -1 -1

7.7967 10 1.6892 10

-9.2549 10 -3.7027 10

T

eqυ
⎡ ⎤× ×

= ⎢ ⎥
× ×⎢ ⎥⎣ ⎦

   

 
At the equilibrium point [0.0038 0.2649eqx =  

]7.6441 1.6208 T , we observe that the eigenvectors  

1,eqυ  2,eqυ  and 3,eqυ  are bi-orthogonal to the tangent 
of the equilibrium curve (the scalar product is 
negative). These three eigenvectors are not 
considered in the rank-one covariance approximation 
and thus the filter applies no correction in their 
directions.  

Therefore, the RREKF applies correction only in the 
dominant eigenvector direction:

 
-3

4, 1.4697 10eqυ ⎡= ×⎣  
-1 -2 -39.9985 10 1.6874 10 3.7480 10

T
⎤× × × ⎦ . However, 

this estimator converges slowly to the actual steady-
state for this example. 
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Again, the state covariance matrix computed by 
EKF-CRE in a single stage presents a smaller condi-
tion number than the state covariance matrices com-
puted by DEKF, as shown in Figure 9.  

 
Figure 9: Comparison between the condition number 
of DEKF and EKF-CRE state covariance matrices 
for a system tending to multiple steady-states. 
 
Comparison Between Clipped DEKF and CEKF 
 

We have constrained DEKF with an ad hoc 
clipping strategy in order to prevent an undesirable 
steady-state. Nonetheless, the strategy of resetting to 
zero the negative update values did not perform well 
for this example and the clipped DEKF converged to 
the same undesirable steady-state as for the DEKF 
(cf. Figure 8). Thus, we selected stricter constraints 
for update values of the estimated states x3 and x4:  
 
if 3x̂ < 5, set 3x̂ = 5  
 
if 4x̂ < 0, set 4x̂ = 1.5 
 

The strategy of resetting to zero the negative 
update values was maintained for the measured 
states x1 and x2. 

The comparison between clipped DEKF and 
CEKF performances are shown in Figure 10.  

Although both formulations swiftly converged to 
the actual states, the CEKF performed slightly better 
than the clipped DEKF for the CSTR case, as shown 
in Figure 10. 

Finally, we also enlarged the MHE estimation 
window to N=2 for the CSTR case. In addition, the 
state covariance matrix of MHE was computed 
recursively using either the discrete Riccati equation 
(MHE-DRE) (Eq. (31) or the continuous Riccati 
equation (MHE-CRE) (Eq. (26) applied to each 
horizon step). The comparison between the CEKF, 

MHE with DRE (N=2) and MHE (N=2) with CRE 
performances is shown in Figure 11. 
 

  
Figure 10: Comparison between clipped DEKF and 
CEKF performances for a system tending to multiple 
steady-states until t=2. 
 

 
Figure 11: Comparison between CEKF, MHE using 
DRE (N=2) and MHE (N=2) with CRE performances 
for a system tending to multiple steady-states until 
t=2. 
 

According to Figure 11, MHE is superior to 
CEKF to swiftly converge to the actual states. Since 
CRE is not subject to errors due to model discretiza-
tion, it is not surprising that MHE-CRE presents 
more accurate estimates of states.   

The comparisons between the Integral Time Ab-
solute Error (ITAE) and the computational expenses 
of CEKF, MHE-DRE and MHE-CRE are presented 
in Table 5. Such values were calculated for 20 time 
units, while Figures 10 and 11 were illustrated up to 
2 time units for better visualization of the conver-
gence. In this case, the improvement of the estima-
tion when MHE is implemented is expressive: 
around 80% considering a size horizon of 2 in MHE-
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DRE and around 90% considering a size horizon of 2 
in MHE-CRE. However, the improvement of esti-
mation when MHE is implemented is reflected in a 
higher computational effort: 3 orders of magnitude 
larger. 
 
Table 5: Comparison between CEKF and MHE-
DRE and MHE-CRE: ITAE and Computational 
Expenses. 

 
ITAE  

x3 x4 
average CPU time 
per time step (s) 

CEKF 0.30 0.09   0.01 
MHE-DRE (N=2) 0.06 0.02 20.42 
MHE-CRE (N=2) 0.03 0.01 34.82 

 
In the case study reference (Torres and Tlacuahuac, 

2000), the variables are dimensionless and nothing is 
said about the original units. However, in order to 
estimate the non-measured states, we suppose a sam-
pling time of 0.1.  If this value were in hours, which 
is proper to obtain concentrations measurements, 
both CEKF and MHE are suited for this case study.   

It has been seen that MHE provides improved 
state estimation and presents greater robustness to a 
poor guess of the initial state. However, after con-
verging to the actual states, both MHE and CEKF 
perform equally accurately and, therefore, the use of 
MHE becomes needless for the systems studied in 
this work.  

In practice, however, chemical engineering sys-
tems are frequently subject to unexpected process 
disturbances. Because MHE employs a trajectory of 
measurements during the state estimation, it shall 
present a better performance when compared to 
CEKF to handle with such problem. 
 
 

CONCLUSION 
 

This paper outlines the performance of the state 
covariance matrices used in three unconstrained Ex-
tended Kalman Filter (EKF) formulations and one 
constrained EKF formulation (CEKF), for two 
chemical engineering examples tending to multiple 
solutions. 

The first example is a batch reactor with reversi-
ble reactions whose system model and measurement 
are such that multiple states satisfy the equilibrium 
condition. With a measurement noise perturbation, 
we outline a condition that led a classical EKF for-
mulation (DEKF) to converge to physically unrealiz-
able or undesired states. According to our results, 
EKF-CRE and RREKF are more numerically robust 

in computing the state covariance matrix than DEKF. 
As both formulations avoided an increase in error 
propagation due to a measurement noise perturba-
tion, they were able to converge to the actual steady-
state. Thus, a suitable choice of the EKF formulation 
based on the state covariance matrix equation is es-
sential to prevent physically unrealizable states. 
However, due to the poor guesses of the initial state 
and its state covariance matrix for the batch reactor, 
EKF-CRE and RREKF did not prevent physically 
unrealizable states during the batch. The clipped 
DEKF has been seen as a reasonable alternative to 
prevent physically unrealizable states, although this 
approach converges slowly to the actual states and 
disregards the assumption that the measurement 
noise is a Gaussian random noise and that clipped 
state estimates violate the process model. On the 
other hand, the CEKF can be seen as the best tech-
nique for systems with such behavior due to the pos-
sibility of incorporating constraints into an optimiza-
tion problem minimizing the noise in a least square 
sense, preventing bad noise distribution. Besides, it 
is simpler, computationally less demanding than the 
MHE, and has comparable performance. 

The second example is a CSTR with exothermic 
irreversible reactions and cooling jacket, whose 
nonlinear behavior includes multiple steady-states 
and limit cycles. The results for the CSTR demon-
strate that, similar to the batch reactor case, EKF-
CRE and RREKF converged to the actual steady-
state. However, the clipped DEKF and CEKF pre-
sented faster convergence to the actual states, and the 
CEKF performed slightly better than the clipped 
DEKF for this example. Contrary to the batch reac-
tor, MHE presented a superior performance for the 
CSTR case. Further, we demonstrated that MHE 
performs better when the state covariance matrix is 
computed recursively using the continuous-time 
Riccati equation.  

Since MHE employs a trajectory of measure-
ments as opposed to measurements at only a single 
time, it is better suited than the CEKF (MHE with a 
zero horizon length) to handle a poor guess of the 
initial state and unexpected process disturbances. In 
these circumstances, it can be possible for the CEKF 
to fail to converge swiftly to the actual states. Hence, 
an adaptive strategy to select the MHE horizon 
length shall be considered for future work. For this 
purpose, the state estimation quality is evaluated 
through sensitivity analyses to trigger the horizon 
length augment when necessary. This approach aims 
to handle effectively the divergence issue while re-
quiring only a minimum size of horizon length, re-
ducing the online computational expense. 
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