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Abstract - Equations of state are useful for description of fluid properties such as pressure-volume-
temperature (PVT). However, the success estimation of such correlations depends mainly on the range of data 
which have originated. Therefore new models are highly required. In this work a new method is proposed 
based on Artificial Neural Network (ANN) for estimation of PVT properties of compounds. The data sets 
were collected from Perry’s Chemical Engineers’ Handbook. Different training schemes for the back-
propagation learning algorithm, such as; Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM) and 
Resilient back Propagation (RP) methods were used. The accuracy and trend stability of the trained networks 
were tested against unseen data. The LM algorithm with sixty neurons in the hidden layer has proved to be the 
best suitable algorithm with the minimum Mean Square Error (MSE) of 0.000606. The ANN’s capability to 
estimate the PVT properties is one of the best estimating method with high performance.  
Keywords: Artificial Neural Network; Model; Thermodynamic; PVT; Equation of state. 

 
 
 

INTRODUCTION 
 

Thermodynamic properties, such as internal 
energy and enthalpy, which have been used for 
calculation of the heat and work requirements in 
industrial processes, are often evaluated from 
volumetric data. Moreover, pressure-volume-
temperature (PVT) relations are important for such 
purposes as the metering of fluids and sizing of 
vessels and pipelines (Smith et al., 2001). Equations 
of state are useful in describing the properties of 
fluids, mixtures of fluids, solids, and even the 
interior of stars (Pierre, 1998). In physics and 
thermodynamics, an equation of state is a relation 
between state variables (temperature, pressure, 
volume, or internal energy). The most prominent use 
of an equation of state is to estimate the state of 
gases and liquids. One of the simplest equations of 
state for this purpose is the ideal gas law, which is 
roughly accurate for gases at low pressures and high 
temperatures. However, this equation becomes 

increasingly inaccurate at higher pressures and lower 
temperatures, and fails to predict condensation of gas 
to liquid. Therefore, a number of much more 
accurate equations of state such as Vander Waals, 
Redlich Kwong, and Peng Robinson have been 
developed for gases and liquids. At present, there is 
no single equation of state that accurately estimates 
the properties of all substances under all conditions. 
Therefore the new attempts have been made to 
develop an alternative to a simple equation of state 
which can be used for all conditions. Defining the 
ANN and selecting the best ANN predictor to 
represent PVT data within their experimental 
uncertainty are the main focus of this work. ANN is 
a model based on some experimental results that is 
proposed to predict the required data because of 
avoiding more experiments. This model provides a 
connection between input and output variables and 
bypass underlying complexity inside the system. The 
ability to learn the behavior of the data generated by 
a system certifies versatility of neural network 
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(Valles, 2006). Speed, simplicity, and capacity to 
learn are the advantages of ANN compared to 
classical methods. This model has been widely 
applied to estimate the physical and thermodynamic 
properties of chemical compounds. ANN has 
recently been used to predict some pure substances 
and petroleum fraction’s properties (Bozorgmehry et 
al., 2005), activity coefficients of isobaric binary 
systems (Biglin, 2004), dew point pressure 
(Zambrano, 2002), thermodynamic properties of 
refrigerants (Ganguly, 2003; Sozen et al., 2005), and 
activity coefficient ratio of electrolytes in amino 
acid's solutions (Dehghani et al., 2006), etc. 
However, few publications are available in literature 
for ANN applications in predicting PVT properties.  

Defining the ANN and selecting the best ANN 
predictor to predict the compressibility factor (z) in 
desired temperature and pressure ranges instead of 
empirically derived correlations are the main focus 
of this work. Finally results of the ANN model is 
evaluated against with the unseen data and then 
compared with the empirical models.   
 
 

ARTIFICIAL NEURAL NETWORKS 
 

In order to find relationship between the input 
and output data derived from experimental work, a 
more powerful method than the traditional ones are 
necessary. ANN is an especially efficient algorithm 
to approximate any function with finite number of 
discontinuities by learning the relationships between 
input and output vectors (Bozorgmehry et al., 2005; 
Hagan et al., 1996). These algorithms can learn from 
the experiments, and also are fault tolerant in the 
sense that they are able to handle noisy and 
incomplete data. The ANNs are able to deal with 
non-linear problems, and once trained can perform 
estimation and generalization rapidly (Sozen et al., 

2004). They have been used to solve complex 
problems that are difficult to be solved if not 
impossible by the conventional approaches, such as 
control, optimization, pattern recognition, 
classification, and so on, Specially it is desired to have 
the minimum difference between the predicted and 
observed (actual) outputs (Richon and Laugier, 2003). 
Artificial neural networks are biological inspirations 
based on the various brain functionality characteristics. 
They are composed of many simple elements called 
neurons that are interconnected by links and act like 
axons to determine an empirical relationship between 
the inputs and outputs of a given system. Multiple 
layers arrangement of a typical interconnected neural 
network is shown in Figure (1). It consists of an input 
layer, an output layer, and one hidden layer with 
different roles. Each connecting line has an associated 
weight. Artificial neural networks are trained by 
adjusting these input weights (connection weights), so 
that the calculated outputs may be approximated by the 
desired values. The output from a given neuron is 
calculated by applying a transfer function to a weighted 
summation of its input to give an output, which can 
serve as input to other neurons, as follows (Gharbi, 
1997). 
 

k 1N

jk k ijk i(k 1) jk
i 1

F ( w )
−

−
=

α = α +β∑                               (1) 

 
Where jkα  is neuron j’s output from k ’s layer βjk 

is the bias weight for neuron jin layer k . The model 
fitting parameters wijk are the connection weights. 
The nonlinear activation transfer functions kF  may 
have many different forms. The classical ones are 
threshold, sigmoid, Gaussian and linear function, 
etc… (Lang, 2001), for more details of various 
activation functions see Bulsari (1995). 

 
 

 
Figure 1: Schematic of typical multi-layer neural network model 
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The training process requires a proper set of data 
i.e. input (Ii) and target output (ti). During training 
the weights and biases of the network are iteratively 
adjusted to minimize the network performance 
function (Demuth and Beale, 2002). The typical 
performance function that is used for training feed 
forward neural networks is the network Mean 
Squares Errors (MSE) Eq. (2). 
 

N N
2 2

i i i
i 1 i 1

1 1MSE (e ) (t )
N N= =

= = −α∑ ∑     (2) 

 
There are many different types of neural 

networks, differing by their network topology and/or 
learning algorithm. In this paper the back 
propagation learning algorithm, which is one of the 
most commonly used algorithms is designed to 
predict the PVT properties. Back propagation is a 
multilayer feed-forward network with hidden layers 

between the input and output (Osman and Al-
MArhoun, 2002). The simplest implementation of 
back propagation learning is the network weights 
and biases updates in the direction of the negative 
gradient that the performance function decreases 
most rapidly. An iteration of this algorithm can be 
written as follows (Gharbi, 1997). 
 

k 1 k k kx x l g+ = −              (3) 
 

The process details flowchart to find the optimal 
model is shown in Figure (2). There are various back 
propagation algorithms such as Scaled Conjugate 
Gradient (SCG), Levenberg-Marquardt (LM) and 
Resilient back Propagation (RP). LM is the fastest 
training algorithm for networks of moderate size and it 
has the memory reduction feature to be used when the 
training set is large. One of the most important general 
purpose back propagation training algorithms is SCG 
(Lang , 2001; Demuth and Beale, 2002). 

 
 
 

 
 

Figure 2: A training process flowchart 
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The neural nets learn to recognize the patterns of 
the data sets during the training process. Neural nets 
teach themselves the patterns of the data set letting 
the analyst to perform more interesting flexible work 
in a changing environment. Although neural network 
may take some time to learn a sudden drastic change, 
but it is excellent to adapt constantly changing 
information. (Parvizian, 2008). However the 
programmed systems are constrained by the designed 
situation and they are not valid otherwise. Neural 
networks build informative models whereas the more 
conventional models fail to do so. Because of 
handling very complex interactions, the neural 
networks can easily model data, which are too 
difficult to model traditionally (inferential statistics 
or programming logic). Performance of neural 
networks is at least as good as classical statistical 
modeling, and even better in most cases (Osman and 
Al-MArhoun, 2002). The neural networks built 
models are more reflective of the data structure and 
are significantly faster. 

Neural networks now operate well with modest 
computer hardware. Although neural networks are 
computationally intensive, the routines have been 
optimized to the point that they can now run in 
reasonable time on personal computers. They do not 
require supercomputers as they did in the early days 
of neural network research. 
 
 

THEORY AND EXPERIMENTAL DATA 
 

Knowledge of the pressure/volume/temperature 
(PVT) behavior of natural gases is necessary to solve 
many petroleum engineering problems. Gas reserves, 
gas metering, gas pressure gradients, pipeline flow 
and compression of gases are some of the problems 
requiring precise calculation of gas density 
(Parvizian, 2008). 

The equation of state relating the pressure, volume, 
temperature, is adequate to provide all the required 
volumetric information, such as the gas information 
volume factor, density and isothermal compressibility 
coefficient (Danesh, 1998). All gases behave ideally 
when the pressure approaches zero, the pressure 
volume relation for an ideal gas is written as  
 
Pυ = RT                (3) 
 

Due to intermolecular forces real gases do not 
behave ideally, particularly at elevated pressures. Eq. 
(3) is extended to real systems by including a 
compressibility factor, Z, as 
 
Pυ=ZRT                 (4) 
 

Compressibility factor, Z, is a key parameter, 
which can be determined from various theoretical-

empirical equation of state or a generalized chart for 
gases. These charts are created by plotting Z as a 
function of pressure at constant temperature. 

The compressibility factor depends only on the 
reduced temperature, Tr, and the reduced pressure, Pr. 

 A set of data containing reduced pressure, 
reduced temperature and compressibility factor was 
collected from Chemical engineers’ Handbook 
(Perry, 1999). Table (1) lists samples of these data 
which were used for training and testing the neural 
network. 

 
 

NEURAL NETWORK MODEL 
DEVELOPMENT 

 
Developing the neural network model to 

accurately predict the PVT properties of different 
gases requires its exposure to a large data set during 
the training phase. 

The back propagation method with SCG, LM and 
RP learning algorithm has been used in feed forward, 
single hidden layer network. Input layer neurons 
have no transfer functions. Similarly, inputs are the 
reduced temperature and reduced pressure while 
output is the compressibility factor. The neurons in 
the hidden layer perform two tasks:  summing the 
weighted inputs connected to them and passing the 
result through a non linear activation function to the 
output or adjacent neurons of the corresponding 
hidden layer. The computer program has been 
developed under MATLAB (Parvizian, 2008). Two 
thirds of data set is used to train each ANN and the 
rest have been used to evaluate their accuracy and 
trend stability. The number of hidden neurons has 
been systematically varied to obtain a good estimate 
of the trained data (Padmavathi et al., 2005).  The 
selection criterion is the net output MSE. The MSE 
of various hidden layer neurons are shown in Figure 
(3). As it can be seen the optimum number of hidden 
layer neurons is determined to be 60 for minimum 
MSE. 

Similarly the MSE of various training algorithms 
was calculated and listed in table (2) for the obtained 
nineteen hidden layer neurons. As Table (2) shows 
the Levenberg-Marquardt (LM) and Scaled 
Conjugate Gradient (SCG) algorithms have the 
minimum MSE. 

Now the trained ANN models are ready to be 
tested and evaluated against the new data. Table (3) 
lists the various MSE of the network testing. 
According to these tables the Levenberg-Marquardt 
(LM) algorithm is the most suitable algorithm with 
the minimum MSE. 

Consequently, LM provides the best minimum 
error average for both training and testing of the 
network. Figure (4) shows the LM algorithm relative 
error fluctuations. 
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Table 1: Minimum and Maximum  Data which Used to Train the Neural Network 
 

Properties min max 
Reduced Pressure  0.001245 18.07773 
Reduced Temperature  0.662866 24.10356 
Compressibility factor 0.0002 6.019 

 
 

 
 

Figure 3: Determining the optimum number of neurons for some algorithms 
 

Table 2: MSE Comparison between different algorithms to train ANN 
 

Algorithm MSE of network Training 
Trainlm 0.000606 
Trainscg 0.001428 
Trainrp 0.001799 

 
Table 3: MSE Comparison between different algorithms to test ANN 

 
Algorithm MSE of network Training 

Trainlm 0.00172 
Trainscg 0.000257 
Trainrp 0.00318 

 
 

 
 

Figure 4: The relative errors between predicted data by ANN and Experimental data 
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RESULTS AND DISCUSSION 
 

The results show that the ANN can predict PVT 
properties very close to the experimentally measured 
ones. Figures (5) and (6) show the scatter diagrams that 
compare the experimental data versus the computed 

neural network data for both training and testing the 
ANN. As it may be seen, a tight cloud of points about 
the 45o line is obtained for the new data points. This 
indicates an excellent agreement between the 
experimental and the calculated data. Figures (7 and 8) 
compare the ANN simulation and experimental data. 

 
 
 

  
Figure 5: A Comparison between ANN and 
experimental data for training the network 

Figure 6: A Comparison between ANN and 
experimental data for testing the network 

 
 
 

Figure 7: A comparison between predicted  
data by ANN and Experimental data 

 

Figure 8: A comparison between predicted  
data by ANN and Experimental data 
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NOMENCLATURE 
 
e Difference between target 

data and simulation  
(-)

F Transfer function (-)
g Gradient (-)
I Input data (-)
l Learning rate 
N Number of data (-)
P Pressure  bar
R Universal gas constant  8.314 J mol-1

K-1

T Temperature  K
t Target data (-)
x Vector of weights (-)
w Connection weights  (-)
Z Compressibility factor (-)
α Output of neuron (-)
β Bias weight  (-)
υ Molar volume  m3/mol
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