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Abstract - Shea tree sawdust delignification kinetic data during alkaline peroxide pretreatment were 
investigated at temperatures of 120 °C, 135 °C, and 150 °C. The activation energy during delignification was 
76.4 kJ/mol and the Arrhenius constant was calculated as 8.4 x 106 per min. The reducing sugar yield for the 
treated to the untreated biomass was about 22-fold. Enzymatic hydrolysis conditions studied were; time (72 h 
and 96 h), substrate concentration (20, 30, 40, and 50 g/L), and enzyme loadings (10, 25, 40, 50 FPU/g dry 
biomass), which showed the optimum conditions of 96 h, 40 g/L, and 25 FPU/g dry biomass at 45 °C hydrolysis 
temperature. At the optimized enzymatic hydrolysis conditions, the reducing sugar yield was 416.32 mg 
equivalent glucose/g treated dry biomass. After 96 h fermentation of treated biomass, the ethanol obtained at 
2% effective cellulose loading was 12.73 g/L. Alkaline peroxide oxidation pretreatment and subsequent 
enzymatic hydrolysis improved the ethanol yield of the biomass. 
Keywords: Alkaline peroxide oxidation; Fermentation; Vitellaria paradoxa; Optimization; Pretreatment; 
Enzymatic hydrolysis. 

 
 
 

INTRODUCTION 
 

Bioenergy is a renewable resource because of the 
short life cycle compared to the fossil fuel alterna-
tive. Plants and plant-derived materials (biomass) are 
important feed-stocks for lignocellulosic biofuels. 
The biomass cell wall structure is rigid and hard to 

break down. Pretreatment is an important tool for 
lignocelluloses bioconversion processes and is re-
quired to alter the biomass structure to make cellu-
lose more accessible to the enzymatic complex 
(Mosier et al., 2005). Pretreatments release cellulose 
from amorphous lignin and hemicellulose com-
plexes. Wood and other lignocellulosic biomass con-
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sist of four major chemical components: cellulose, 
lignin, hemicellulose, and extractives. In ethanol 
production from lignocellulose, it is necessary to 
remove the lignin and extractives from the wood, 
leaving primarily the wood polymer carbohydrates, 
cellulose and hemicellulose. There are bottlenecks 
for efficient ethanol production from lignocellulosic 
materials, among these the presence of lignin sur-
rounding the cellulose acts as a physical barrier, re-
ducing the available sites for enzymatic hydrolysis 
(Krishna and Chowdary, 2000; Kim and Lee, 2006). 
Lignin is responsible for the integrity, structural ri-
gidity, and prevention of the swelling of lignocellu-
loses. Lignin constitutes the most recognized factor 
that is responsible for the resistance of lignocellulo-
sic materials to enzymatic degradation by limiting 
the enzyme accessibility. Alkaline peroxide oxidation 
pretreatment is one method that has been discovered 
to improve the accessibility of lignocellulosic bio-
mass to cellulolytic enzymes (Kumar et al., 2009). 
This pretreatment approach has been studied exten-
sively (Ayeni et al., 2013b; Wei and Cheng, 1985; 
Gould, 1984; Gould et al., 1989; Qi et al., 2009; Li 
et al., 2013). Studies on cellulosic biomass delig-
nification (lignin removal) usually involve two dif-
ferent approaches, assuming that the lignocellulosic 
material contains one type of lignin, and that the 
material is composed of several species (usually 
initial, bulk, and residual lignin) dissolving at differ-
ent rates (Kleinert, 1975; Springer, 1963). The most 
usual approach is to assume that the different lignin 
species react consecutively according to first-order 
kinetics. In the several species of lignin approach, 
the different phases observed during delignification 
correspond to changes in the mechanism that con-
trols the reaction rate of the overall process (Parajó 
et al., 1995; Vázquez et al., 1995). The chemical 
kinetics of alkaline pretreatment processes have been 
demonstrated in the scientific literature (Kleinert, 
1966; Kim and Holtzapple, 2006). The Shea tree, 
Vitellaria paradoxa, is rich in carbohydrate and lig-
nin contents (Ayeni et al., 2014). The Shea tree, 
which furnishes a woody (hardwood) lignocellulosic 
material, is typically a savannah woodland tree spe-
cies. This tree is small to medium-sized, 10–15 m 
tall with a diameter ranging from 0.3 to 1 m. It is 
native to African countries. It occurs on an estimated 
1 million km2 between western Senegal and north-
western Uganda. The exotic species is found in the 
Dominican Republic and Honduras (Sallé, 1991). 
The trunk of the Shea tree makes excellent charcoal 
and is favoured as a source of high quality wood fuel 
once the tree has passed the fruit bearing age (Kris-
tensen and Lykke, 2003). The carbohydrates (cellu-

lose and hemicellulose) are suitable precursors for 
enzymatic hydrolysis conversion to fermentable sug-
ars. The high lignin content also makes the Shea tree 
wood a suitable material to produce other fuels and 
chemicals. Lignin can also be burnt for its high heat-
ing value (Ladisch, et al. 1979).  

Previously (Ayeni et al., 2013b), we achieved up 
to 60% cellulose conversion, 80% hemicellulose solu-
bilization, and 17% lignin removal with an alkaline 
peroxide assisted wet air oxidation (APAWAO) pre-
treatment of Shea tree sawdust (under optimized 
conditions: reaction temperature of 150 °C, 45 min 
reaction time, 1% H2O2 (v/v), and 1.0 MPa air pres-
sure). This was compared to alkaline peroxide oxida-
tion (APO) pretreatment (reaction temperature of 
150 °C, 45 min reaction time, 1% H2O2 (v/v)) with 
53.86% cellulose conversion, 70% hemicellulose 
solubilization and 11% lignin removal. We also re-
ported that the APAWAO conditions enhanced the 
enzymatic convertibility of treated samples to reduc-
ing sugars from an initial 177.89 mg equivalent glu-
cose/g dry biomass (APO conditions) to 263.49 mg 
equivalent glucose/g dry biomass. In this study, the 
kinetics of delignification were evaluated during the 
pretreatment APO process at three operating tem-
peratures. The enzymatic convertibility (using cellu-
lase and β-glucosidase enzymes and a 4-day hydroly-
sis period) under the optimized pretreatment condi-
tions (150 °C, 45 min, 1% H2O2 (v/v) and 1.0 MPa 
air pressure) was investigated at varying dry biomass 
loadings of 2, 3, 4, and 5% with corresponding in-
creases in enzyme loadings. Enzymatic conversions 
without β-glucosidase supplements were also con-
sidered for hydrolysis at 45 °C for 4 days. Further-
more, the ferment ability of the treated solids using 
simultaneous saccharification and fermentation meth-
ods was evaluated. 
 
 

MATERIALS AND METHODS 
 
Raw Material 
 

Raw material preparation from the field to the la-
boratory before compositional analysis and the pre-
treatment steps have been described extensively else-
where (Ayeni et al., 2013a). The tree was harvested 
(in early April, 2010) from the forest around Idanre 
town (6o51'N 5o06'E) and the sawdust was collected 
from the central processing unit of the local sawmill 
(Ilepa, Ifo town, south west, Nigeria) in late June, 
2010. Samples used in all the experiments were 
sieved to pass through mesh 14 (British Standard 
Sieve specifications) and be retained by mesh 80. 
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Delignification Parameters 
 

Kinetic data for the pretreatment were evaluated 
at different temperatures (120 °C, 135 °C, and 150 °C) 
and a kinetic model for the wood waste delignifica-
tion with lime as a function of temperature was de-
termined. For each of these isothermals, the com-
position of pretreated sawdust was determined at 
reaction times 20, 25, 30, 35, 40, and 45 min. Pre-
treatment reaction kinetics is an important tool for 
the economics of a process since reactor volume, and 
hence the capital equipment requirement, is said to 
be proportional to the residence time in the reactor 
(Li et al., 2013). The kinetics of delignification were 
studied by following the amount of lignin removed 
from the pretreated solids (Table 1) and analyzed on 
the basis of the proportion of the total lignin re-
moved with time (Esteves et al., 2005).  
 
Table 1: Lignin remaining (%w/w) based on dry 
weight of pretreated biomass. 
 

Time (min) 120 °C 135 °C 150 °C 
45 25.98 26.39 26.52 
40 26.23 27.07 27.03 
35 26.27 27.63 27.34 
30 26.31 28.17 27.65 
25 26.34 27.90 28.05 
20 26.37 27.61 28.45

 
The reaction was considered to be irreversible and 

to follow a second order as: 
 

      Lignin L   Oxygen O  Product P   →         (1) 

 
The reaction rate, rL could be expressed as: 
 

Lr  dL / dt  k L O                (2) 
 

If oxygen is in excess, the concentration of oxygen 
can be considered to be constant, giving the equation: 
 

Lr  dL / dt k L                 (3) 
 

The reaction is now pseudo first-order and the re-
lationship can be expressed as: 
 

dL / dt  k L                 (4) 
 
where dL/dt = lignin removal rate; k = chemical 
reaction rate constant; L = residual lignin after pre-
treatment. 

It has also been established that alkaline pulping 
is a first order, pseudo homogenous reaction and that 

the rate of change of lignin removed per unit mass of 
solid is related to the product of the amount of lignin 
remaining in the solid mass and the concentration of 
the alkali (Correira et al., 2001). Integrating Equa-
tion (4) shows it is a straight line relationship:  
 

 0ln L / L k t C              (5) 
 
where L = total lignin content at time t, L0 = total 
lignin content at time t = 0 

The rate constant, k, is obtained from the linear 
regression coefficient. The temperature dependence 
of the rate constant is characterized by the value of 
the energy of activation (Nelson, et al., 1987). The 
energy of activation is the minimum energy that 
must be possessed by reacting molecules before the 
reaction can occur. k is related to temperature by the 
Arrhenius Law: 
 

Ea /RTk  A exp              (6) 
 
where A = Arrhenius constant; Ea = activation energy; 
R = gas constant = 8.314 kJ/mole·K; T = absolute tem-
perature (K). 

The activation energy (Ea) of delignification was 
calculated for each kinetically homogeneous lignin 
fraction from the logarithmic form of the Arrhenius 
equation (ln k = ln A – Ea/RT) by plotting ln k against 
1/T with the slope equal to Ea/R (Figure 2(B)) (Es-
teves et al., 2005), ln A is the intercept from where 
the Arrhenius constant is calculated. The kinetics of 
delignification was established by assuming the ma-
terial contains one type of lignin. 
 
Material Balances and Biomass Composition 
 

Untreated and treated samples were repeatedly 
washed with fresh distilled water until the decanted 
water became colourless. The total dry weight of the 
sample was measured before and after pretreatment 
and washing. Dry weight measurement for material 
balances was described previously based on drying 
the biomass at 105 °C for 6 h (Ayeni et al., 2013a; 
Ayeni et al., 2013b). Extractives and hemicellulose 
contents were measured as described previously 
(Ayeni et al., 2013b). Extractives determination was 
carried out by the means of a Soxhlet extractor. 300 
mL of acetone was used as solvent on 5 g of dry raw 
and treated biomass. The temperature and time dur-
ing extraction for the boiling and rising stages 
equalled 70 °C and 25 min, respectively, for a 4 h run 
period. After extraction, the sample was air dried for 
a few minutes at room temperature and further dried 
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at 105 °C in a convection oven. The extractives con-
tent was calculated as the difference in weight be-
tween the raw and extracted material (Ayeni et al., 
2013b; Blasi et al., 1999; Li et al., 2004, Lin et al., 
2010). Mineral components were determined by 
ashing at 575 °C for 6 h. The hemicellulose content 
was determined by transferring 1 g of dried biomass 
from the extractive analysis into a 250 mL Erlen-
meyer flask. 150 mL of 0.5 mol/L NaOH solution 
was added to the dried biomass. The mixture was 
boiled for 3 hours and 30 minutes with distilled water. 
The residue was dried to a constant weight at 105 °C 
and later cooled in a desiccator and weighed. The 
hemicellulose content was calculated as the differ-
ence between the sample weight before and after this 
treatment (Ayeni et al., 2013b; Blasi et al., 1999; Li 
et al., 2004, Lin et al., 2010). Lignin content was de-
termined as the summation of Klason lignin and acid 
soluble lignin on the extractive free samples by the 
National Renewable Energy Laboratory standard pro-
cedures (Sluiter et al., 2008). Cellulose content was 
determined by difference, assuming only ash, extrac-
tives, hemicelluloses, lignin were present in the bio-
mass (Ayeni et al., 2013b; Blasi et al., 1999; Li et 
al., 2004, Lin et al., 2010). The raw biomass compo-
sitional analysis, percent weight by weight, estimated 
cellulose content of 45.90%, hemicellulose: 20.31%, 
lignin: 29.90%, extractives: 1.89%, and ash: 2.04%. 
 
Enzymatic Conversion of Treated and Untreated 
Biomass 
 

The action of cellulase and β-glucosidase en-
zymes on the treated and untreated biomass was 
evaluated. In 30 mL culture tubes (arranged in parallel 

for sampling different time points) were added 20, 
30, 40, and 50 g/L wet treated and washed-only 
untreated biomass samples. A commercial prepara-
tion of Trichoderma reesei cellulases (activity of 
57.8 FPU/mL) and β-glucosidase (Extra pure, CAS 
No.: 9001-22-3, with an activity of 10 IU/mg solid) 
were added at loadings which corresponded to the 
increased substrate concentrations (Table 2). 

The activity of the cellulase enzymes was deter-
mined in terms of filter paper units. A linear glucose 
standard curve using the absolute amounts of glucose 
standards (mg/0.5 mL) was plotted against absorb-
ance at 540 nm. This graph was used to determine 
the concentration of reducing sugars in the sample 
tubes, which had to be incubated with cellulase en-
zyme solutions of varying dilutions at 50 °C for 60 
min. The value of 2.0 mg of reducing sugar as glu-
cose from 50 mg of filter paper (4% conversion) in 
60 min was used for calculating filter paper cellulase 
units (FPU). (Ghose, 1987). β-glucosidase activity 
was determined by the method described by Bailey 
and Linko (1990).  

An appropriate volume of distilled water was 
added until the 10 mL final volume including 0.05 M 
sodium acetate buffer, pH 4.8. The reaction mixture 
was placed in an orbital shaking incubator (Scigenics 
Biotech, Chennai, India) maintained at a temperature 
of 45 °C and at 14 rad/s. At specified periods, culture 
tubes were removed and 1 mL aliquot samples were 
taken for sugar analysis (Dowe and McMillan, 
2008). Hydrolyzed samples were centrifuged at 2254 
gravities for 5 min to remove residual solids and 
total reducing sugars was quantified with DNS (3,5-
dinitrosalicylic acid) assay (Ayeni et al., 2013a; Miller, 
1959).  

 
Table 2: 4-D effect of substrate concentration with corresponding increase in enzyme concentration and 
incubation period on the enzymatic saccharification of pretreated sawdust; conditions of 150oC, 1% H2O2, 
1.0 MPa, and 45 min. 
 

Substrate concentration (g/L) 

 

20 30 40 50 
25 FPU/ga 
+ 15 IU/gb 

37 FPU/ga 
       + 22.5 IU/gb 

50 FPU/ga 
+ 30 IU/gb 

62.5 FPU/ga 
+ 37.5 IU/gb 

Hydrolysis Period (h)   RS D RS D RS D RS D 
2 19.12 2.74 23.10 2.33 34.71 3.12 25.95 1.88 

24 55.60 7.98 72.11 7.28 57.08 5.14 83.32 6.05 
72 187.03 26.85 173.89 17.56 209.23 18.83 191.05 13.87 
96 177.90 25.54 272.37 27.51 448.06 40.33 411.07 29.84

With no supplemental 
β-glucosidasec  

2 35.91 5.15 37.75 3.81 27.43 2.47 29.77 2.16 
24 55.46 7.96 63.84 6.45 153.58 13.82 89.29 6.48 
72 90.61 13.01 217.22 21.94 248.69 22.38 198.56 14.41
96 176.68 25.36 290.08 29.30 399.28 35.94 316.51 22.97 

aCellulase enzyme loading. bβ-glucosidase loading. ccellulase enzyme loadings remained the same as with supplemental β-glucosidase. 
Enzymatic hydrolysis conditions: incubation temperature 45 °C, pH 4.8, RS–Reducing sugar (mg equivalent glucose/g dry biomass, D– % 
Digestibility. 
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Calibration curves (using glucose as a standard) 
were used to determine the reducing sugar concen-
trations (Chang et al., 1998). The sample was diluted 
properly so that the measured absorbance was in the 
linear range. Reducing sugar yields were expressed 
as mg equivalent glucose/g dry substrate (treated 
substrate as cellulose and hemicellulose). Further-
more, hydrolysis results (% digestibility; as substrate 
conversion), were expressed in terms of the theoreti-
cal or total polysaccharide in the treated substrate 
(Yoo et al., 2011). 
 

 

Reducing sugar obtained 
(g/g) x 0.9 x1 00

 % Digestibility=
Treated substrate 

cellulose hemicellulose g/g 

 



 (7) 

 
Wet treated biomass was used for the enzymatic 

hydrolysis and fermentation steps. Sugar yields were 
also expressed as dry biomass based on equivalent 
material balance of wet treated sample (Dowe and 
McMillan, 2008). 
 
Ethanol Fermentation Process 
 

The sugar from the pretreatment process solid 
fraction was fermented to ethanol through simultane-
ous saccharification and fermentation (SSF) by Sac-
charomyces cerevisiae kindly provided by Purti Power 
and Sugar Ltd., Distillery Division, Nagpur, India. 
The S. cerevisiae inoculum culture medium was pre-
pared aseptically in a 250 mL shaking flask covered 
with a cotton stopper with 100 mL of medium con-
taining 3 g/L malt extract, 3 g/L yeast extract, 5 g/L 
peptone, and 10 g/L glucose, and incubated on a 
rotary shaker at 130 revolution per minute and 32 ± 
2.0 °C for 24 h. All media were sterilized by auto-
claving at 121 °C for 30 min. The cells were harvested 
for SSF fermentation to a final optical density (OD) 
of 0.6 measured at 600 nm (Dowe and McMillan, 
2008). SSF was performed under anaerobic condition, 
made possible by making the rubber stoppered flasks 
air-tight with Teflon tape and thereafter covered with 
aluminum foil, in sterile 250 mL shaking flasks with 
the incubator shaker at 30 ± 2.0 °C for 96 h. 5 mL of 
inoculum culture were added into the 50 mL working 
volume, sterilized for the fermentation of the pre-
treated solids. The pH of the medium was adjusted to 
4.8 ± 0.2 with 0.05 M citrate buffer. With a total sam-
ple size of 50 g (total working volume for fermenta-
tion was 50 mL), the desired cellulose effective load-
ings of 2% (w/w) and 3% (w/w) were considered, 
which were equivalent to 1.0 g and 1.5 g of cellulose, 

respectively, in treated substrate. The cellulase load-
ing (filter paper activity = 57.8 FPU/mL) was 25 
FPU/g cellulose and the concentration of yeast (Sac-
charomyces cerevisiae) inoculum was 10% (v/v). At 
the end of fermentation period, 5 mL of mixture 
were removed and centrifugation was performed at 
4,500 revolution per minute for 5 min (Dowe and 
McMillan, 2008). The supernatant after centrifuga-
tion was used for the ethanol estimation. 

The ferment ability of the pretreated solids was 
characterized by the equation (Dowe and McMillan, 
2008): 
 

   
  

f 0

% theoretical ethanol yield

EtOH  – EtOH
x1 00%

0.51 f Biomass 1.111


        (8) 

 
where [EtOH]f = ethanol concentration at the end of 
the fermentation (g/L) minus any ethanol produced 
from the enzyme and medium,  

[EtOH]0 = ethanol concentration at the beginning 
of the fermentation (g/L), which should be zero, 
[Biomass] = dry biomass concentration at the begin-
ning of the SSF (g/L), f = Cellulose fraction of the 
dry biomass (g/g),  

0.51 = Conversion factor for glucose to ethanol 
based on the stoichiometric biochemistry of the etha-
nol fermentation,  

1.111 = factor that converts cellulose to equiva-
lent glucose. 

The ethanol yield was calculated as a percentage 
of the theoretical yield on the basis of the total effec-
tive cellulose in the pretreated material, in other 
words, the % theoretical ethanol yield can also be 
given as % cellulose conversion. The control fermen-
tation (without biomass samples) was performed and 
the result was subtracted from the test fermentations 
for each biomass loading. 

Ethanol analysis was carried out from the absorb-
ance of the sample using the dichromate assay 
method (Ayeni et al., 2014; Bennet, 1971); acid di-
chromate solution (0.1 M Cr2O7

2- in 5 M H2SO4) was 
prepared by dissolving 7.5 g of potassium dichro-
mate in 70 mL of dilute sulfuric acid and the final 
volume was adjusted to 250 mL with deionized wa-
ter. The standard curve was made by adding 300 μL 
of ethanol solution to beaker containing 3 mL of acid 
dichromate. The beakers were covered and sealed 
with parafilm and kept at room temperature for 30 
min. The absorbance was recorded at 590 nm on 
spectrophotometer (UV-1800 Shimadzu, Japan). 
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Effect of Enzymatic Hydrolysis on Treated and 
Untreated Biomass 
 

Our earlier studies established that a combination 
of air and hydrogen peroxide as oxidizing agents 
increased the delignification of Vitellaria paradoxa 
sawdust leading to increased enzymatic hydrolysis of 
treated biomass (Ayeni et al., 2013a; Ayeni et al., 
2013b; Ayeni et al., 2014). It was pointed out that, 
under the optimized pretreatment conditions (150 °C, 
45 min, 1%H2O2, and 1.0 MPa air pressure), at 2% 
pretreated biomass loading, enzymatic hydrolysis 
temperature of 50 °C, and hydrolysis period of 72 h, 
the total reducing sugars obtained were 263.49 mg 
equivalent glucose/g dry biomass. Defining a single 
optimum for enzymatic hydrolysis is impossible. 
End products of the hydrolysis (mainly cellobiose 
and glucose, which may also include the furan com-
pounds as furan and hydroxylmethyl furfural (HMF)) 
(Andrić et al., 2010) may also inhibit the enzyme 
activity, the build-up of any of these products nega-
tively affects cellulose hydrolysis. The concentration 
of the cellulase enzyme complex has a high impact 
on the conversion of the cellulose. The maximum 
cellulase activity for most fungal-derived cellulases 
and β-glucosidase was reported to occur at 50 ± 5 °C 
and a pH between 4.0 and 5.0 (Gregg et al., 1998). 
At lower temperatures, the hydrolysis rate per unit of 
active enzyme is slower, but so is enzyme denatura-
tion (Kaar and Holtzapple, 2000). The optimum tem-
perature and pH is not only a function of the raw 
material and the enzyme source, but is also highly 
dependent on the hydrolysis time. The optimal con-
ditions change with the hydrolysis residence time 
(Tengborg et al., 2001), and are also dependent on 
the source of the enzymes. In order to improve on 
our previous studies (Ayeni et al., 2013a; Ayeni et 
al., 2014), enzymatic digestibility was evaluated 
considering increasing substrate concentrations, hy-
drolysis time, and hydrolysis temperature, as well as 
increasing enzyme loadings. The effects of substrate 
concentration variation (20, 30, 40, and 50 g/L) with 
and without supplemental β-glucosidase, hydrolysis 
temperature (45 °C), enzyme loadings, as well as 
hydrolysis time (96 h) on digestibility were investi-
gated as pretreatment conditions. The results for the 
pretreated sawdust material after saccharification for 
the pretreatment conditions 150oC, 1% H2O2, 1.0 
MPa air pressure are given in Table 2. The effects of 
substrate concentration variation (20, 30, 40, and 50 
g/L) with and without supplemental β-glucosidase, 
hydrolysis temperature (45 °C), and enzyme load-
ings, as well as hydrolysis time (96 h), on digestibil-
ity were investigated in the pretreatment conditions. 

With a cellulase enzyme loading of 25 FPU/g treated 
substrate, the reducing sugar yield was 187.03 mg/g 
dry biomass in 72 h. A higher reducing sugar yield 
(274 mg/g dry biomass) was obtained with the same 
enzymatic hydrolysis but different pretreatment con-
ditions; 170 °C, 1.0 MPa, and 10 min (Ayeni et al., 
2013a). The effect of temperature on biomass pre-
treatment and enzymatic hydrolysis may have ac-
counted for this variation. In this study, the results 
showed that reducing sugar yields increased with 20, 
30, 40 g/L substrate concentrations considered up to 
the fourth day of hydrolysis. It showed that more 
sugar is likely to be produced if the hydrolysis time 
was increased beyond 96 h. The optimum tempera-
ture and pH are not only a function of the raw mate-
rial and enzyme source, but are also highly depend-
ent on the hydrolysis time (Martín, et al., 1988). This 
also showed that the enzymes were still active to 
cause more hydrolysis at the reduced hydrolysis 
temperature of 45 °C. However, for 50 g/L substrate 
concentration and 62.5 FPU/g dry biomass loading, 
the sugar yield was 411.07 mg glucose equivalent/g 
dry biomass, which was lower than the sugar yield  
at 40 g/L and 50 FPU/g dry biomass loading (448.06 
mg/g dry biomass). Increasing the substrate concen-
tration to 50 g/L caused decreased hydrolysis, de-
spite increased enzyme loadings. This is probably 
due to end product inhibition, other inhibitors or 
inefficient mixing. Furthermore, reducing sugar 
yields without supplemental β-glucosidase were 
comparable to when the enzyme was added. For 
example, at 40 g/L substrate concentration and a 50 
FPU/g treated substrate enzyme loading, the reduc-
ing sugars yield after 96 h with β-glucosidase was 
448.06 mg/g dry biomass, while under the same con-
dition but without β-glucosidase supplement the 
reducing sugars yield was 399.28 mg/g dry biomass. 
This is just about 11% lower. Addition of cellobiase 
(β-glucosidase) has been reported to greatly increase 
pretreated biomass conversion. However, increasing 
cellobiase loading beyond a limit may not enhance 
biomass digestibility. Zhu (2005) reported that be-
yond 28.4 CBU/g dry biomass cellobiase loading, 
the digestibility of pretreated corn stover did not 
improve. Crude enzymes with high cellobiase activ-
ity are less affected by supplemental cellobiase and 
commercial enzyme sources may also differ in resi-
dent cellobiase (Zhu, 2005). The discrepancy could 
also be attributed to the amount of β-glucosidase 
added and the extent of hydrolysis, which depends 
highly on structural features and cellulase loading 
(Zhu, 2005; Pu et al., 2013). Therefore, for the econ-
omy of the studied process, the absence of β-gluco-
sidase generally gave better results of digestibility 
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example 25 FPU to 50 FPU/g dry biomass in the 4-
day hydrolysis time. The 4-day reducing sugar yield 
at 50 FPU/g dry biomass for 150 °C, 1%H2O2, 1.0 
MPa air pressure, 45 min pretreatment conditions 
was 482.40 mg/g dry biomass, while at 25 FPU/g dry 
biomass the yield was 416.32 mg/g dry biomass (about 
a 22-fold increase compared to untreated biomass). 
The 25 FPU/g dry biomass loading was found to be 
adequate with this material (Figure 4), but further 
improvements in pretreatment efficiency would ena-
ble decreasing to more economical enzyme dosages. 
Further inspections show that the sugar yield was 
about 2.5 times higher after 96 h (416.32 mg/g) from 
the 24 h (170.51 mg/g) hydrolysis period. It is ex-
pected that, at longer periods and low temperature 
(in this case 45 °C), hydrolysis should increase until 
a constant value is attained in which the enzymes 
were supposed to have been exhausted or their ac-
tions stopped by inhibitors. Cellulase loadings greater 
than 25 FPU/g dry biomass may have caused the 
cellulose sites to be saturated by the enzymes. 
 
Fermentation of Treated Biomass 
 

After 72 h fermentation, the quantity of ethanol 
obtained (g/L) at 2% effective cellulose loading was 
10.69 g/L (% theoretical ethanol yield: 31.03%) for 
pretreatment at 150 °C, 1%H2O2, 1.0 MPa air pres-
sure, and 45 min. At an increased effective cellulose 
loading of 3%, the ethanol obtained did not signifi-
cantly increase (12.43 g/L with theoretical ethanol 
yield of 29.56%). The % theoretical ethanol yields 
(based on cellulose conversion) for the pretreatment 
conditions were higher at 2% effective cellulose 
loading than at 3% effective cellulose loading. The 
ethanol concentration tended to be higher at 3% sub-
strate loading, but at this loading the % theoretical 
ethanol yields were much lower than that at 2% sub-
strate loading. This implies that more of the cellulose 
was converted at 2% loading than at 3% substrate 
loading. The ethanol yield at 3% loading showed that 
more reducing sugar was produced by enzymatic 
hydrolysis and was probably more quickly assimi-
lated by yeast for cell growth and ethanol production 
than at 2% loading. For the 96 h fermentation period, 
the corresponding ethanol values for the 2% and 3% 
biomass loadings did not appreciably increase. At 
2% effective cellulose loading, the quantity of etha-
nol obtained was 12.73 g/L (32.75% theoretical etha-
nol yield). The 3% cellulose loading it corresponded 
to 13.84 g/L with 33.44% theoretical ethanol yield. 
The ethanol yield at 2% cellulose loading was 
comparable to the 3% cellulose loading. Yeast may 
have acted faster on the 2% cellulose loading than 

the 3% cellulose loading. At high cellulose loading, 
the increased glucose monomers may also be inhibit-
ing the actions of the microbes. Cellulose conversion 
at 2% substrate loading should be more appropriate 
for the SSF under the conditions considered. How-
ever, more of the substrate will be needed for the 
fermentation process. Generally, the low ethanol 
yield in this study is connected to the high lignin 
content because cellulose accessibility to cellulases 
is largely limited by the anatomical structure of the 
plant cell wall (Pu et al., 2013). Lignin interferes 
with enzymatic hydrolysis by blocking access to 
cellulase and irreversibly binding hydrolytic enzyme. 
Lignin inhibits the enzymes during hydrolysis. In 
future studies, to remedy and reduce the recalcitrant 
nature of the biomass, addition of extra nutrients and 
minerals [in the form of yeast extract, bacto tryptone 
(casein extract)] to the fermentation broth will be taken 
into consideration. Extra nutrients and minerals can 
increase the ethanol concentration at very short incu-
bation periods (Lissens et al., 2004). Furthermore, a 
combination of both hemicellulase and cellulase 
enzymes could cause increased enzymatic hydrolysis 
in the biomass-to-ethanol process.  
 
 

CONCLUSIONS 
 

This study proved the efficiency of alkaline perox-
ide oxidation pretreatment on a woody biomass, 
Vitellaria paradoxa (Shea tree) sawdust. The pre-
treatment caused appreciable disruption of the bio-
mass structure making cellulose more accessible to 
the enzymatic complex. Significant increases in 
reducing sugar yield were observed for the treated 
relative to the untreated biomass. For the kinetics of 
delignification, the results indicated the activation 
energy to be 76.4 kJ/mole and the Arrhenius constant 
was calculated as 8.4 x 106/min. After pretreatment 
(optimized conditions of 150 °C, 1% H2O2, 1.0 MPa 
air pressure, 45 min) and enzymatic hydrolysis 
(digestibility conditions of 45 °C, 96 h, pH 4.8 at 40 
g/L substrate loading), the reducing sugar yield for 
the treated biomass was 347.20 mg/g dry biomass. 
Optimization of the enzymatic digestibility with the 
enzyme loading studies for the 4-day incubation 
period showed that a 25 FPU/g dry biomass enzyme 
loading yielded 416.32 mg/g dry biomass for 40 g/L 
substrate concentration, compared to the 19.08 mg/g 
dry biomass reducing sugar yield of the untreated 
sample. Therefore, under the optimized conditions 
more of the substrate will be needed for the enzy-
matic hydrolysis process. Conversion of the treated 
woody material to ethanol at 2% effective cellulose 
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loading after 96 h fermentation by Saccharomyces 
cerevisiae was 12.73 g/L. In all, the Shea tree was 
found to be challenging due to the high lignin con-
tent. However, in an integrated bio-refinery, the un-
dissolved lignin can be available for energy produc-
tion by combustion, and for conversion to other fuels 
and chemicals. 

As a result of the recalcitrant nature of the bio-
mass, further improvements in pretreatment and the 
enzymatic digestibility are needed.  
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