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Abstract - Neural networks and hybrid models were used to study substrate and product inhibition observed 
in the enzymatic hydrolysis of cellobiose at 40ºC, 50ºC and 55ºC, pH 4.8, using cellobiose solutions with or 
without the addition of exogenous glucose. Firstly, the initial velocity method and nonlinear fitting with 
Statistica were used to determine the kinetic parameters for either the uncompetitive or the competitive 
substrate inhibition model at a negligible product concentration and cellobiose from 0.4 to 2.0 g/L. Secondly, 
for six different models of substrate and product inhibitions and data for low to high cellobiose conversions in 
a batch reactor, neural networks were used for fitting the product inhibition parameter to the mass balance 
equations derived for each model. The two models found to be best were: 1) noncompetitive inhibition by 
substrate and competitive by product and 2) uncompetitive inhibition by substrate and competitive by product; 
however, these models’ correlation coefficients were quite close. To distinguish between them, hybrid models 
consisting of neural networks and first principle equations were used to select the best inhibition model based 
on the smallest norm observed, and the model with noncompetitive inhibition by substrate and competitive 
inhibition by product was shown to be the best predictor of cellobiose hydrolysis reactor behavior. 
Key words: Neural networks; Enzymes; Modeling; Product inhibition; Substrate inhibition; Cellobiose. 

 
 
 

INTRODUCTION 
 

Because of its abundance and easy renovation, 
cellulosic waste has recently been receiving lately 
increasing attention as an alternative energy source 
and raw material for industries. Cellulose 
corresponds to about 38% of all agricultural waste 
and 45% of all municipal waste (Bezerra, 1995). 

Cellulose is a linear polymer of D-anhydro-
glucose units linked by 1,4-β-D-glucosidic bonds 
that can be hydrolyzed by cellulosic enzymes or by 
acids and bases. Cellulosic enzymes catalyze the 
cellulose hydrolysis at 40 to 50ºC without forming 
undesirable products.  The enzyme system for the 
conversion of cellulose to glucose comprises endo-

1,4-β-glucanase, cellobiohydrolase and β-
glucosidase (also called cellobiase), which act 
sequentially and cooperatively to degrade crystalline 
cellulose to glucose. Cellobiase hydrolyzes the 
hydrolysis end dimmer, cellobiose, which as a rate-
limiting factor is generally responsible for regulation 
of the entire cellulose hydrolysis process, because 
both endoglucanase and cellobiohydrolase activities 
are often inhibited by cellobiose. Thus, cellobiase 
produces glucose from cellobiose and also reduces 
cellobiose inhibition during cellulose hydrolysis, 
allowing the cellulolytic enzymes to function more 
efficiently (Saha et al., 1994). Therefore, there is a 
big incentive to develop suitable modeling for 
cellobiose hydrolysis that depends on reaction 
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conditions (Aguado et al., 1995). 
An important feature in the kinetics of the 

hydrolysis of cellobiose is the occurrence of 
substrate and product inhibition. Several alternative 
models have been used for this kinetics (e.g. Grous 
et al., 1985; Dekker, 1986; Woodward and Wohlpart, 
1982).  

The objective of our work was to use neural 
network modeling to determine which of a set of 
alternative inhibition models provides the best data 
fit. The proposal is founded on the capability of 
artificial neural networks to be used as universal 
function approximators, and the technique is 
appropriate because its model structure can be 
considered generic in the sense that a little 
knowledge of the system is required for its 
determination (Willis et al., 1990). 
 

 
NEURAL NETWORKS AND HYBRID 

MODELING 
 

Neural networks are parallel-distributed systems 
formed of several elements, known as neurons or 
nodes, placed in layers. Generally, neural network 
processing corresponds to a weighed sum of the 
neuron input values with their weights, which will be 
the argument of a function, usually the sigmoid or 
logistic function, whose value is the neuron’s output. 

When neural networks are used to model a 
system, this model is said to be a black-box model. It 
was given this name due to the absence of any type 
of information about the system. On the other hand, 
conventional modeling is known as white-box 
because it is based on equations that describe the 
system and demonstrate some of its characteristics. 
The gray-box or hybrid models are a combination of 
the black-box and white-box models. In this type of 
model, system equations and neural networks are 
used simultaneously to describe the behavior of the 
system. Generally, in these models, neural networks 
are employed to approximate the parameters of the 
first principles balance equations. 

In process engineering, neural networks have a 
wide range of applications, such as process design 
and simulation, process supervision and control 
(Norgaard et al., 2000). Specifically, in relation to 
biotechnological processes, several studies can be 
found in the literature, such as the description of the 
α-amilase inactivation (Geeraerd et al., 1998), the 
prediction of the final concentration of ethanol in a 
batch fermentation process (Saucedo et at., 1994) 
and as a soft-sensor (McAvoy et al., 1992). 

Recently, neural networks have frequently been 

used within hybrid models, which provide a better 
performance for interpolation and extrapolation 
properties (van Can et al., 1998). Hybrid models 
have already been applied to bioreactors (Tholudur 
and Ramirez, 1996; Chen et al., 2000; James et al., 
2002; Patnaik, 2003), ethanol production by 
Sacharomyces cerevisae (Harada et al., 2000), and 
enzymatic production (Tholudur et al., 1996; 
Gonçalves, et al., 2002) and other processes. 

In this work, neural networks were utilized to 
describe the behavior of the inhibition parameter ki. 
The networks had the following inputs: the kinetic 
parameters, km, Vmax and ks, and initial substrate and 
product concentrations, S0 and Gi. The response of 
the neural network, i.e., the ki parameter, was fed 
into the mass balance equations of different 
inhibition hydrolysis models for the batch reactor to 
estimate the substrate conversion. 

Considering the available literature on cellobiose 
hydrolysis inhibition (Dekker, 1986; Grous et al., 
1985; Woodward & Wohlpart, 1982; Gong et al., 
1977), two types of substrate inhibition, namely 
uncompetitive and noncompetitive, and three types 
of product inhibition, namely competitive, 
uncompetitive and noncompetitive, were considered, 
yielding a combination of six inhibition models. Our 
goal was to determine which inhibition model best 
fits our data. 
 
Low Hydrolysis Conversion Models 

 
At the beginning of the cellobiose hydrolysis 

reaction, product concentration (glucose, G) is very 
low and only substrate inhibition needs to be taken 
into account. Therefore, under this condition, the 
number of inhibition model alternatives is reduced to 
two and the reaction rate equations can be written as 
(Calsavara, 1998) 

 
§ Model U: uncompetitive substrate inhibition with 
G → 0: 
 

max
2

S V
V

S
S km

ks

=
+ +

                                    (1) 

 
§ Model N: noncompetitive substrate inhibition 
with G → 0: 
 

max
2

S V
V

S S
S km 1

ks ks

=
 + + + 
 

                                       (2) 
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where S and ks are the substrate concentration and 
substrate inhibition constant, V is the initial reaction 
rate, Vmax the maximum reaction rate and km the 
Michaelis-Menten constant. 
 
Low to High Hydrolysis Conversion Models 

 
For the whole range of hydrolysis conversions, 

low to high, both the substrate and the product 
inhibitions must be taken into account. A mass 
balance on a hydrolysis batch reactor considering 
each of the six inhibition model alternatives gives 
(Calsavara, 1998). 

 
§ Model UC: uncompetitive inhibition by substrate 
and competitive by product: 
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§ Model UN: uncompetitive inhibition by substrate 
and noncompetitive by product: 
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                 (4) 

 
§ Model UU: uncompetitive inhibition by substrate 
and product: 
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               (5) 

 
§ Model NC: noncompetitive inhibition by 
substrate and competitive by product: 
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§ Model NN: noncompetitive inhibition by 
substrate and product: 
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§ Model NU: noncompetitive inhibition by 
substrate and uncompetitive by product: 
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            (8) 

 
where ki is the product inhibition parameter, t is the 
batch reaction time, XA is the substrate conversion, 
S0 is the substrate initial concentration and Gi is the 
product initial concentration. 
 
 

MATERIALS AND METHODS 
 
Experimental System 
 

The neural network modeling technique was 
employed in the enzymatic hydrolysis of cellobiose, 
in which the enzyme β-glucosidase (EC 3.2.1.21), 
also known as cellobiase, hydrolyzes the β-
glucosidic bond of cellobiose producing two 
molecules of glucose (Calsavara et al., 1999b). 

The substrate was cellobiose from Sigma and it 
contained a very low level of glucose contamination 
(0.133% [w/w]). The enzyme was Novozym 188, a 
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β-glucosidase produced by the microorganism 
Aspergillus niger, containing 170 mg/mL of protein 
and a specific activity of 9.5 U/ mg protein. More 
details about the experimental data utilized in this 
work, the reactor system and the enzyme can be 
found in Calsavara (1998) and Calsavara et al 
(1999a, 1999b). 

Two data clusters were used in this work. In the 
first group, which is associated with low 

conversions, the effect of substrate concentration on 
the initial rate of cellobiose hydrolysis at 40ºC, 50ºC 
and 55ºC, pH 4.8, was studied using cellobiose 
solutions from 0.4 to 2.0 g/L (1.2 to 58.5 M). The 
second group is associated with low to high 
cellobiose conversions and contains data on 
hydrolysis test runs in a batch reactor for up to very 
long reaction times under the experimental 
conditions shown in Table 1. 

 
Table 1: Cellobiose hydrolysis conversion test conditions. 

 

Test Condition Temperature [ºC] 
Initial Substrate Concentration 

S0 [mM] 
Initial Product Concentration 

Gi [mM] 
01 5.85 0.0 
02 5.85 10.0 
03 

40 
58.5 0.0 

04 5.85 0.0 
05 5.85 10.0 
06 

50 
58.5 0.0 

07 5.85 0.0 
08 5.85 10.0 
09 

55 
58.5 0.0 

 
 
Training and Validation Data for the Neural 
Network 
 

The data group used for training and validation 
had 1198 cases, separated randomly into 1098 
training cases and 100 validation cases, as 
recommended by Statistica Neural Networks (SNN) 
(StatSoft Inc.). This data group was generated using 
Equations (3) to (8), having as input the concentrations 
S0 and Gi under each test condition, and the values of 
the parameters km, ks and Vmax, determined as 
described below. The output variable of the training 
data was the product inhibition parameter, ki.  
 
Neural Network Creation and Training  
 

The architecture and weights of the neural 
networks built for each hybrid model were 
determined with the software Statistica Neural 
Networks (SNN) (StatSoft Inc.). This software 
determines the best architecture for a neural network 
by conducting preliminary training in different 
architectures and comparing their performances. All 
of the neural networks were multilayer perceptrons 
(MLP) with one hidden layer. The activation 
function used in the first layer was linear, while for 
the hidden and outer layers the logistic (or sigmoid) 
function was used. The number of hidden neurons 
was determined by SNN.  

Four training algorithms were utilized: back 
propagation, quasi-Newton, Levenberg-Marquardt 
and conjugate gradients. All six networks were 
trained with the four algorithms. Thus, the difference 
between the six neural networks developed consisted 
in the number of neurons in the hidden layer and in 
the selected training algorithm. 
 
 

RESULTS AND DISCUSSION 
 
Determination of the Kinetic Parameters 

 
From the first data group, on the initial hydrolysis 

reaction rate (V) vs. cellobiose concentration (S0), 
the Michaelis-Menten (km) and substrate inhibition 
(ks) constants and also the maximum rate of reaction 
(Vmax) can be determined. These data were obtained 
using the initial velocity method (Dixon and Web, 
1979) when the product concentration in the reaction 
medium is negligible (G → 0). The reaction rate can 
be described by Equations (1) and (2) converted into 
their parabolic form, 
§ Model U: uncompetitive substrate inhibition with 
G → 0: 

 

2

max max max

S km 1 1
S S

V V V ks V
   

= + +   
   

                  (9) 
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§ Model N: noncompetitive substrate inhibition 
with G → 0: 

 

2

max max max

S km 1 km 1
1 S S

V V V ks ks V
    = + + +    

    
     (10) 

 
The parabola (Equation 11) was fit to the first 

group data using the software Statistica(StatSoft 
Inc.). From the value of the coefficients a, b and c, 
the kinetic constants were determined for the two 
kinds of inhibition (Equations 9 and 10). Figure 1 

shows the good fitting obtained for the experimental 
data at all the temperatures tested. 
 

2S
a b S c S

V
= + +                                                  (11) 

 
Table 2 shows the values of the kinetic 

constants determined by this work and compares 
them with some values found in the literature. Our 
results shown in Table 2 are of the same 
magnitude as those obtained by Grous et al. (1985) 
and Dekker (1986). 

 

 
Figure 1: Fitting of Equation (11) to the data on the initial rate of cellobiose hydrolysis under the conditions 

shown in Table 1 to determine the kinetic parameters: Michaelis-Menten constant (km), maximum rate of 
reaction (Vmax) and substrate inhibition constant (ks). 

 
 
Table 2: Kinetic parameters calculated by fitting the substrate inhibition models, Equations (9) and (10), 

to data on the initial rate of the enzymatic hydrolysis of cellobiose. 
 

Author 
Temperature 

[ºC] 
Km 

[mM] 
Vmax [µmol glucose  

s-1 mg protein-1] 
ks 

[mM] 
40 0.683 0.1582 52.84 
50 2.43 0.2823 54.48 

Model U: Uncompetitive  
Substrate Inhibition 

55 2.31 0.3498 70.05 
40 0.692 0.1603 52.14 
50 2.55 0.2962 51.93 

This work 
Model N: Noncompetitive  

Substrate Inhibition  
55 2.39 0.3622 67.66 

Dekker (1986) 50 5.63 0.5623 - 
Grous et al. (1985) 50 1.66 - 43.4 

 
 
Determination of the Product Inhibition 
Parameter 
 

After determining the value of the parameters km, 
ks and Vmax, ki can be obtained from the second 
experimental data group, which is on low to high 
cellobiose hydrolysis conversion (XA) vs. batch 
reaction time (t), obtained at 40, 50 and 55ºC. In this 
work, the parameter ki was fit as a function of the 

reaction temperature and initial substrate 
concentration, working accordance with (Calsavara 
et al., 1999b; Grous et al., 1985). The software 
Statistica(StatSoft Inc.) was used to fit the 
hydrolysis inhibition model Equations (3) to (8) to 
the data at each temperature, and the estimated 
parameter values are shown in Table 3. 

The models that gave the best fit were: 1) 
uncompetitive inhibition by substrate and 



 
 
 
 

24         F. C. Corazza, L. P. V. Calsavara, F. F. Moraes, G. M. Zanin and I. Neitzel 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 

 

competitive by product (UC), and 2) noncompetitive 
inhibition by substrate and competitive by product 
(NC), whereas for some models, the experimental 
data could not be fit and this was highlighted by a 
horizontal bar (- ) placed at the R2 data entry. The 
calculated values for the product inhibition 
parameter, ki, are shown in Table 3. It can also be 
observed that the correlation coefficients obtained 
for these two models (UC and NC) are quite close. 
This result makes the choice between these two 
models more difficult, and the neural hybrid models 
will be applied in the next section to discriminate 
between the two best-fit models. 

Still, according to the quality of fitting observed, 
some considerations, such as the following, can be 

made: 
§ Product inhibition has more influence on the 
kinetics of cellobiose hydrolysis; this is confirmed 
by the similar results shown in Table 3 for the three 
product inhibition hypothesis independently of the 
substrate inhibition hypothesis considered.  
§ Of the three product inhibition types considered, 
the competitive one seems to be the most adequate, 
followed by uncompetitive inhibition. 

Figures 2 to 4 show the experimental data and 
fitting results for the NC model (noncompetitive 
inhibition by substrate and competitive by product). 
The UC model (uncompetitive inhibition by 
substrate and competitive by product) gave similar 
results. 

 
Table 3: Correlation coefficients (R2) and ki values calculated by fitting the inhibition models,  

Equations (3) to (8), to the cellobiose hydrolysis batch conversion data under the  
experimental conditions given in Table 1. 

 
Inhibition Model 

UC* UU* UN* NC* NU* NN* Test 
Conditions 

R2 ki R2 ki R2 ki R2 ki R2 ki R2 ki 

01 0.9837 2.0650 0.9645 0.5322 0.6667 0.8100 0.9827 2.0417 0.9644 0.5378 0.6778 0.8222 

02 0.9858 1.2444 0.6647 0.9283 0.9122 1.2606 0.9855 1.2400 0.6733 0.9339 0.9155 1.2728 

03 0.9879 0.8750 0.9759 0.6022 0.9666 0.6228 0.9841 0.8022 0.9759 0.6094 0.9079 0.6311 

04 0.9937 11.4100 0.9753 0.5500 - - 0.9936 11.3367 0.9753 0.5728 - - 

05 0.9614 6.8361 0.6849 0.9228 0.4755 2.6372 0.9612 6.8267 0.6762 0.9450 0.5444 2.7872 

06 0.9953 2.8200 0.9536 0.5850 0.2995 0.6628 0.9947 2.7328 0.9536 0.6128 0.3821 0.6856 

07 0.9443 13.1594 0.9658 0.4361 - - 0.9463 13.3994 0.9658 4.4964 - - 

08 0.7571 10.1706 0.4263 0.7800 - - 0.7595 10.0683 0.4731 2.6283 - - 

09 0.8273 4.8450 0.9434 0.4544 - - 0.8471 5.0900 0.9434 0.4694 - - 

*UC: uncompetitive substrate and competitive product inhibition; UN: uncompetitive substrate and noncompetitive product inhibition; UU: 
uncompetitive substrate and product inhibition; NU: noncompetitive substrate and uncompetitive product inhibition; NC: noncompetitive substrate 
and competitive product inhibition; NN: noncompetitive substrate and product inhibition 

 

 
Figure 2: Fitting of the NC model (noncompetitive inhibition by substrate, and competitive by product), 

Equation (6), to determine ki with S0 = 5.85 mM and Gi = 0 mM for the three test temperatures. 
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Figure 3: Fitting of the NC model (noncompetitive inhibition by substrate and competitive by product), 

Equation (6), to determine ki with S0 = 5.85 mM and Gi = 10.0 mM for the three test temperatures. 
 

 
Figure 4: Fitting of the NC model (noncompetitive inhibition by substrate and competitive by product), 

Equation (6), to determine ki with S0 = 58.5 mM and Gi = 0 mM for the three test temperatures. 
 
 
Hybrid Neural Modeling 

 
Six hybrid models were built, one for each 

combination of substrate and product inhibition 
hypothesis, for the purpose of comparison. The aim 
was to use the ability of the neural networks to verify 
which hybrid model would reproduce the batch 
reactor data most closely. As mentioned above, 
hybrid models were composed of a neural network 
and one of the mass balance equations (Equations (3) 
to (8)). The inputs and outputs used for these 
networks were the same as those above and the ki 
output was also fed to the model equations. 

To compare the six hybrid models, the maximum 
norm was used. According to Willianson et al. 
(1972), the maximum norm can be defined, for any 

1 n(x ,..., x )=x , by  
 

{ }1 2max x ,..., x=x                        (12) 
 

As a valuable tool for error analysis, maximum 
norms are recommended for measuring error in 
vectors and matrices (Higham, 1986; Anderson et al., 

1995). The maximum norm defined by the relation 

{ }1 1 2 2ˆ ˆ ˆmax x x ,..., x x− = − −x x  was calculated 

for each one of the six models for every 
experimental curve. It measures the maximum 
absolute discrepancy between the experimental and 
predicted values, and therefore we should look for 
the model that gives the lowest maximum norm. In a 
probabilistic approach the maximum norm is 
interpreted as a “worst case performance” (Maiorov 
and Wasilkowski, 1994). The predicted behaviors for 
the six models were very different, allowing 
establishment of the most appropriate inhibition 
model for the enzymatic hydrolysis of cellobiose. 
Table 4 shows the maximum norm values for every 
model under all hydrolysis conditions. It can be 
observed that for any experimental curve, the lowest 
average value of the calculated maximum norm 
occurred for the NC model (noncompetitive substrate 
inhibition and competitive product inhibition). 

The trend in model performance observed when 
ki was determined was also seen with the hybrid 
models. The hypotheses of noncompetitive inhibition 
by substrate and competitive by product (NC) and 
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uncompetitive inhibition by substrate and 
competitive by product (UC) had the best results. 
But, using the maximum norm criterion, the model 
that considers noncompetitive inhibition by substrate 
and competitive by product (NC model) clearly 

stands out.  
Figures 5 to 7 compare the predicted behavior of 

the NC model with the cellobiose hydrolysis 
experimental data, and Figures 8 to 10 do the same 
for the UC model. 

 
 

Table 4: Maximum norm values calculated by fitting the inhibition models, Equations (3) to (8), to the 
cellobiose hydrolysis batch conversion data under the experimental conditions given in Table 1. 

 
Maximum norm values 

                                                             Inhibition Model 
Test Conditions  

UU* UN* UC* NU* NN* NC* 

01 0.3186 0.1737 0.1693 0.2267 0.2203 0.0526 

02 0.2899 0.3105 0.3605 0.4483 0.7649 0.0595 

03 0.7662 0.1100 0.0679 0.0299 0.1358 0.0461 

04 0.3427 0.1940 0.0160 0.6971 0.0490 0.0143 

05 0.3832 0.2603 0.0762 0.3541 0.5572 0.0222 

06 0.4685 0.1695 0.0295 0.3005 0.7761 0.0283 

07 0.3874 0.1154 0.058 0.7442 0.2460 0.0351 

08 0.3553 0.3103 0.2999 0.3506 0.6287 0.0265 

09 0.3139 0.2742 0.0398 0.5716 0.8539 0.0348 

Arithmetic Mean 0.4029 0.2131 0.1112 0.4137 0.4702 0.0485 
*UC: uncompetitive substrate and competitive product inhibition; UN: uncompetitive substrate and noncompetitive product inhibition; UU: 
uncompetitive substrate and product inhibition; NU: noncompetitive substrate and uncompetitive product inhibition; NC: noncompetitive substrate 
and competitive product inhibition; NN: noncompetitive substrate and product inhibition 

 
 
 
 

  
Figure 5: Predicted vs. experimental cellobiose 

hydrolysis conversions observed with the NC model 
(noncompetitive inhibition by substrate and 

competitive by product), Equation (6),  
with S0 = 5.85 mM and Gi = 0 mM  

for the three test temperatures 

Figure 6:Predicted vs. experimental cellobiose 
hydrolysis conversions observed with the NC model 

(noncompetitive inhibition by substrate and 
competitive by product), Equation (6),  
with S0 = 5.85 mM and Gi = 10.0 mM  

for the three test temperatures. 
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Figure 7: Predicted vs. experimental cellobiose 

hydrolysis conversions observed with the NC model 
(noncompetitive inhibition by substrate and 

competitive by product), Equation (6),  
with S0 = 58.5 mM and Gi = 0 mM  

for the three test temperatures. 
 

Figure 8: Predicted vs. experimental cellobiose 
hydrolysis conversions observed with the UC model 

(uncompetitive inhibition by substrate and  
competitive by product), Equation (3),  

with S0 = 5.85 mM and Gi = 0 mM  
for the three test temperatures. 

 

  
Figure 9: Predicted vs. experimental cellobiose 

hydrolysis conversions observed with the UC model 
(uncompetitive inhibition by substrate and  

competitive by product), Equation (3),  
with S0 = 5.85 mM and Gi = 10.0 mM  

for the three test temperatures. 

Figure 10: Predicted vs. experimental cellobiose 
hydrolysis conversions observed with the UC model 

(uncompetitive inhibition by substrate and  
competitive by product), Equation (3),  

with S0 = 58.5 mM and Gi = 0 mM  
for the three test temperatures. 

 
 
 

CONCLUSIONS 
 

Kinetic parameters were determined for the 
enzymatic hydrolysis of cellobiose by the initial 
velocity method, at a negligible product 
concentration, using either the uncompetitive or the 
competitive model for substrate inhibition, and the 
results gave a good fit to the experimental data for 
both models. 

Six models were tested for different combinations 
of the substrate and product inhibition hypotheses for 
the enzymatic hydrolysis of cellobiose at low to high 
conversions in a batch reactor. Through the fitting of 
the mass balance equations derived for each model, 

the parameter ki was estimated. The quality of the 
fitting was different for each model, and the models 
that considered either noncompetitive inhibition by 
substrate and competitive by product, or 
uncompetitive inhibition by substrate and 
competitive by product showed the highest 
correlation coefficients (R2). 

The six models were then tested using hybrid 
models. Six hybrid models were used with the same 
inhibition hypotheses as above, and the ability of the 
neural networks in approximating functions was used 
advantageously with the hybrid models, allowing 
selection of the best inhibition model based on the 
smallest norm observed. The model that best 
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predicted reactor behavior with the hybrid models 
was the noncompetitive inhibition by substrate and 
competitive by product model. 
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NOMENCLATURE 

 
G product (glucose) 

concentration in the 
reaction medium 

[mM] 

Gi product initial 
concentration 

[mM] 

ki product inhibition 
parameter 

[mM] 

km Michaelis-Menten 
constant 

[mM] 

ks substrate inhibition 
constant 

[mM] 

NC noncompetitive substrate 
and competitive product 
inhibition 

(-) 

NN noncompetitive substrate 
and product inhibition 

(-) 

NU noncompetitive substrate 
and uncompetitive 
product inhibition 

(-) 

S substrate concentration 
in the reaction medium 

[mM] 

SNN   Statistica Neural 
Network (StatSoft Inc.) 

(-) 

S0 Initial substrate 
concentration 

[mM] 

t batch reaction time [min] 
T temperature [ºC] 
V initial reaction rate [µmol L-1 min-1] 
Vmax maximum rate of 

reaction 
[µmol glucose 

L-1 min-1 mg 
protein-1] 

XA substrate conversion, XA = 1 - S / S0 
UU uncompetitive substrate 

and product inhibition 
(-) 

UC uncompetitive substrate 
and competitive product 
inhibition 

(-) 

UN uncompetitive substrate 
and noncompetitive 
product inhibition 

(-) 
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