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Abstract - Direct-quadrature generalized moment based methods were analysed in terms of accuracy, 
computational cost and robustness for the solution of the population balance problems in the [0, )∞  and [0,1]  
domains. The minimum condition number of the coefficient matrix of their linear system of equations was 
obtained by global optimization. An heuristic scaling rule from the literature was also evaluated. The results 
indicate that the methods based on Legendre generalized moments are the most robust for the finite domain 
problems, while the DQMoM formulation that solves for the abscissas and weights using the heuristic scaling 
rule is the best for the infinite domain problems. 
Keywords: Population balance; Numerical methods; DQMoM; Generalized moments; Condition number. 

 
 
 

INTRODUCTION 
 

There is a need to develop accurate and robust 
techniques for analysing the dynamics of particle 
systems. A proper way to obtain the evolution of the 
particle size distribution involves the solution of the 
population balance equation (PBE). The PBE is the 
conservation equation for the number of particles, 
represented by the mean number density distribution, 
which is a function of one or more particle properties, 
the internal variables, the position in the physical 
space, the external variables, and time (Ramkrishna, 
2000). 

There are several numerical methods for solving 
the PBE. Among them, moment based methods are 
been continuously developed. The method of mo-

ments (MoM) (Hulburt and Katz, 1964) solves the 
moments of the number density distribution. 
Considering a mono-variate distribution ),( tzf  in a 
semi-infinite domain, )[0,∞∈z , the essence of this 
method is to operate the PBE with the moment 
integral operator, ∞⋅∫

∞
,0,1,=,

0
…kdzz k , to generate 

differential equations for the moments of k -order, 
kμ . Despite being simple, this method has a closure 

problem because higher-order moments are usually 
present in the lower-order moment equations 
(Friedlander, 2000). McGraw (1997) proposed a 
methodology to solve this closure problem by 
approximating the integral terms in the moments 
equations using a N -point Gauss-Christoffel quadra-
ture rule, that is, the Gaussian quadrature whose 
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weight function is the particle number density 
function. This quadrature rule can be calculated from 
the first N2  moments (Gordon, 1968; Gautschi, 
1968, 2004) and it can exactly integrate polynomials 
to the order 12 −N . Therefore, it can be used to 
calculate exactly the first N2  moments: 
 

…0,1,=,=),(=
1=

0
kdztzfz k

N
k

k αα
α

ωεμ ∑∫
∞

      (1) 

 
which form a non-linear system of equations that 
determines the quadrature weights, αω , and abscis-
sas, αε . The method was called QMoM (Quadrature 
Method of Moments). 

Since the integral approximations derived from 
the Gauss-Christoffel quadrature can also be ob-
tained by assuming the discrete representation of the 
distribution function given by: 
 

)],([)(),(
1=

tzttzf
N

αα
α

εδω −≈ ∑           (2) 

 
Marchisio and Fox (2005) developed the idea of 

solving directly for the quadrature by substituting 
Equation (2) into the PBE and then applying the 
moment integral operator. They chose to solve for 
the weights and weighted abscissas, ααα εωλ = . This 
method, called DQMoM (Direct QMOM), does not 
calculate the Gauss-Christoffel quadrature in each 
time step, but it needs an initial discretization of the 
distribution function that can be given by the Gauss-
Christoffel quadrature. 

Several variants of QMoM and DQMoM have 
been developed. In the following, those that analysed 
these methods numerically are reviewed. 

Alopaeus et al. (2006) proposed the usage of 
quadrature rules with fixed quadrature points (Fixed-
Quadrature MoM, or FQMoM). This approach 
avoids some robustness and accuracy problems 
associated with the Gauss-Christoffel quadrature 
computation. By analysing several problems, they 
concluded that FQMoM was better than QMoM in 
accuracy and computational cost. 

Fox (2006) applied the DQMoM to bivariate 
problems, including coagulation and sintering. Due 
to coagulation, very large particle sizes can be 
produced and he recommended an heuristic rule to 
reduce the condition number of the DQMoM system 
of linear equations. The condition number of the 
matrix of a linear system is the ratio of the largest to 
the smallest singular value in the singular value 
decomposition of this matrix. It measures the loss of 
accuracy in the  computation of the linear system 

solution. If it is low, the system is said to be well-
conditioned and, if it is large, the system is ill-
conditioned. Its reduction by a linear transformation 
or operator can reflect positively on the stability of 
the DQMoM solution due to the increased accuracy 
of its linear system solution. This rule proposed by 
Fox (2006) basically scales each equation of the 
linear system by dividing it by an adequate power of 
the largest abscissa. 

Su et al. (2007) proposed the usage of an 
adjustable factor, s , in QMoM, whose purpose is to 
improve the robustness in the the Gauss-Christoffel 
quadrature calculation. Basically, they used fractional 
moments given by: 
 

αα
α

ωεμ sk
N

sk
sk dztzfz /

1=

/

0/ =),(= ∑∫
∞

         (3) 

 
and defined szz 1/=~  as equivalent abscissas, which 
were then calculated by the product-difference 
algorithm (Gordon,1968). 

Afterwards, Su et al. (2008) applied the same 
idea to DQMoM, but using an adaptive procedure to 
choose the value of the adjustable factor, calling the 
method Adaptive DQMoM (ADQMOM). The value 
of the adjustable factor was determined by a search 
procedure based on the condition number of the 
ADQMoM system of linear equations. 

Attarakih et al. (2009) proposed the sectional 
QMoM (SQMoM) focusing on reconstructing the 
distribution function. The domain is divided into 
sections whose sectional moments are then used to 
determine a quadrature for each section, as in 
QMOM. Although the Gauss-Christoffel quadrature 
was also used, they recommended an equal-weight 
quadrature with better numerical properties. An 
interesting advantage of this method is that integral 
properties are not very sensitive to the reconstructed 
distribution. 

All the direct quadrature moment methods 
described above used the monomial moment integral 
operator and the formulation based on the weights 
and weighted abscissas. 

On the other hand, Grosch et al. (2006) presented 
a generalized framework for the quadrature method 
of moments that is based on the concepts of 
generalized moments and coordinate transforma-
tions. In analogy to the QMoM, this framework 
transforms the PBE using the generalized moment 
integral operator, dzzk ⋅∫

∞
)(

0
φ , where )(zkφ  may be an 

orthogonal polynomial  (QMoGeM). They formulated 
the QMOM equations as a differential algebraic 
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system of equations (QMoM-DAE) by solving the 
QMoM moment equations simultaneously with: 

 

αα
α

φ ωεφφμ )(=),()(=
1=

0 k

N

kk dztzfz ∑∫
∞

        (4) 

 
They also derived a method by applying an index 

reduction procedure to QMoM-DAE, which produced 
the DQMoM in terms of weights and abscissas when 
the monomial polynomial basis was used, which is 
called here DQMoMa. The framework developed by 
Grosch et al. (2006) also includes the DQMoM 
developed by Marchisio and Fox (2005), the QMoM 
developed by McGraw (1997) and their variations 
with generalized moments (DQMoGeM). Grosch    
et al. (2006) tested these variants of QMoM by 
comparing their solutions of mono-variate PBE 
problems in the semi-infinite domain to those ob-
tained by the Parsival solver (Wulkow et al., 2001), 
which ensures a specified tolerance by using a hp-
adaptive discontinuous finite elements method. 
Grosch et al. (2006) concluded that the methods 
based on Laguerre generalized moments were only 
marginally more robust than the corresponding 
methods using the monomial moments. They 
recommended the usage of the DQMoM formulation 
derived using the monomial moment integral 
operator and solved in terms of the quadrature 
weights and abscissas because of its good robustness 
and low computational cost. 

Although Grosch et al. (2006) did analyse the 
numerical behavior of quadrature moment methods 
using generalized moments, the analysis was limited 
to Laguerre generalized moments due to the choice 
of population balance problems in semi-infinite 
domains. However, there is an increasing interest in 
moment methods for problems in finite domains 
(Strumendo and Arastoopour, 2008, Lage, 2011). 
Therefore, the main goal of the present work is to 
analyse the numerical properties of direct quadrature 
moment methods using generalized moments both in 
semi-infinite and finite domains with Laguerre and 
Legendre polynomials, respectively. The formula-
tions that solve either for the abscissas or for the 
weighted abscissas were also compared. 
 
 

POPULATION BALANCE MODELING 
 

Consider the population balance equation with an 
unique additive internal variable, z , represented by 
the following form of the PBE: 

),()(),()|()(=),( tzfzbzdtzfzzPzb
dt

tzdf maxz

z
−′′′∫ν  

 

zdtzftzzfzzza
z

′′′−′′−+ ∫ ),(),(),(
2
1

0
        (5) 

 
),(),(),(),(

0
tzRzdtzftzfzzamaxz

+′′′− ∫  

 
where ),( zza ′  is the aggregation frequency of the 
particles with property z  and z′ , )(zb  is the 
breakage frequency of a particle with the property z  
and )|( zzP ′  is the daughter probability distribution 
function for the breakage of a particle with property 
z′ , ν  is the mean number of particles formed in the 
breakage process and R  is an additional source term, 
which can represent, for instance, nucleation or 
growth. The first and the second terms are, respec-
tively, the birth and death terms for breakage, and 
the third and the fourth are the corresponding terms 
for aggregation. 
 
 

DIRECT QUADRATURE METHODS 
 

Following Marchisio and Fox (2005), the 
DQMoGeM is derived by substituting Equation (2) 
into the PBE and then applying the generalized 
moment integral operator. It is then possible to 
define the following formulations. 
 
Formulation Using Weights and Weighted-Abscissas 
(DQMoGeM) 
 

= , = , = 1, ,d d N
dt dt

α α
α α

ω λθ ρ α         (6) 

 
which must be solved together with the following 
system of linear equations: 
 

=1 =1

( ( ) ' ( )) ' ( )

= , = 0, ,2 1

N

k k k

k

N

S k N

α α α α α α
α α

φ ε ε φ ε θ φ ε ρ− +

−

∑ ∑
        (7) 

 
where kS  is defined below. If k

k zz =)(φ , the 
DQMoGeM is reduced to the standard form of 
DQMoM. Fox’s (2006) heuristic rule consists of 
dividing the k  equation of Equation (7) by k

maxε , 
where jjmax εε max= ∀ . 
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Formulation Using Weights and Abscissas 
(DQMoGeMa) 
 

N
dt

d
dt

d ,1,=,=,= αυ
ε

θ
ω

α
α

α
α         (8) 

 
which must be solved together with the following 
system of linear equations: 
 

1,20,=,=)(')(
1=1=

−+∑∑ NkSkk

N

k

N

ααα
α

αα
α

υεφωθεφ  (9) 

 
If k

k zz =)(φ , the DQMoGeMa is reduced to what 
is called here as the DQMoMa. 
 
Source Terms Due to Aggregation and Breakage 
 

Using the Gauss-Christoffel quadrature approxi-
mation, the sources terms in the system of linear 
equations are given by:  
 

0
( ) = ( ) ( , )

= ( ) ( ) ( ) ( ) ( )

zmax
k k

a a b b
k k k k k

S t z S z t dz

B t D t B t D t R t

φ

− + − +

∫
    (10) 

 
where:  
 

=1 =1

( ) = ( , ) ( )

1= ( )
2

a a
k

D

N N

k

B t B z t z dz

aα β αβ α β
β α

φ

φ ε ε ω ω+

∫

∑∑
      (11) 

 

βααβα
αβ

ωωεφφ adzztzDtD k

NN
a

D

a
k )(=)(),(=)(

1=1=
∑∑∫    (12) 

 

ααα
α

ωεφφ )(=)(),(=)(
1=

k

N
b

D

b
k bdzztzBtB ∑∫      (13) 

 

=1

( ) = ( , ) ( ) = Π∑∫
N

b b k
k

D
D t D z t z dz bα α α α

α

φ ν ω      (14) 

 
dzztzRtR

Dk )(),(=)( φ∫           (15) 

 

NdzzPzk
k ,1,=,)|()(=

0
αεφ α

αε

α ∫Π      (16) 

 
If k

k zz =)(φ  these terms become those of 
DQMoM and QMoM (Marchisio and Fox, 2005). It 
is important to point out that Equations (15) and (16) 

are calculated analytically or by an adaptive 
quadrature with error control. 

 
 

NUMERICAL PROCEDURE 
 

The implementation of the PBE solution was 
performed in C and FORTRAN. The source codes 
were compiled with gfortran and g++ using the -03 
high optimization flag with double precision 
variables. The work was carried out on an Intel(R) 
Core(TM)2 Quad CPU Q6600 2.40GHz processor 
with Ubuntu 10.04 Linux operating system. 

The integration of Equations (15) and (16) was 
performed using the adaptive quadrature AUTOQUAD 
routine (Lage, 1992). The ORTHOPOL package 
(Gautschi, 1994) was used to calculate the recursion 
coefficients of the orthogonal polynomials. For the 
initial conditions, the modified Chebyshev algorithm 
was used to obtain the Gauss-Christoffel weights and 
abscissas from the initial values of the generalized 
moments (Gautschi, 1994). 

The time integration was performed using the 
DASSLC package (Secchi, 2007), an adaptive time 
step and variable order integrator based on backward 
differentiation formulas, with required relative and 
absolute tolerances equal to 1010− . This made the 
time integration error much smaller than the quadra-
ture error embodied in these quadrature moment 
methods. 

An evaluation of the computational time for all 
methods was performed for 1.0  second of simulation. 
The clock intrinsic subroutine of g++ was used to 
obtain the elapsed CPU  time in seconds with 0.01 s  
of accuracy. 

The computation of the condition number of the 
coefficient matrix, A , of the system of linear equations 
given by Equation (7) or Equation (9) was carried 
out by DGTRF and DGECON routines of the 
LAPACK package (Anderson et al., 1999). 

In order to evaluate whether the robustness of the 
solution of the linear system of equations could be 
improved, a diagonal pre-conditioner, )(= pP diag  
was applied to the linear system given by Equation 
(7) or (9) and the minimum condition number 
(Marechal and Ye, 2009) of the resulting coefficient 
matrix was obtained by defining the following 
minimization problem: 
 

( )[ ]PA
p

CNminCN
N

min
2

=
ℜ∈

          (17) 

 
This minimization was performed with the 
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NLOPT package (Johnson, 2008). The results obtained 
for the minimum condition number of DQMoM were 
compared against the condition number obtained 
using the heuristic rule proposed by Fox (2006). 

 
 

RESULTS AND DISCUSSION 
 

The methods presented in section "Direct Quadrature 
Methods" were applied to four test cases for which 
analytical solutions are known using the two 
formulations derived with the monomial (DQMoM 
and DQMoMa) and generalized moment 
(DQMoGeM and DQMoGeMa) integral operators. 

The first two test cases used the population 
balance problem in a semi-infinite domain described 
in Equation (7) and the solution can use the monic 
Laguerre generalized moments. Case I is aggregation 
dominant with 0.5=)(∞Φ  and case II is breakage 
dominant with 2=)(∞Φ . Both cases were solved up to 

1=t , where steady-state is basically reached. The 
last two test cases are for a pure breakage problem in 
a finite domain as given in Equation (8) and they can 
be solved using monic shifted Legendre generalized 
moments. Case III defines 2=γ  and it is easier to 
solve than case IV with 1/3=γ . Cases III and IV were 
solved up to 5=t . 

These problems are sufficiently simple to allow 
all methods to converge for relatively small N  
values. In other words, if a relatively small N  is 
used, the quadrature errors are not too large to 
generate two abscissas close to each other during 
integration. This is a well-known problem that would 
render the matrix of the system of linear equations 
singular, which would make the method comparison 
difficult. It should be pointed out that the breakage 
and aggregation kernels do not affect directly the 
coefficient matrix of the linear system of equations 
in these methods. 
 
Convergence Analysis 
 

Since the analytical solutions are known, the 
relative error of each regular moment can always be 
calculated by: 
 

)(

)(

= e
k

k
e

k
kX

μ
μμ −             (18) 

 
where )(e

kμ  are the analytical moments and kμ  are 
the moments reconstructed from the numerical 
solution using Equation (1). Since the first six 

moments are used in the solution for 3≥N , the 
convergence of the quadrature moment methods was 
evaluated using their mean square relative error:  
 

2
5

0=
,6 6

1= k
k

RMS XX ∑            (19) 

 
The regular moments were used to evaluate the 

convergence even for the methods that use 
generalized moments. 

Figure 1 shows the time evolution of ,6RMSX  for 
cases I, II, III and IV solved with 5=N . All cases 
show initial ,6RMSX  values of the order of the required 
integration tolerances, but they increase during the 
integration due to the accumulation of quadrature 
error along the time integration. Nevertheless, at the 
end of the simulations, although the final ,6RMSX  
values vary from case to case, the errors are still 
acceptable. As expected, the largest error is for case 
IV, due to the fact that the breakage frequency in this 
case does not belong to the space of polynomials, 
which increases the quadrature error. 

The ,6RMSX  values in the solution of all cases by 
all methods are compared in Figure 2 for several N  
values at the end of the simulations. Two kinds of 
convergence behavior can be seen in Figure 2 that 
are exemplified for the simulations of case III. The 
first behavior can be seen in the DQMoGeM and 
DQMoGeMa simulations, which converge with an 
almost constant rate up to a ,6RMSX  value that is about 
1-2 orders of magnitude larger than the tolerance in 
the time integration used in DASSLC. Then, for 
large N  values, the ,6RMSX  value remains almost 
constant, indicating that the accumulated time 
integration error becomes more important than the 
quadrature error. The second kind of behavior can be 
seen in the DQMoM and DQMoMa simulations for 
case III, which converges with an almost constant 
rate up a N  value where the convergence rate 
decreases and, sometimes, the ,6RMSX  value even 
increases. For even larger N  values, the solution 
could not be completed because the DASSLC 
routine could not perform the integration with the 
required local accuracy due to the numerical error in 
the solution of the linear system of the moment 
method. In other words, both behaviors can be 
explained by the following reasoning. If the linear 
system of the direct quadrature moment method is 
well-conditioned, the convergence rate is almost 
constant until N  increases up to a point when the 
time integration error became larger than the 
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(a) (b) 

  
(c) (d) 

Figure 1: Behavior of ,6RMSX  during simulation using 5=N  for: (a) case I, (b) case II, (c) case III and   
(d) case IV. 

 
 
quadrature error, when ,6RMSX  becomes almost 
constant. However, if the linear system becomes ill-
conditioned, the numerical error deteriorates the 
convergence or even makes the DASSLC routine 
give up trying to perform the integration. This lack 
of robustness caused by the numerical error in the 
linear system solution is analysed in section 
"Robustness Analysis". 
 
Computational Cost 
 

Figure 3 shows the computational time for several 
values of N  for all methods and for all test cases. 
Again, two behaviors can be perceived and they are 
again exemplified for case III. The first one can be 
seen in the DQMoGeMa solution, for which the

computational time of the simulation steadily 
increases with N . The second behavior occurs for all 
other methods for case III, but the DQMoM and 
DQMoMa simulations are better examples. In this 
behavior, the computational time versus N  value 
curve suffers a strong slope change at some N  
value. Again, this abnormal change of slope is 
related to the loss of robustness, which makes the 
DASSLC routine spend much more time to achieve 
the required tolerance. 

It is clear from Figure 3 that, before losing 
robustness, DQMoM and DQMoMa are faster than 
the generalized moment methods. In infinite domain 
problems, they are 10 times faster but, for the finite 
domain problems, the generalized moment methods 
are only 3-4 times slower. 
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(a) (b) 

  
(c) (d) 

Figure 2: Values of ,6RMSX  at the end of the simulation using several N  values for: (a) case I, (b) case II, 
(c) case III and (d) case IV. 

 
Robustness Analysis 
 

It is usually considered that the loss of robustness 
in these methods comes from the numerical error 
embodied in the solution of the linear system of 
equations, Equations (7) and (9), as its matrix 
becomes singular. For some problems, this happens 
when two abscissas become very close to each other 
due to error accumulation during the solution. For 
this case, there are some solutions. One of these is 
the usage of a fractional moment operator with an 
adapted parameter to create a different linear system 
with a better condition number (Su et al., 2008). The 
other solution is to keep the same moment integral 
operator and scale the equations (Fox, 2006). Here 
we analysed this last solution in a systematic way. 

The condition number of the coefficient matrix of 
the unscaled linear system of equations, Equations 
(7) and (9), was evaluated for each simulation that 

could be integrated up to its final time value and 
exactly at this instant. The minimum condition 
number using a diagonal pre-conditioner was also 
obtained at this time to verify if the solution could be 
improved by scaling. 

Figure 4 shows the condition number obtained for 
all test cases and methods without any scaling and 
for different N  values. Regarding the two formula-
tions of the methods, this figure clearly shows that 
there is no significant difference in the condition 
number values for both formulations of the same 
method. For case I, there is not much difference 
between the condition numbers for all methods. On 
the other hand, for all other cases, especially for the 
finite domain problems, the generalized moment 
methods have smaller condition numbers than those 
for the monomial moment methods. For case I, 
although the values of the condition numbers are 
close for all methods, DQMoMa has shown to be
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(a) (b) 

  
(c) (d) 

Figure 3: Computational time using several N  values for: (a) case I, (b) case II, (c) case III and (d) case IV. 
 

more robust than the other methods. For case II, it 
was as robust as DQMoGeMa, although its condition 
number is 810  times larger than that for DQMoGeMa 
at 11=N . This behavior was also found by Grosch 
et al. (2006), who compared methods using monomial 
and Laguerre generalized moments. For the finite 
domain problems, the condition number values are 

32 1010 −  times smaller for the Legendre generalized 
moment methods. This fact is reflected in the method 
robustness, as cases III and IV could be solved by 
DQMoGeM and DQMoGeMa using N  values above 
30, while DQMoM and DQMoMa could not be 
employed above 10 quadrature points. This was not 
observed by Grosch et al. (2006) because they did 
not solve problems in finite domains. 

In order to verify the possible robustness gain by 
the scaling of the coefficient matrix, all test cases 
were solved by all methods using a diagonal pre-
conditioner obtained at time zero by an optimization 
procedure. Figure 5 shows the ratio between the 
minimum condition number and the condition

number for all test cases and methods and for 
different N  values at the end of the simulations. For 
the problems in a semi-infinite domain, the reduction 
of the matrix condition number by scaling increases 
almost exponentially, and a 1510 1010 −  reduction is 
achieved for 10=N . For the finite domain problems, 
the condition number was only sligthly affected by 
the optimization for DQMoM and DQMoMa. 
However, the values of the minimum condition 
number were much smaller than the original CN  
values for both DQMoGeM and DQMoGeMa, which 
are related to the use of the Legendre polynomial 
moments. The ratio between the minimum and the 
original condition numbers drops very fast with N . 
The robustness gain was large, as the maximum N  
value in the solution of cases III and IV increased 
from around 30 to above 50. Therefore, the 
optimization procedure applied at 0=t  was a very 
effective way of improving the robustness of the 
quadrature methods based on Legendre polynomial 
moments applied to finite domain problems.  
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(a) (b) 

  
(c) (d) 

Figure 4: Condition number of the coefficient matrix of all methods using several N  values for: (a) case I, 
(b) case II, (c) case III and (d) case IV. 

 
 

A sensitivity analysis was carried out to verify if 
the CNCNmin /  behavior depends on the breakage 
kernel parameters. The parameters )(∞Φ  and γ  of 
cases I and III were modified to 0.1=)(∞Φ  and 3=γ , 
generating cases V and VI, respectively. The corre-
sponding results for CNCN min /  are shown in Figure 6. 
It can be seen that these perturbations in the 
parameters do not change the CNCNmin /  behavior 
observed in Figures 5(a) and 5(c). Besides, the 
robustness improvement was the same. It seems to 
be independent of the dynamics of the problem. 

The heuristic rule of Fox (2006) was extended for 
all methods and for cases I and III. Figure 7 shows 
the ratio between the minimum condition number 
and the condition number calculated employing this 
heuristic rule evaluated at the end of the simulations, 
using all methods and for different N  values. 

For case I, Figure 6 shows that the heuristic rule 

proposed by Fox (2006) reduces significantly the 
condition number of the original linear system of 
equation of DQMoM and DQMoMa since the 

Foxmin CNCN /  value is almost always between 0.1 and 
1 for these methods. The rule also worked reasona-
bly well for the Laguerre generalized moment 
methods ( 510 / 0.3−

min FoxCN CN ), probably because 
monic polynomials were used and the semi-infinite 
domain generates large abscissa values that make the 
largest order polynomial term much larger than the 
others. In these problems in semi-finite domains, the 
robustness gain obtained was not too impressive, as 
both scaling rules allowed us to obtain the solution 
for only one more quadrature point for case I solved 
by DQMoM and DQMoMa. 

As can be seen in Figure 6, Fox’s rule did not 
work at all for case III using Legendre polynomial 
moments. The behavior of Foxmin CNCN /  for case III 
was basically equal to that of CNCN min /  shown in



 
 
 
 

652             F. P. Santos, P. L. C. Lage and C. E. Fontes 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

  
(a) (b) 

  
(c) (d) 

Figure 5: Reduction of the condition number of the coefficient matrix of all methods by minimization 
using several N  values for: (a) case I, (b) case II, (c) case III and (d) case IV. 

 
Figure 5. This was expected as the largest abscissa is 
not related to the value of )( αεφk  for the Legendre 
polynomials in the [0,1] domain. Besides, no 
robustness gain was obtained for the finite domain 
problems for all methods using Fox’s heuristic

scaling rule. On the other hand, as commented 
above, the optimization procedure applied to this 
case increased the robustnesses of the DQMoGeM 
and DQMoGeMa solutions. This behavior was also 
observed for cases V  and VI. 

 

  
(a) (b) 

Figure 6: Reduction of the condition number of the coefficient matrix of all methods by minimization 
using several N  values for: (a) case V and (b) case VI (sensitivite analysis). 
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(a) (b) 

Figure 7: Reduction of the condition number of the coefficient matrix of all methods by minimization 
using several N  values for: (a) case I and (b) case III. 

 
 
Figure 8 shows the ratio between the computa-

tional time of the simulations using the minimum 
condition number and Fox’s heuristic scaling rule for 
cases I and III and for several N  values. This ratio 
decreases with N  because the simulation time 
increases faster with N  than the optimization time. 
For case I, both methods have the same robustness 
but Fox’s heuristic scaling rule is computationally 
much cheaper. This is expected to happen for all 
semi-infinite domain problems for which the 
computational cost of the optimization procedure 
used to calculate minCN  at 0=t  is a large fraction of 
the total computational time. For case III, the 

 scaling using the optimization procedure for minCN  
determination is more robust than Fox’s heuristic 
scaling rule and Figure 7 shows that its additional 
computational cost becomes less important as N  
increases. The strong slope change in the curves for 
DQMoM and DQMoMa are related to the loss of 
robustness, which makes the simulation time become 
larger than the optimization time. Therefore, for 
Legendre moment methods applied to problems in 
finite domains, it is expected that the computation of 

minCN  is justified due to the increased robustness, 
especially when the simulation time is quite large, as 
in PB-CFD simulations. 

 
 

  
(a) (b) 

Figure 8: Ratio between the computational time of the simulations using the minimum condition number 
and the condition number obtained by Fox’s (2006) rule for all methods using several N  values for: (a) 
case I and (b) case III. 
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CONCLUSIONS 
 

Direct quadrature methods based on regular and 
orthogonal polynomial moments were analysed 
using the weighted-abscissa and abscissa formula-
tions by solving population balance problems in 
semi-infinite and finite domains. The methods were 
compared regarding their accuracy, computational 
cost and robustness. 

The methods based on regular moments were 
always the fastest. However, they were the least 
robust for the finite domain test cases. For these 
problems, the Legendre generalized moment 
methods were the most robust. The DQMoM 
formulation based on the abscissas (DQMoMa) 
proved to be more robust than the weighted-abscissa 
formulation (DQMoM) for the problems in the semi-
infinite domain. 

The best scaling of the linear system of equations 
of all methods was obtained by global minimization 
of the condition number of the transformed coeffi-
cient matrix using a diagonal preconditioning matrix. 
The results showed only a small improvement over 
Fox’s heuristic rule for the methods based on regular 
moments applied to problems in the semi-infinite 
domain. In this case, both scaling methods allowed 
the PBE to be solved with only one extra quadrature 
point. For the methods based on regular moments, 
the optimization procedure did not give a robustness 
gain when applied to problems in the finite domain. 
On the other hand, for the methods based on 
Legendre polynomial moments, the scaling by 
optimization yielded a large reduction in the 
condition number, allowing the solution for a much 
larger number of quadrature points. 

The heuristic rule of Fox (2006) had almost the 
same performance as the scaling obtained by 
optimization for the problems in the semi-infinite 
domain, but with less computational cost. However, 
for problems in the finite domain, the scaling by 
minimizing the condition number was much better, 
inproving the method robustness. A sensitive analysis 
has shown that the results seem to be independent of 
the problem dynamics. 

Therefore, it can be concluded that, for problems 
in the semi-infinite domain, DQMoMa should be 
used with Fox’s (2006) scaling rule. This conclusion 
agrees with Grosch et al. (2006), who found that 
DQMoMa is better than other QMoM variations 
studied by them for semi-finite domain problems. 
However, for problems in finite domains, the 
generalized Legendre moment methods should be 
used with the scaling obtained by the minimization 
of the coefficient matrix condition number, 

especially if a large number of quadrature points is 
required or when the simulation time is large. 
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NOMENCLATURE 
 
A  coefficient matrix   
a  aggregation frequency  
B  birth term  
b  breakage frequency  
CN  condition number  
CT  computational time in 

seconds 
 

D  death term  
f  number density distribution 

function 
 

H  Heaviside step function  
N  number of quadrature points  
P  probability density function 

of breakage of particles 
 

P  preconditioning matrix  
p  pre-conditioner diagonal 

elements 
 

R  source term  
s  adjustable factor  

kS  moment of k  order of 
source term 

 

t  time  
X  relative error  
z  additive internal variable  
 
Greek Letters  
 
γ  breakage kernel parameter 

in the finite domain problem 
 

δ  Dirac delta function  
ε  abscissa  
λ  weighted abscissa  

kμ  moment of order k   
ν  number of particles formed 

in breakage 
 

ω  weight function  
Φ  the ratio (0))/( 00 μμ t    

)(∞Φ  value of )(tΦ  when ∞→t     
kφ  k  order polynomial  
Π  moment of order k  of P   
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θ  source in weight equation  
υ  source in abscissas equation  
ρ  source in weighted abscissa  
 
Superscripts  
 
a  aggregation  
b  breakage  
e  exact solution of standard 

moment 
 

 
Subscripts  
 
α  quadrature point  
β  abscissa  
φ  generalized moment  
Fox using Fox’s heuristic scaling 

rule 
 

OPT using the optimization 
procedure 

 

max  maximum  
min  minimum  

,6RMS  mean square relative error of 
the first six monomial 
moments 
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APPENDICES  
 
A) Population Balance Problem in a Semi-Infinite 
Domain 
 

The problem proposed by Patil and Andrews 
(1998), for which McCoy and Madras (2003) 
developed an analytical solution, was chosen to 
analyse the methods. The analytical solution is 
known for the initial condition: 
  

zezf −=,0)(             (A1) 
 
and for the aggregation frequency, breakage fre-
quency and daughter distribution function defined as: 
  

z
zzHzzPKzzaLzzb

′
−′′′ )(=)|(=),(,=)(   (A2) 

 
where K  was assumed to be 1 and L  is a constant 
calculated from a given )(∞Φ , defined below. The 
analytical solution is given by McCoy and Madras 
(2003):  
 

2 ( )( , ) = ( ) , ( )

1 ( )tanh( ( ) )
2= ( )

( ) tanh( ( ) )
2

z tf t z t e t

t

t

− ΦΦ Φ

⎡ ⎤
⎢ ⎥+ Φ ∞ Φ ∞
⎢ ⎥Φ ∞ ⎢ ⎥
⎢ ⎥Φ ∞ + Φ ∞⎢ ⎥
⎣ ⎦

   (A3) 

 
where )(∞Φ  is the value of )(tΦ  in the steady-state 
which is given by:  
 

(0)
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μ
μ

K
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∞Φ          (A4) 

 
The regular moments are given by 
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which, for 0=t , simplifies to 
 

)(1=(0) kk +Γμ                    (A6) 
 
B) Population Balance Problem in a Finite Domain 
 

Lage (2011) defined a pure binary breakage 
problem using 
 

zzzHzzPzzb ′−′′ )/(=)|(,=)( γ      (A7) 
 

For a given value of γ , a source term can be 
defined in order for the following analytical solution 
be valid: 
 

[0,1],2=),( ∈− − zetzf t         (A8) 
 
whose moments are given by: 
 

1
2=

+
− −

k
e t

kμ             (A9) 

 
For an integer value of γ , the breakage frequency 
)(zb  belongs to a finite dimensional polynomial 

space. Two cases were analysed with their corre-
sponding PBE source terms:  
 
• )2(1)(22=),(2= 2 tt eeztzR −− −−−⇒γ , and  
 

• 1/3)7(2127=),(
3
1= zeetzR tt −− −+−⇒γ .  
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