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Abstract - Iterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control 
parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the 
performance cost function gradient for iteratively improving the control parameters to achieve optimal loop 
performance. This tuning method has been developed for systems based on a transfer function representation. 
This paper presents a state feedback control system with a state observer and its transfer function equivalent 
in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can 
be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example 
illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the 
Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters 
are investigated. It is shown that the data driven tuning method produces optimal performance for convex 
problems when it is the model parameter estimates in the observer that are tuned.  
Keywords: Data Driven Tuning; Iterative Feedback Tuning; LQG Control; Model Uncertainty. 

 
 
 

INTRODUCTION 
 

The need for optimal process operation has 
rendered methods for optimization of control loop 
parameters an active research area. Much attention 
has been directed in performing control oriented 
system identification, which implies model 
estimation from closed loop data (Schrama 1992, 
Hjalmarsson et al. 1994, Gevers 2002). Optimizing 
the parameters in a control loop is an iterative 
procedure since the data from one experiment will 
depend on the current controller and repeated 
iterations are necessary for the loop performance to 
converge to a minimum. Estimating a model from 
closed loop data requires special techniques (Ljung 
1999) and several algorithms have been published 
which handle the iterative scheme of closed loop 

system identification and model based control design 
(Zang et al. 1995, Gevers et al. 2003, de Callafon 
1998). An alternative would be a direct data driven 
approach to tune the control parameters without 
utilizing a model estimate. 

Data driven tuning methods have mainly been 
reported for systems given in transfer function form. 
Examples are the Iterative Feedback Tuning method 
(Hjalmarsson et al. 1998) and, in recent years, the 
Correlation based Tuning presented in Karimi et al. 
(2004) and Virtual Reference Feedback Tuning 
presented in Campi et al. (2002). Controllers based 
on a state space description of the system model are 
mainly tuned based on an estimated process model. 
Hence, the potential advantages of using a direct 
tuning method are not exploited. Such advantages 
are that direct tuning often is computationally less 
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demanding than model identification and model based 
control design. The direct tuning methods can be used 
even when insufficient knowledge of the model 
structure limits the performance, where the system is 
tuned based on the certainty equivalence principle. 

This paper investigates the use of the direct 
tuning method, Iterative Feedback Tuning, for 
optimization of the feedback gain and the state 
observer gain for a control loop based on a state 
space system description. Based on the certainty 
equivalence principle, an analytical solution for 
optimal values of these two gains exists. This renders 
the loop performance sensitive to model errors and 
bias. The data driven tuning in this paper will be 
investigated both for systems with full process 
insight and systems with parametric uncertainty. The 
perspective for simple tuning methods for control 
structures based on state space descriptions is highly 
interesting. The majority of advanced control 
strategies today is model based and relies most often 
on a state space description. Direct controller tuning 
may serve as an interesting alternative, when fine 
tuning a control loop or when a degrading loop 
performance is observed. This paper is organized as 
follows. First, a short introduction to the system and 
the control loop description is given together with 
the optimal model based design. Then the data 
driven tuning method, Iterative Feedback Tuning, is 
presented and the state space formulation in relation 
to the tuning method is analyzed. An illustrative 
simulation example is given dealing with full process 
knowledge and parametric uncertainty. The final 
conclusions are drawn in the last section. 
 
 

THE STATE SPACE CONTROL LOOP 
 

Given the following linear, discrete time, single 
input/single output, and time-invariant system 
description: 
 

P

m

P P
t 1 t t t t iid e

m m 2
t t t t iid e

x Ax Bu e , e N (0,P )

y Cx e , e N (0, )

+ = + + ∈

= + ∈ σ
         (1) 

 
where xt represents the system states, ut is the 
manipulated variable and yt is the system output at 
time instant t Z∈ . P

te  represents process noise and 
m
te  is measurement noise. The cross correlation 

between eP
t and em

t will be assumed zero in this 
paper. It is desired to control this system using the 
state feedback law 

t t tu Lx Mr= − +              (2) 
 
where L is a constant feedback gain matrix and M is 
a controller gain matrix for the reference signal. 
Since the exact value of the states is not known, an 
observer is used to generate state estimates. This is 
based on measurements of the process output and the 
process model. The observer has the form of the 
predictive Kalman filter with the constant gain 
matrix K, assuming stationary conditions. 
 

t 1|t t|t 1 t|t 1t t

t|t 1t t

x A x Bu K y Cx

u Lx Mr

∧ ∧ ∧ ∧ ∧ ∧
+ − −

∧
−

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠

= − +

       (3) 

 
The structure of the state space feedback loop 

with observer, consisting of Equations (1) and (3), is 
shown in Fig. 1. In order to have a static gain from 
the reference to the process output equal to one, the 
following requirements can be derived based on an 
assumption of full state information 
 

11

M C I A BL B

−−∧ ∧ ∧ ∧⎡ ⎤⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

          (4) 

 

 
 
Figure 1: Structure of a state space feedback loop 
with a state observer. The observer has the form of 
the predictive Kalman filter. 
 

Introducing the state estimation error t t tx x x
∧

= −  
and assuming full process knowledge, the system can 
be represented by the set of Equations in (5), which 
provides a convenient description with a clear 
distinction between feedback control and state 
estimation dynamics (Åström 1970): 
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P
tt 1 t t t
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t 1 t t t

tt t t
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t t t
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u L(x x ) Mr
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+
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= +

      (5) 

 
If the system (1) is stabilizable and detectable, a 

set {L,K} exists which renders the system (5) stable 
(Kwakernaak and Sivan 1972). Hence, if optimal 
values for the feedback and Kalman filter gains are 
used, stability is guaranteed. Computations of these 
optimal gains are shown in the following subsection. 
 
Optimal Model Based Design 
 

Optimal values for both the observer gain K and 
the feedback gain L exist and have known analytical 
solutions (Anderson and Moore 1989, Grewal and 
Andrews 1993). The optimal, stationary value for the 
gain matrix in the predictive Kalman filter can be 
evaluated based on the process model and information 
of the noise intensity by employing the certainty 
equivalence principle. The stationary condition is 
indicated by the ∞ subscript on the gain and the 
covariance matrices of the state prediction error. 
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      (6) 

 
The equation for the state prediction error 

variance matrix is an algebraic Riccati equation. 
The optimal value for the controller gain depends 

on the optimization criterion. In this paper, the 
control design will minimize the value of a cost 
function for the loop performance. For a single 
input/single output system 
 

N
2 2
t t

t 1

1F(y,u) y u
2N

=

= + λ∑           (7) 

 
where λ determines the weighting between the 
penalty on the output and the control. For optimal 
tracking, the output is replaced by the tracking error 

in the cost function. The optimal Linear Quadratic 
Gaussian controller (LQG) produces an optimal 
feedback gain for the quadratic cost function 
 

N
T 2

LQG t R t t
t 1

1F (y,u) x Q x u
2N

=

= + λ∑        (8) 

 
Using the linear system description in Equation 

(3) with Gaussian noise and assuming that the 
horizon in the criterion approaches infinity produces 
the following stationary solution for the controller 
gain: 
 

1T T
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      (9) 

 
This set of equations is of the same form as for 

the design of the predictive Kalman filter. It can be 
seen that the weights QR and λ in the cost functions 
play the same role in the equations as the noise 

variance in the filter equations. In case 
T

RQ C C
∧ ∧

= , 
the cost function (8) is equivalent to (7). 
 
 

ITERATIVE FEEDBACK TUNING 
 

This data driven tuning method was introduced 
by Hjalmarsson et al. (1994) and further developed 
and refined by Hjalmarsson et al. (1998). An 
extensive overview of contributions and applications 
for this tuning method can be found in Gevers (2002) 
and Hjalmarsson (2002). The tuning method 
optimizes a set of control parameters, ρ, based on a 
performance cost function like Equation (7). The 
main idea is to use closed loop data to determine an 
unbiased estimate of the cost function gradient with 
respect to the control parameters and use that 
estimate in a gradient based search algorithm. 
Iterative Feedback Tuning is designed to tune lower 
level controllers that are linear in the control 
parameters as, e.g., PID controllers (Hjalmarsson 
2002, Gevers 2002). It has been tested in practice for 
PID control loops in Hjalmarsson et al. (1998) and, 
more recently, for inventory control in Huusom et al. 
(2007). 
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The Iterative Feedback Tuning method works with 
a system description for a feedback loop with a two 
degree of freedom controller, C = {Cr, Cy}, as shown 
in Fig. 2 and Equation (10). The process model G is a 
discrete time transfer function and the noise vt is a zero 
mean, weakly stationary random signal. 
 

 
Figure 2: Feedback loop with a two degree of 
freedom controller. 
 

r
t t t t t

y y

yr
t t t r t y t

y y

GC 1y r v Tr Sv
1 GC 1 GC

CCu r v SC r SC v
1 GC 1 GC

= + = +
+ +

= − = −
+ +

  (10) 

 
where S and T are the sensitivity and the 
complementary sensitivity function, respectively. 
Based on a general cost function (11) with penalty in 

the tracking error 
~

d
t tty y y= − , where yd

t is the 
desired process output 
 

2N ~
2
tt

t 1

1F(y,u) y u
2N

=

= + λ∑         (11) 

 
and the system description in Equation (10), 
Hjalmarsson et al. (1998) showed that the cost 
function gradient with respect to the control 
parameters is 
 

~N ~
t t

tt
t 1

yF 1 uE y ( ) u ( )
N

=

⎡ ⎤
∂∂ ∂⎢ ⎥= ρ +λ ρ

⎢ ⎥∂ρ ∂ρ ∂ρ
⎢ ⎥⎣ ⎦
∑     (12) 

 
where E[·] is the mathematical expectation. The 
derivative of the input and output are given by 
 

y yr

r

y yr

C Cy 1 C T( )r T( )(r y)
C ( )

C Cu C S( )r S( )(r y)

∂ ∂⎡ ⎤⎛ ⎞∂ ∂
= − ρ + ρ −⎢ ⎥⎜ ⎟∂ρ ρ ∂ρ ∂ρ ∂ρ⎝ ⎠⎣ ⎦

∂ ∂⎛ ⎞∂ ∂
= − ρ + ρ −⎜ ⎟∂ρ ∂ρ ∂ρ ∂ρ⎝ ⎠

(13) 

Please note the difference between the reference, 
rt, and the desired closed loop response, yd

t, when the 
loop is tuned for obtaining a smooth transition in, 
e.g., a step in the reference. When rt = 0, then yd

t= 0 
and the cost function in Equation (11) is equal to 
Equation (7), which was used in the LQG design. 
The problem is then reduced to a disturbance 
rejection problem where the gradient expressions 
reduce to 
 

y

y

Cy GS( )y

Cu S( )y

∂∂
= − ρ

∂ρ ∂ρ

∂∂
= − ρ

∂ρ ∂ρ

          (14) 

 
Given the cost function gradient estimate, the 

updates of the control parameters in the optimization 
are performed by iterations in 
 

1
i 1 i i i

F( )R−
+

∂ ρ
ρ = ρ − γ

∂ρ
         (15) 

 
where γi is the step length and Ri is some positive 
definite matrix, preferably the Hessian estimate of 
the cost function 
 

T TN
t t t t

t 1

1 y y u uR
N

+

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟= + λ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ρ ∂ρ ∂ρ ∂ρ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑     (16) 

 
This optimization will converge despite the 

stochastic nature of the cost function gradient as a 
stochastic approximation method as long as an 
optimum exists, the estimate is unbiased and the 
following condition on the step size is fulfilled 
(Hjalmarsson et al. 1998, Robbins and Monro 1951). 
 

2
i i

i 1 i 1

,
∞ ∞

= =

γ < ∞ γ = ∞∑ ∑                  (17) 

 
This condition is fulfilled by having γi=a/I, where 

a is some constant. In Hildebrand et al. (2005) a 
quantitative analysis of the convergence of the 
Iterative Feedback Tuning algorithm was performed. 
When the number of data points, N, is sufficiently 
large, the variance of the gradient estimate becomes 
so small that it can be neglected, and a faster 
converging gradient scheme than the stochastic 
approximation may perform well, e.g., a Newton 
algorithm with a step size of 1. This is often the 
preferred strategy since a poor rate of convergence 
implies many plant experiments.   
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The Tuning Algorithm 
 

In order to form an estimate of the cost function 
gradient in (13), measurements of the systems input 
and output and their derivatives with respect to the 
control parameters are needed. The following three 
closed loop experiments are performed on the 
system, where the superscripts refer to the 
experiment number. 
 

1 1
t t t

1 1
t r t y t

Ex.no1: y T( )r S( )v

u S( )(C ( )r C ( )v )

= ρ + ρ

= ρ ρ − ρ
 

 
2 1 2
t t t t

2 1 2
t r t t y t

Ex.no2: y T( )(r y ) S( )v

u S( )(C ( )(r y ) C ( )v )

= ρ − + ρ

= ρ ρ − − ρ
 

 
3 3
t t t

3 3
t r t y t

Ex.no3: y T( )r S( )v

u S( )(C ( )r C ( )v )

= ρ + ρ

= ρ ρ − ρ
 

 
where rt is the reference signal during normal operation. 
The sequence of input/output data from these 
experiments j j(y ;u ) j {1,2,3}∈  will be utilized as 
 
~

1 d
t tt

1
t t

y y3 2r
t t

r

y y3 2r
t t

r

y y y

u u

C Cy 1 C y y
C ( )

C Cu 1 C u u
C ( )

= −

=

∂ ∂⎡ ⎤⎛ ⎞∂ ∂
= − +⎢ ⎥⎜ ⎟∂ρ ρ ∂ρ ∂ρ ∂ρ⎝ ⎠⎣ ⎦

∂ ∂⎡ ⎤⎛ ⎞∂ ∂
= − +⎢ ⎥⎜ ⎟∂ρ ρ ∂ρ ∂ρ ∂ρ⎝ ⎠⎣ ⎦

    (18) 

 
It can be seen from these equations that only the 

noise in the last two experiments contributes as a 
nuisance, since these signals contribute to the 
variance of the gradient estimates. The noise in the 
first experiment, in contrast, contributes to the 
analytical part of the gradients from Equation (13). 
When the tuning algorithm is used for disturbance 
rejection, i.e., rt=0, the third experiment is redundant. 
The tuning algorithm can be summarized as: 

1) Collect (yj;uj) j∈{1,2,3} from the three closed 
loop experiments with the controller C(ρi); 

2) Evaluate the gradient of the cost function 
∂F(ρi)/∂ρ, the Ri matrix and update the control 
parameters to ρi+1; 

3) Evaluate the performance F(ρi+1) and repeat 
with i:=i+1 if the desired performance tolerance is 
not achieved. 
 
 

TRANSFORMING THE STATE SPACE 
FORMULATION 

 
The restrictions, which the Iterative Feedback 

Tuning method sets on the control strategy used, are 
that the controller and the partial derivatives of the 
controller, with respect to the control parameters, can 
be reformulated in transfer function form. It is 
required that the filters in Equations (18) are proper 
and stable. If the derivative of the controller is 
unstable, it is required to include filters in the 
performance cost function to compensate and ensure 
a bounded output from the filtering (Hjalmarsson et 
al. 1998). Using the system description (1), the 
system model estimate and the observer based 
feedback law (3), a transfer function description of 
the system and the feedback connection can be 
produced by elimination of the states. The 
conversion from discrete time, state space 
description, to the equivalent discrete time transfer 
function form for the true system (1) is given by 
 

1G(q) C(qI A) B−= −           (19) 
 
where q is the one step ahead shift operator. In 
general: Ψt+i = qi Ψt. The transfer function for the 
feedback connection is 
 

1

yC (q) L qI A BL KC K
−∧ ∧ ∧⎡ ⎤⎛ ⎞

= − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

     (20) 

 
The controller, Cr, which represents the transfer 

from the reference to the control signal, can be 
derived from Equations (3) and (4). The controller 
will include the dynamics of the observer loop. 
 

1

rC (q) M L qI A BL KC BM
−∧ ∧ ∧ ∧⎡ ⎤⎛ ⎞

= − − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

   (21) 

 
In the special case of a first order system, i.e., a 

scalar state vector, Cr, this simplifies to 
 

r
M(q A KC)C (q)

q A BL KC

∧ ∧

∧ ∧ ∧
− +

=
− + +

        (22) 
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The interconnection between the plant and the 
controller transfer functions is depicted in Fig. 2. The 
transfer function description given in this section and 
for the Iterative Feedback Tuning method only 
includes additive noise on the output, in contrast to the 
state space description which provides a clear 
distinction between process and measurement noise. 
From the Equations in (5), the following identity can 
be derived, which renders the two descriptions 
identical in terms of input output dynamics. 
 

( )

( )

( )

( )

1
t

P1 t

1

m
t

1

v C qI A BL

eI BL qI A KC

1 C qI A BL
e

BL qI A KC K

−

−

−

−

= − −⎡ ⎤⎣ ⎦
⎛ ⎞

+⎜ ⎟+ − −⎡ ⎤⎣ ⎦⎝ ⎠

⎛ ⎞+ − −⎡ ⎤⎣ ⎦⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎡ ⎤⎣ ⎦⎝ ⎠

      (23) 

 
Tuning Potentials 
 

From the transformation of the state space system 
into a transfer function form, it is seen that a controller 
can be derived that makes it possible to tune the 
control parameters using the Iterative Feedback 
Tuning method. The control parameters can be both 
the feedback and/or the observer gains, or it could also 
be the parameters in the model estimate since these 
also are an intrinsic part of the controller. When full 
process knowledge is available, it does not make 
sense to find the optimal feedback and observer gain 
by data driven tuning. The purpose of analyzing this 
scenario in this contribution is merely to show that the 
results from the tuning are consistent with the well 
known analytical results. This is illustrated in part 1 of 
the simulation example in the following section and 
was shown in Huusom et al. (2009a). 

When full process knowledge is not available, 
e.g., there is uncertainty in the estimated parameters 
or incomplete information about the noise intensity, 
then the values for the feedback and observer gains 
will be affected and so will the achieved closed loop 
performance. This performance deterioration is a 
consequence of the gains being evaluated based on 
the certainty equivalence principle. When the only 
error is related to the information about the noise 
intensities, it is straightforward to tune the gain in the 
Kalman filter, using the data driven approach. Hence, 
Iterative Feedback Tuning provides an alternative 
method to tune a Kalman filter to that of direct 
estimation of noise intensities (Åkesson et al. 2008). If 
there are errors in the parameters of the system model 

description as indicated by Equation (3), the system 
cannot be represented by the set of Equations in (5). 
The correct representation for this case would be  
 

P
tt 1 t t t

m P
t 1 t t t

tt t t

m
t t t

x (A BL)x B(Lx Mr ) e

x (A KC)x Ke e

u L(x x ) Mr

y Cx e

+

+

= − + + +

= − − + + Δ

= − − +

= +

    (24) 

 
where 
 

t tA A K C C x B B u
∧ ∧ ∧⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

Δ = − − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

   (25) 

 
The case with uncertain model parameters was 

treated in Huusom et al. (2009b,c) and results 
concerning a different tuning strategy will be 
presented in part 2 of the simulation example in the 
following section. 

Iterative Feedback Tuning can handle multivariable 
systems, but an approximation in the algorithm is 
necessary if the number of required experiments should 
not grow with the number of input/output pairings 
(Hjalmarsson et al. 1998, Hjalmarsson 2002). No 
restriction has been imposed by the derivation in this 
paper regarding the system dimension as long as all 
controller parameters subject to the tuning are stacked 
in the vector ρ. In practice, tuning of multivariable 
systems may suffer from not having sufficiently rich 
data, which may lead to ill conditioning of the Hessian 
estimate R in Equation (16). 
 
 

SIMULATION EXAMPLE PART 1 – FULL 
PROCESS KNOWLEDGE 

 
In order to illustrate the potential of using the 

Iterative Feedback Tuning method on a discrete time, 
state space system with observer and state feedback, 
the following first order system is investigated. 
 

p

m

p p 2
t 1 t t t t iid e

m m 2
t t t t iid e

x 0.98x 0.02u e , e N (0, )

y 1x e , e N (0, )

+ = + + ∈ σ

= + ∈ σ
  (26) 

 
This system is characterized by its fairly slow 

dynamics and a static gain of one from the input to 
the output. The sample time for this system is 1 
second. This system is too simple to have any 
industrial relevance, but the objective of this 
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example is to show the principles of the tuning 
method and demonstrate its ability to converge to 
optimality. The general method described in the 
paper concerns higher order linear models too. The 
system will be implemented using the structure of 
Equation (5), where full knowledge of the process 
and the noise is assumed. For this system, the 
feedback gain will be tuned for tracking and noise 
rejection. Furthermore, both the feedback gain and 
the observer gain are tuned simultaneously for the 
noise rejection problem. The performance cost 
function used for the tracking problem has λ=0, 
which produces the minimum variance controller. 
For the noise rejection problem λ∈{0;0.001}. 
 
Tuning for Set Point Tracking 
 

Initially the noise is characterized by ep
t=0.025 

and em
t=0.01 which are used with the process model 

to calculate the optimal Kalman filter gain by 
Equation (6). It is desired to find the optimal 
feedback gain, which will make the step response of 
the closed loop system resemble that of a first order 
system with a settling time of 10 seconds. A time 
horizon of 20 seconds will be used in the cost 
function. Hence, this closed loop system will have a 
two degree of freedom controller, where Cy is given 
by (20) and Cr by (22). In the tuning, the control 
structure is treated as a two degree of freedom 
controller. The optimal controller gain for this 
tracking problem has been determined numerically to 
be Lopt=11.959. For two different initial values of the 
feedback gain, L0={5;20}, 50 iterations in the data 
driven tuning were performed and the trajectories for 
the feedback gain and the performance cost function 
are shown in Fig. 3. It can be seen in the figures that 
the tuning does converge in very few iterations to the 
level around the optimal value of the feedback gain 
and, hence, to the expected value for the loop 

performance. The fluctuations in the parameter 
estimate of the feedback gain after it approaches the 
optimal value are caused by the stochastic element in 
the gradient estimate from the process data. The 
noise realization will change between iterations in 
the date driven tuning method, hence the amplitude 
of these oscillations can be decreased by using 
longer data sequences for the gradient estimate.  
 
Tuning for Disturbance Rejection 
 

When tuning for disturbance rejection, the 
process noise level has been increased so that ep

t=1 
and the time horizon used in the performance cost 
function N is extended to one hour. Since this is a 
disturbance rejection problem, only a one degree of 
freedom controller has been used in the tuning, 
which means that only experiments one and two in 
the Iterative Feedback Tuning algorithm are required 
in each iteration and only the gradient ∂Cy/∂L needs 
to be evaluated. Initially, the optimal Kalman filter 
gain is used and only the feedback gain is tuned both 
for the minimum variance control problem and for 
λ=0.001, Fig. 4. The optimal feedback gain, L∞ 
(λ=0), is very close to a limit that would make the 
controller Cy unstable. The optimal value for the 
feedback gain is calculated with Equation (9). A 
constraint is implemented in the control parameter 
update Equation (17), which will decrease the step 
length γi from 1 in case it is predicted that Li+1 > 
Lmax. Lmax produces a controller with a pole on the 
stability limit. Results from simultaneous tuning of 
both gains with λ=0.001 are shown in Fig. 5. It is 
seen in both cases that the tuning is able to converge 
to the level of the optimal values of the gains. The 
rate of convergence is not quite as fast as for the 
tracking problem. This is to be expected since the 
step response experiment perturbed the system more 
that the noise in the disturbance rejection case. 

 

 
Figure 3: Development in the feedback gain and the loop performance cost when tuning the loop step 
response for a tracking problem given two different initial values. The optimal value for the feedback 
gain and the corresponding value for the expected optimal performance are given as full lines. 
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Figure 4: Development in the feedback gain and the loop performance cost when tuning the loop for 
disturbance rejection given two different values of λ in the cost function. The optimal values for the 
gains and the corresponding values for the expected optimal performance are given as full lines. The 
highest allowed value for the feedback gain Lmax is also given.  

 
Figure 5: Development in both the feedback and Kalman gain in the controller and the loop 
performance cost when tuning the loop for disturbance rejection. The optimal values for the gains and 
the corresponding value for the expected optimal performance are given as full lines. 

 
 

SIMULATION EXAMPLE PART 2 – 
PARAMETRIC UNCERTAINTY 

 
In this section, the potential of using the Iterative 

Feedback Tuning method for systems given parametric 
uncertainty is illustrated using the process model (26) 
from the previous section. The noise is characterized 
by ep

t=0.1 and em
t=0.01. Only the optimization 

criterion with λ = 0.001 will be used in this section. In 
the following two subsections, different choices of 
tuning parameters are used for the data driven tuning. 
In the case when only the noise variance is unknown 
and all other parameters in the observer are correct, 
only the Kalman filter gain needs to be tuned. The 
parameters used to calculate the feedback gain and the 
other parameters in the observer are correct and the 
term Δ in Equation (25) will be zero. Optimal 
performance is therefore achieved if the direct tuning 
converges to the value K∞, which is the optimal 
observer gain based on full process insight and noise 
characteristics. In case the b parameter is wrongly 
estimated, the feedback gain L will be affected and Δ, 
which is part of the state estimation error, will no 
longer be zero. Hence, the certainty equivalence 

feedback gain is not L∞, which is based on the true 
system parameters. This is verified by Fig. 6, which 
shows the performance cost as function of the 
feedback gain given full process knowledge when the 
b parameter is erroneous. Fig. 6 show that the optimal 
value for the feedback gain, when this erroneous b is 
used, is approximately 21, while L∞ is approximately 
23. The certainty equivalence design for the feedback 
gain is approximately 17, which is evidently not 
optimal for this system. In case any of the parameters a 
or c in the model estimate are erroneous, this will 
affect both the values of the Feedback and Kalman 
gains and the state estimate.  
 
Compensation strategy  
 

The idea behind the compensation strategy is to use 
the certainty equivalence design as an initial design for 
the controller and the observer. The loop performance 
is then gradually improved by direct tuning of these 
gains in order to achieve the best possible performance 
given the model that is available. Fig. 7 shows the 
result of direct tuning for two scenarios. First, only the 
noise intensity is unknown, which implies tuning of K 
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and, secondly, the value of the b parameter is wrong, 
which implies tuning of L. Initially equal values of 1 
were used for the two noise variances in the calculation 
of K0. The estimate for b used to find L0 was twice the 
true value in the model (26). Fig. 7 shows that the 
tuning converges in a few iterations. It is also observed 
that the feedback gain does in fact converge to a 
different value than L∞, as indicated on Fig. 6. In the 
case where errors occur in either the c or a parameter, 
the certainty equivalence design of both gains will be 
affected. Hence, it is necessary to tune both gains 
simultaneously. This is performed and the results are 
given in Fig. 8. The results were produced by using 
c=0.9 and a=0.9, respectively, in the model. The results 
show that the two gains converge to different values of 

the gains than those calculated based on full process 
knowledge since the erroneous parameters are used in 
the observer. It is not clear from the figures that the 
performance is improved through the iterations. 
Evaluation of the cost function using long simulation 
time in order to improve statistics provides some more 
convincing results. It is seen that the cost function is 
F(L0,K0)=1.5075 and F(L0,K0)=1.5422, respectively, 
when the parameters for c or a are wrong. In both 
cases, the performance cost converges to 1.5049, which 
is the same as the optimal value given full process 
information. Hence, for this case, the direct tuning 
completely compensates for the error in the model 
parameters and produces a loop with optimal 
performance. This may not be the case in general. 

 

 
Figure 6: Performance cost as a function of the feedback gain. The full line indicates full process knowledge and 
the dashed line is achieved using an erroneous b parameter. 
 

 
Figure 7: Result of ten iterations of direct tuning. On the left, values of the performance cost and the 
tuned observer gain are presented based on erroneous noise information. On the right, values of the 
performance cost and the tuned feedback gain are presented when the b parameter is erroneous. 

 

 
Figure 8: Result of ten iterations of direct tuning of both the feedback and the observer gain. On the 
left the results are given when c is erroneous and on the right for an erroneous a parameter. 
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Adaptation Strategy 
 

The adaptation strategy employed in this section 
differs from the compensation strategy. First, the 
model parameter estimate is tuned and then the 
feedback and Kalman gains are updated to ensure 
optimality by applying certainty equivalence in each 
iteration. The model parameters are normal 
parameters in the transfer functions of the 
controllers, as well as the two gains, as clearly seen 
in Equations (20) and (22). In the following, three 
experiments are performed where one of the model 
parameters a, b or c is wrong. By direct tuning of the 
parameter in question with a subsequent update of 
the Feedback and Kalman gains, the closed loop 
performance is optimized and will converge to 
optimality if the parameter estimate converges to the 
true value of the system parameter. Figs. 9, 10 and 
11 show the results from 15 iterations of the tuning, 
when the erroneous parameter is either too large or 
too small. All experiments are able to converge to 
the optimal solution in 5-10 iterations, which is very 
good when tuning is conducted for the disturbance 
rejection case. This method also allows tuning of all 
the model parameters simultaneously, just as the 
previous subsection tuned both gains.  

The cost function gradient estimate used in a 
Newton scheme by the Iterative Feedback Tuning 
method employs a transfer function description of the 
state space control loop in Fig. 1, as seen previously. 
This estimate is constructed by filtering closed loop 
input/output data through a filter that contains the 
gradient of the controller with respect to the tuning 
parameters, see Equations (13) and (14). Since the 
feedback and feed-forward controller in the transfer 
function description of the state space control loop are 
functions of both the model estimate and the gain 
matrices according to Equation (20) and (21), the 
partial derivatives of the optimal gains are needed 
with respect to the tuning parameters. These have 
been obtained by a first order forward difference 
approximation in the results presented here.  

The results presented by the adaptation strategy 
are by far superior to the results in the previous 
subsection where gains were tuned while the 
erroneous parameters in the state estimator were kept 
constant, i.e., the compensation strategy. The 
increased complexity of tuning the system 
parameters and adapting the gains seems to be 
rewarded, since convergence of the model estimate 
to the true system leads to optimality for the closed 
loop performance. 

 
 

 
Figure 9: 15 iterations by the tuning method when the parameter a in the observer is erroneous. Both 
the iteration of the parameter value and the corresponding closed loop performance are shown. 

 

 
Figure 10: 15 iterations by the tuning method when the parameter b in the observer is erroneous. Both 
the iteration of the parameter value and the corresponding closed loop performance are shown. 
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Figure 11: 15 iterations by the tuning method when the parameter c in the observer is erroneous. Both 
the iteration of the parameter value and the corresponding closed loop performance are shown. 

 
 

CONCLUSIONS 
 

Equivalent forms for a closed loop control system 
have been found for a state space system with observer 
and state feedback, and for a transfer function system 
representation, respectively. These equivalent forms 
mean that a transfer function description for the feedback 
controller in the closed loop state space system has 
been derived. Hence, it is shown how the data driven 
controller tuning method, Iterative Feedback Tuning, is 
applicable also for state space control systems.  

In simulation studies, it is demonstrated that the 
tuning method converges to known analytical solutions 
for the feedback gain and the Kalman filter gain in the 
state observer when the underlying system is known. 
Furthermore, a study of tuning of a system with 
parametric uncertainty of the model parameters has 
shown that direct tuning of the feedback and the 
Kalman gains will improve closed loop performance 
compared to using the certainty equivalence design. 
The latter choice of tuning parameters is labeled a 
compensation strategy and will, in general, not lead to 
optimal performance due to the erroneous parameter 
estimates used in the state estimator. A more promising 
strategy, labeled the adaptation strategy, tunes the 
model parameter estimates and readjusts the feedback 
and observer gain to obtain certainty equivalence in all 
integrations. This approach will converge to optimal 
loop performance if the model parameters converge to 
the system parameters. Hence, the adaptation strategy 
is superior to the compensation strategy. 
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