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Abstract - In this paper, the volume averaging transport equations of two reactive processes in porous media 
are presented. The porous media are characterized by different length scales and the information describing 
the mass transfer mechanisms is transferred hierarchically between scales by applying the volume averaging 
method. This development provides the theoretical definition of effective transport coefficients, which can be 
predicted through solution of the closure problems. The theoretical calculation of effective diffusion tensors 
of the species in the particle pores is presented. Two closure problems are deduced through mathematical 
formulation of two different scales: microporous (process 1) and macroporous (process 2). In order to solve 
these closure problems, the volume finite method is used as the numerical methodology. Good agreement is 
verified between the numerical solutions obtained in this study and the data found in the literature for the 
closure problems considered. 
Keywords: Effective diffusivity tensor; Method of volume averaging; Closure problems; Porous media. 

  
 
 

INTRODUCTION 
 
In reaction engineering, the separation and 

reaction processes involve different transfer 
phenomena: adsorption, diffusion/dispersion and 
convection, besides the chemical/biochemical 
reaction, which can be homogeneous and/or 
heterogeneous. If these phenomena can be accurately 
described through the development of mathematical 
formulations, such formulations will be useful in the 
design and optimization of processes in any 

operating units.   
In some reactors where chemical reactions take 

place in the presence of a stationary phase, there is 
usually a heterogeneous porous medium, which is 
composed of many scales. Some heterogeneity levels 
found in a chromatographic reactor are schematized 
in Fig. 1. This heterogeneity is characterized by 
length scales that include from the largest length 
scale, related to the reactive unit, to the smallest 
length scale, related to the adsorption and/or reaction 
sites of the particles.  
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Figure 1: Hierarchical structure of length scales in a porous medium of a chromatographic reactor. 

 
When significantly different length scales are 

involved in a hierarchical system, the method of 
volume averaging can be used to take the information 
from the particle scale of the reactive multiphase flow, 
comprising the pores and the solid itself, to the 
macroscopic scale of measurable amounts (Nguyen et 
al., 1982; Wood and Whitaker, 1998). This 
development provides the theoretical definition of 
effective transport coefficients, which can be predicted 
by solving some boundary value problems, called 
closure problems (Crapiste et al., 1986). The method of 
volume averaging has been applied successfully in 
dealing with some problems of transport phenomena in 
porous media: active and passive dispersion (Quintard 
and Whitaker, 1994), dispersion with chemical reaction 
(Ryan et al., 1981; Guelli U. de Souza and Whitaker, 
2003), and dispersion with adsorption (Plumb and 
Whitaker, 1990; Ulson de Souza and Whitaker, 2003), 
among others. 

Since the diffusion process in porous media is a 
subject of great interest in engineering, mainly in the 
design of chemical/biochemical reactors, the solution 
of two closure problems derived from the application of 
volume averaging in the governing differential 
equations of biotechnological problems is presented. 
The first closure problem refers to the microscale of a 
packed bed reactor in the glucose isomerization process 

and the second is associated with the intermediate scale 
of a chromatographic reactor in the sucrose inversion 
process. The aim is to show the potential of this 
approach, in which the effective diffusivity in porous 
particles with different length scales can be 
theoretically calculated from the solution of closure 
problems. The closure problems are solved by the 
numerical techniques of finite volumes and generalized 
coordinate systems. Numerical solutions are performed 
using spatially periodic models of porous media. 
 
 

DESCRIPTION OF THE PROCESS – 
MICROSCALE CASE 

 
The first process to be considered is convective-

diffusive transport in the presence of a reversible 
chemical reaction, in which species A is consumed to 
produce species B (for example, the glucose 
isomerization process, glucose  fructose). The 
reaction takes place in the pores of the catalyst 
pellets – glucose isomerase immobilized enzyme – 
in a packed bed reactor. The resultant mixture of the 
species must be selectively separated through a 
subsequent separation process. The hierarchical 
structure of the porous medium under consideration 
in this formulation is illustrated in Fig. 2. 

 

 
Figure 2: Hierarchical structure of the catalytic porous medium in a packed bed reactor. 
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On the macroscale or design scale (level 2 in Fig. 
2), there is a fluid region, identified as the η-region, 
which surrounds the solid particles packed in the 
reactor – ω-region. Level 1 corresponds to the 
microscale and represents the porous region of the 
particles. In the averaging volume of the microscale 
( ωV ), the κ-region is the solid matrix of the catalyst 
and the fluid phase within the pores of the particle is 
identified as the γ-phase. The γ-κ interface is a 
catalytic surface. In Fig. 2, the position vector r is 
used to localize any point in three-dimensional 
space. The position vector x determines the centroid 
of the averaging volume and the position vector yγ is 
used to represent points in the γ-phase relative to the 
centroid of ωV . 

For the microscale, the reactive system under 
consideration (A  B) is described by the following 
governing transport equations and interface 
boundary conditions: 
 

)(. γγ
γ

ii
i C
t

C
∇∇=

∂

∂
 D ,  in γ-phase        (1) 

 
B.C.1   
 

iiii RC δγγγκ =∇+  .n D ,   in γκ A           (2) 
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)(C ii rG=γ ,     in t = 0           (4) 
 

In Eqs.(1)-(4), γiC  is the punctual concentration 

in the γ-phase of averaging volume ωV  of species i,  

γκ A  is the γ-κ interfacial area, and i D  is the 
molecular diffusivity of species i. The reaction rate 
term is given by Ri (mol/s m2) and the variable δ can 
have values of 1 and -1 for the reagent species and 
product, respectively. 

The boundary condition given by Eq.(3) is 
basically used to show that the information 
concerning the punctual concentration in eγ A  (area 
of the γ-phase entrances and exists associated with 
the microscopic region in Fig. 2) is not known. The 

same applies to the initial condition. For the glucose 
isomerization process, the global reaction rate may 
be based on the reversible Briggs-Haldane 
mechanism. 

The spatially smoothed form of Eq.(1) is given by 
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in which the preferred concentration for describing 
the mass transfer process in porous media is the 
intrinsic average concentration defined as 
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for a given n-phase or n-region (Vn, n-phase volume 
of the averaging volume). The volume fraction of the 
n-phase (or n-region) is defined explicitly by 
 

m

n
n

V
V

=ε                 (7) 

 
(m is the macroregion that contains the n-phase or n-
region)                

 
In order to derive Eq.(5) from Eqs.(1)-(4), we 

have made some simplifications, all of which are 
associated with the two length scale constraints,  

 
or<<γ ;  Lro <<                 (8) 

 
In Eq.(8), γ  is the length scale for the γ-phase, 

ro is the radius of averaging volume ωV  and L is the 
macroscopic length scale. Borges da Silva (2004) 
presented the smoothing procedure for the reversible 
reaction under study. To obtain Eq.(5), we used the 
spatial deviation concentration (C~ ) according to  
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Closure  
  

In order to develop a closed form of Eq.(5), one 
should obtain representations for the spatial 
deviation concentrations. This can be achieved by 
subtraction of the punctual equations for the 
respective volume-averaged equations. This 
procedure should be considered in the development 
of the closure problem. The following representation 
for γiC~  is proposed:   

 

γγκγ

γ

γγγ ψ iiiiii RsCC ++∇⋅=
xx

b~
    (10) 

 
The vector biγ and the scalar siγ  are referenced 

as closure variables and ψiγ is an arbitrary 
function. The closure variables can be determined 
through the boundary value problems, as 
exemplified by field biγ : 
 

02 =∇ γib              (11) 
 
B.C.1   
 

γκγγκ nbn =∇⋅− i ,    in γκA       (12) 
 
Periodicity:  
 

( ) ( )rbrb γγ iji =+   j = 1, 2, 3     (13) 
 

In closure problems, ℓj represents the three lattice 
vectors that describe a spatially periodic media 
(Brenner, 1980). Since for resolution of the 
concentration deviation field a spatially periodic 
model of the porous medium is used, the 
contribution of ψiγ to the closed form of the 
governing equation for the microscale is null.  It is 
possible to show that there is no significant 
contribution of the second term of Eq.(10), the term 

of the scalar γis ,  to the field of 
γ

γiC  in relation to 
its respective source term (Ryan et al., 1981). 

The governing equation for the microscale, 
Eq.(14), which describes the species transfer from 
the fluid phase to the catalyst porous surface, is 
obtained through use of representation for γiC~  in the 
intrinsic concentration transport equation. Thus, the 
closed form of this volume averaged mass 
conservation equation is expressed as 
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with the effective diffusivity tensor of species i Defi  
defined by 
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Microscale Closure Problem 
 

For the microscale of the reactor packed with 
catalyst, the solution of the closure variable field biγ 
specified by Eqs.(11)-(13) allows calculation of the 
effective diffusivity tensor of catalytic particles using 
Eq.(15). 

In Eq.(15), one can observe that there are two 
terms controlling the value of the effective 
diffusivity tensor: the term I γiD  (only molecular 
diffusivity) and a second term that consists of a 
geometric tensor (bi) multiplied by the molecular 
diffusivity. Since effective diffusivity is independent 
of reaction rate (Crapiste et al., 1986), we can 
conclude that it is sufficient to consider the passive 
dispersion case in this porous medium.  

The closure problem for biγ is solved for two 
models of spatially periodic porous media: the two-
dimensional array of cylinders (Fig. 3a) and the two-
dimensional array of squares (Fig. 3b). The former 
was originally solved by Ryan et al. (1981) and the 
latter by Ochoa-Tapia et al. (1994). The unit cells 
can be defined with a high degree of complexity, 
although the predicted theoretical values for the 
effective coefficients will be very close to those 
found using periodic models, such as those 
illustrated in Fig. 3. This is related to the 
characteristics of the boundary value problem for the 
filter represented by the area integral in Eq.(15) 
(Quintard and Whitaker, 1993). 

Both arrays in Fig. 3 are isotropic with respect to 
the diffusion process in the x-y plane; therefore, it is 
only necessary to determine a single component biγ  
of 

γκi efD . This is not the case for porous media, 

which are neither isotropic nor homogeneous.  A 
discussion of systems where there is some level of 
anisotropy with respect to the diffusion can be found 
in Whitaker (1999).  



 
 
 
 

Prediction of Effective Diffusivity Tensors                                                                                51 
 

 
Brazilian Journal of Chemical Engineering Vol. 24,  No. 01,  pp. 47 - 60,  January - March,  2007 

 
 
 
  

 

 
Figure 3: Spatially periodic models of porous media: (a) two-dimensional array of cylinders;  

(b) two-dimensional array of squares. 
 

 
The differential equations are discretized by the 

finite volume method and the fictitious volumes 
technique is used for application of the boundary 
conditions. The equations are written in a general 
curvilinear coordinate systems allowing the 
numerical procedure to be carried out in a 
transformed plane (Maliska, 1995). The algebraic 
equations are implemented in a computational 
algorithm using FORTRAN language. The 
convergence of the solution is evaluated by 
increasing the number of control volumes until no 
change is observed between different runs. 

The two-dimensional field of b is compared to 
that shown in Ochoa-Tapia et al. (1994) for 
cylindrical arrays with porosity εγ equal to 0.84. In 
Fig. 4, the values of bx appear in a dimensionless 
way through the lattice vectors. Reasonable 
agreement between the isolines of the bx field 
obtained in this study and those from the literature 
can be observed. The numerical method used by 
Ochoa-Tapia et al. is a finite-difference scheme. It is 

worth mentioning that the effective diffusivity in 
Eq.(15) is determined by the value of bx at the γ-κ 
interface and this value is given by the governing 
differential equation and the flux boundary condition 
(only weakly influenced by the periodicity 
condition). In this case, the numerical results from 
our study are in good agreement with those 
published in the literature. 

The analytical solution of the closure problem 
given by Eqs.(11)-(13) is possible if  Chang’s unit 
cell is adopted and the periodicity condition of 
Eq.(13) can be replaced by a Dirichlet condition 
specifying b = 0 at the external limit of the unit cell 
(i.e., r = r2 in Fig. 5)(Chang, 1983). Figure 5 shows 
the numerical results for the effective diffusivity 
when the cylindrical model of Chang’s unit cell is 
applied. The numerical methodology is the same as 
that used in the solution of the microscale closure 
problem for the unit cell shown in Fig. 3. The 
numerical results are compared with the analytical 
solution presented by Quintard and Whitaker (1993). 

 

 
Figure 4: Field of 2bx /ℓ  calculated for the porous medium with cylindrical array.  

() this study, (- - -) Ochoa-Tapia et al. (1994). 
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Figure 5: Solution of the microscale closure problem using Chang’s unit cell. 

 
One can verify good agreement between the 

results obtained in this study and those obtained by 
Quintard and Whitaker (1993), validating the 
numerical methodology. Ochoa- Tapia et al. (1994) 
presented a brief analysis of Chang’s unit cell for the 
calculation of 

γκi efD . 

The values for the isotropic effective diffusivity 

tensor, calculated using the spatially periodic 
models of porous media illustrated in Fig. 3, are 
shown in Fig. 6.  Here one can also observe the 
numerical results obtained by Ryan et al. (1981) 
and by Quintard and Whitaker (1993), in which a 
three-dimensional model of spheres, along with 
some experimental data, was used (Whitaker, 
1999). 

 
 

 
Figure 6: Dimensionless effective diffusivity for nonconsolidated pores. 

  
Good agreement between the numerical curves 

found in this study and those of other researchers can 
be verified in Fig. 6. There is also good agreement 
between the theoretical model and the experimental 
data. It is important to note that the experimental 
data are obtained from disordered systems, i.e., from 
spatially nonperiodic systems. 

For the glucose isomerization process where the 
glucose isomerase enzyme, which can be 
immobilized on several types of supports, is used, 
the effective diffusivity values for glucose diffusion 
are in the range of 10-9 to 10-6 cm2/s (Linko et al., 
1981). Asif and Abasaeed (1998) declared that there 
is a lack of reliable knowledge concerning glucose 
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diffusivity in biocatalysts. Such effective diffusivity 
has been described as a function of particle porosity 
( pε ) and tortuosity (Linko et al., 1981). Generally, 
the porosity values are between 0.4 and 0.8 and the 
tortuosity values are between 1 and 6. The value 
ranges for these parameters provide an effective 

diffusivity between 0.1 D  and 0.8 D . Table 1 
shows the effective diffusivity values and other 
correlations, which have been reported in the literature 
for glucose diffusion in some particle types. In Table 
2, some molecular diffusivity data for glucose at 25ºC 
and in different concentrations are presented. 

 
Table 1: Experimental effective diffusivities and some correlations for glucose diffusion in porous media. 

 
References pε  Effective Diffusivity (cm2/s) 
Linko et al. (1981) 0.8 6106.2 −  * 

Straatsman et al. (1983) – 7 24000 1 18.8  10 exp
R T 333

−   − −    
 

Bravo et al. (1998) – 61059.0 −  * 
Palazzi and Converti (2001) – 6D  
This study 0.4 - 0.8 D 5.0  to D 8.0  

*Experimental values. Linko et al. (1981) – actinoplane cells immobilized in cellulose grains (conc. 3.4 M; 60°C). Bravo et al. (1998) – 
glucose isomerase immobilized in silica (conc. 2 M; 60°C).  

 calculated from Fig. 6. 
 

Table 2: Molecular diffusivity of glucose in aqueous solution (Beenackers et al., 1986). 
 

CG (mol.m-3) 0 580 2620 4330 
D .105 (cm2.s-1) 0.675 0.580 0.302 0.133 

 
 

DESCRIPTION OF THE PROCESS – 
INTERMEDIATE CASE 

 
This second process is a decomposition reaction 

(A  B + C) where the products, species B and C, 
are selectively adsorbed in the micropores of 
adsorbent particles. It is assumed that there is no 
diffusion of reagent species inside the particles, 
which have a bidisperse structure: porous 
microparticles grouped together by means of a 
binder such that macroporous pellets are generated. 
Figure 1 illustrates the length scales of this problem. 
Level 3 is the macroscale, on which there is a fluid 
phase, identified as the η-phase, around the porous 
particles, the ω-region, packed into the reactor. Level 
2, which represents the intermediate scale, includes 
the macroporous region and involves a set of 
microparticles referred to as the σ-region. The σ-
region is composed of micropores, as represented in 
level 1, and has a fluid phase γ and an impermeable 
solid phase, the κ-phase. In this problem, the 
approach focuses on the mass transport taking place 
on the intermediate level. In this length scale, the 
radius of averaging volume  Vω  is represented by r1 
and the symbols β  and σ  are used to represent the 
characteristic length of the respective phases (Fig. 1).   

The diffusion and adsorption problem under 
consideration can be described by the following 
differential equations and interfacial boundary 
conditions:  
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B.C.4   
 

( )tC ii ,rG=σ ,     in eσA           (21) 
 
I.C.1   
 

( )riiC H=β ,     t=0            (22) 
 
I.C.2   
 

( )riiC I=σ ,     t=0            (23)  
 

in which βσA  is the interfacial area inside the 

microporous region and  eβA  and eσA  are the 
input and output areas associated with the averaging 
volume ωV . The mass transport information from 
the microporous region is transferred to the 
macroporous scale through Eq.(19), in which Ki is 
the adsorption equilibrium constant, assuming linear 
adsorption isotherms for the species. The parameters 
εγ and σiD  represent the porosity of a microparticle 
and the effective diffusivity tensor of species i in the 
σ-region. 

The volume-averaged transport equations for 
level 2 can be expressed as 
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in which the average values and volume fractions of 
the β-phase and σ-region are defined as shown in 
Eq.(6) and Eq.(7), respectively.  

 If the two average concentrations, 
β

βiC and 
σ

σiC , are sufficiently close to their equilibrium 
values, Eq.(24) and Eq.(25) can be combined and the 
interfacial flux terms eliminated. This mass transfer 
process can then be represented in terms of a one-
equation model, 
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in which the single concentration { }iC  is referred to 
as the spatial averaged concentration, given by 
 

{ } σ
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In Eq.(26), we have made use of the nomenclature 

 

γσβ εεεε +=  ; 
ε

ε
= γκσ iv

i

Ka
K **              (28) 

 
 Borges da Silva (2004) derived the time and 
length scale restrictions that must be satisfied if the 
one-equation model, and therefore the assumption of 
local mass equilibrium, is valid to describe this 
diffusion and adsorption process. These restrictions 
are related to the local mass equilibrium principle, 
which is discussed in Quintard and Whitaker (1998). 
 
Closure Problem of Intermediate Scale 
 
 In order to obtain the closed form of Eq.(26), one 
needs to develop representations for the spatial 
deviation concentrations. Borges da Silva (2004) 
showed that βiC~  and σiC~  can be expressed as
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{ }CC ∇= ββ .b~
 ; { }CC ∇= σσ .b~

        (29) 
 
where bβ and bσ  are the closure variables of the 
intermediate scale. These variables can be 
determined by solving the boundary value problem, 
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Periodicity:  
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where d  is a tensor given as 
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 The closure problem given by Eqs.(30)-(34) is 
assumed as quasi-steady. In addition, the 
concentration deviations are evaluated considering 
the local problem using a representative region of the 
intermediate scale and with a spatially periodic 
model of the porous medium such as that illustrated 
in Fig. 3. This procedure allows the use of the 
periodicity conditions shown in Eq.(34).  
 The representations given by Eq.(29) can be used 
to derive the closed form of Eq.(26), which can be 
expressed as 
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in which the effective diffusivity tensor of the 
intermediate scale is  
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The diffusivity tensor of the intermediate scale 

under consideration can be predicted with the 
solution of the closure problem given by Eqs.(30)-
(34). The functional dependency of this tensor can be 
verified in Eq.(37), which includes contributions 
from (i) the molecular diffusivity of species in the β-
phase (ii) the effective diffusivity tensor of species in 
the σ-region (iii) the void fractions of phases and (iv) 
the characteristics of the geometrical structure of the 
porous medium represented by the area integral of 
the term nσβ .bσ. Thus, it is necessary to solve the 
boundary value problem for the two vector fields, bβ 
and bσ. 

This closure problem is solved by using the two-
dimensional square array of cylinders, as shown in 
Fig. 3a. This kind of arrangement provides an 
isotropic tensor, and therefore only a single 
component of the fields bβ and bσ, such as xb ,β  and 

xb ,σ , respectively, needs to be evaluated to 

determine *
iD . The application of spatially periodic 

models facilitates the computational procedure and, 
in some cases, does not impose severe theoretical 
limitations (Ochoa-Tapia et al., 1986). However, the 
kind of periodic model chosen to solve the closure 
problem should be defined with some care, i.e., since 
the area integral of Eq.(37) functions as a filter, it is 
important to include the geometrical data from the 
medium to the representative region.  

Some symmetry conditions can be imposed for 
the considered array and the computational domain 
is reduced to one quarter of the unit cell, as 
illustrated in Fig. 7. Figure 7 shows a scheme that 
exemplifies the computational mesh employed for 
solution of the closure variable fields and also 
presents the boundary conditions for xb ,β  and xb ,σ . 
Again, the differential equations are written in a 
general curvilinear coordinate system (η-ξ system), 
allowing the numerical procedure to be carried out in 
a transformed plane (generalized coordinate system). 
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Figure 7: Mesh of the computational domain and boundary conditions  

for the solution of fields xb ,β  and xb ,σ . Generalized coordinates. 
 

The boundary value problem given by Eqs. (30)-
(34) has been described with some generality to 
demonstrate equivalence with the case of the heat 
conduction problem in a biphasic system solved by 
Nozad et al. (1985). In the heat conduction problem, 
the tensor d  is specified as a scalar (d ) that 
corresponds to the ratio of the thermal conductivities 
(k) of the two phases, the β-phase and the σ-region. 
Additionally, the periodic models in Nozad et al. 
represent the case of particles without contact, such as 
those illustrated in Fig. 3a, and the case of particles 
with contact, in which the σ-region has connections. 
The results obtained in this study are compared to the 
published results for the effective conductivity tensor, 
where d  assumes the value of the kσ/kβ ratio, and thus 
such a tensor is a scalar in this analysis.  

The equation specifying the effective 
conductivity tensor in the biphasic process of Nozad 
et al. (1985) is given by 
 

( ) ( )
∫++=
βσ

ββσ
ω

σβ
β

εε
A

ef dA
k

bnI
K

.1
V
-d

d    (38) 

 
and the effective diffusivity tensor for the 
intermediate scale of the studied system is given by 
 

( ) ( )
∫
βσ

ββσ
ω

σβ

β

−
+ε+ε=

Ai

i dAbn.
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VD
d

d
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    (39) 

 

Figure 8 shows the values for βkef /K  calculated 
in this study and the results published in the 
literature for several porosity values of the β-phase. 

Nozad et al. (1985) demonstrated that, for 
calculation of the effective conductivity, the contact 
between the particles (σ-region) in the porous 
medium is very important and results from unit cells 
for this array closely agree with the experimental 
results. In our case of adsorbent particles with a 
bidisperse structure, the solid porous medium is 
usually described as a set of porous microparticles, 
which can be assumed to have a spherical geometry. 
Thus, the spatially periodic model seems to be 
appropriate for the calculation of *

iD . It is worth 
mentioning that, for cases presented in the literature, 
three-dimensional arrays of spheres give slightly 
higher values than those for the analogous two-
dimensional versions (Whitaker, 1999). 

In the cases studied, the finite volumes method is 
used to discretize the differential equations. The 
computational implementation is performed in 
FORTRAN language. The computational meshes with 
refinements equal to or above 40 × 40 (i.e., 1600 
control volumes) are used in the simulations in such 
a way that no change is observed between different 
runs. The applied tolerance, which is defined as the 
ratio of the difference between the new value and the 
old value from the prior iteration to the new value of 
the variable from the latest iteration, is around 10-9. 
In Fig. 8, one can observe that the results obtained in 
this study are in good agreement with the results 
found in the literature, validating the numerical 
methodology. As commented upon in Whitaker 
(1999), the geometry slightly influences the effective 
conductivity efK , which is dependent on the 

parameters εβ  and d  in this medium, which is 
isotropic with respect to conduction. 
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Figure 8: Effective thermal conductivity for the two-dimensional array of particles without contact. 

 
For high values of d (greater than 100), the 

numerical solution for this closure problem becomes 
complicated, because higher degrees of refinement 
for the computational meshes are required and 
therefore the computational time is prohibitive. In 
order to overcome this difficulty, the suggestion of 
Nozad et al. (1985) is followed, expressing the 
second boundary condition as 
 
B.C.2   
 

( ) innn ... σββσβσσβ −+∇−=∇− 1,, xx bb ,   
(40) 

in βσA     
 

where -1d= . The fields of the closure variables 
are given by 
 

...''
,

2'
,,, +++= ββββ xx

o
xx bbbb      (41) 

 
...''

,
2'

,,, +++= σσσσ xx
o

xx bbbb          (42) 
 

Once this numerical methodology has been 
corroborated, the closure problem of the intermediate 
scale is solved to provide the theoretical prediction 
of effective diffusivity in the β-σ system. The 
numerical solutions of the fields bβ and bσ  for the 
two-dimensional model of cylinders in a squared 
arrangement are used in Eq.(39). Figure 9 shows the 
numerical results of *Di  obtained from the closure 
problem associated with the method of volume 
averaging applied in the mass transfer problem on 
the intermediate scale. One can verify the ratio of 

isotropic effective diffusivity (where *
iD = *

iD I) to 
diffusivity 

βi
D  as a function of parameter d , the 

ratio of isotropic effective diffusivity in the σ-phase 
(where ID ii σσ D= i) to diffusivity in the β-phase, 
and of the volumetric fraction of the continuous β-
phase.  

Since the diffusivity of species in the β-phase can 
be specified as the molecular diffusivity of species, 
and therefore must be greater than the effective 
diffusivity tensor in the σ-region, the values for 
parameter d  are less than unity. In Fig. 9, one can 
observe that for lower values of the volumetric 
fraction of the β-phase, the effective diffusivity 
tensor of the intermediate scale decreases. This 
probably occurs due to difficulties related to the 
diffusion of the species in the geometrical structure 
of the porous medium. When parameter d  tends to 
unity, the effect of the volume fraction εβ is not 
significant, and as expected, the value of *Di  tends 
to the molecular diffusivity of the species. 
Experimental data for this system are not presented 
in this paper. Ochoa-Tapia et al. (1986) and Wood 
and Whitaker (2000) derived the mathematical 
formulation of diffusion and reaction in biofilms and 
cellular media and solved closure problems similar 
to those presented herein when the mass transfer 
resistance in the cellular wall was negligible. For 
such a case, good agreement between the 
experimental results of the effective diffusivity in 
cellular media, the biphasic system, and the 
theoretical values obtained from the solution of the 
closure variable fields has been verified. Details can 
be found in Wood and Whitaker (2000).  
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Figure 9: Effective diffusivity in the β-σ system as a function of the ratio of diffusivities  

of the phases for different values of the volume fraction of the β-phase. 
 

This study reveals the possibility of obtaining 
theoretically the effective diffusivity tensor of the 
intermediate scale of the β-σ system, i.e., predicting 
the diffusivity inside particles with a bidisperse 
structure. It is worth mentioning that this effective 
transport coefficient is deduced for the one-equation 
model, and therefore the hypothesis of local mass 
equilibrium is considered valid. As a consequence, 
such a situation can be seen as a fusion of the β-
phase and the σ-region to make up a single 
homogeneous medium on this scale.  This approach 
leads to the obtention of a direct equivalence 
between the effective coefficient of a homogeneous 
particle and the effective coefficient calculated in 
this study. 

 
 

CONCLUSIONS 
 

In this paper, mass transport equations were 
presented in the form of volume-averaged mass 
conservation equations for two processes: (i) the 
governing transport equation for the porous region, 
the microscale, of the catalyst in a reactive process 
and (ii) the governing transport equation for the 
macroporous region, the intermediate length scale, of 
a bidisperse particle in an adsorptive process. The 
mathematical formulation in both situations studied 
was performed using the method of volume 
averaging. This procedure provided the transport 
equation of the reactive/adsorptive multiphase flow 
using information from the microscopic to the 
macroscopic scale 

The application of the method of volume 
averaging enabled derivation of the closure 
problems. Two closure problems could be solved 
using the finite volumes methodology and spatially 

periodic models of porous media. The numerical 
solution of these problems allowed determination of 
closure variables, which were used to predict the 
effective diffusivity tensors for the γ-κ system in the 
porous catalyst and the β-σ system in the adsorbent 
with the bidisperse structure. It was shown that the 
solutions are dependent on the geometrical structure 
of the porous medium, and even if simple arrays of 
spatially periodic models are used to solve closure 
problems, coherent estimates of the effective 
transport coefficients can be obtained. The volume 
averaging procedure was shown to be useful for 
application of multiphase flow in porous media, 
since it is possible to compare the theoretical results 
and the experimental data without any adjustable 
parameters.  
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NOMENCLATURE 
 

γκva  γ-κ interfacial area per unit 
volume σV  or ωV ,  

m-1

γκA  area of the γ-κ interface 
contained within volume σV  or 

ωV ,  

m2

eγA  area of the entrances and exits 
for the γ phase,  

m2
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βσA  area of the β-σ interface 
contained within volume ωV ,  

m2

eβA  area of the entrances and exits 
for the β phase,  

m2

eσA  area of the entrances and exits 
for the σ region,  

m2

b  closure variable,  m

xb  component of the closure 
variable in the x direction,  

m

ixC  punctual concentration of species 
i in the x phase or region,  

kmol/m3

x
ixC  intrinsic average concentration 

of species i in the x phase or 
region,  

kmol/m3

ixC~  spatial deviation concentration 
of species i in the x phase or 
region,  

kmol/m3

{ }iC  
spatial averaged concentration in
the local mass equilibrium
condition of species i,  

kmol/m3

d ratio of the thermal 
conductivities  

(-)

d ratio of the effective diffusivity 
and molecular diffusivity 

(-)

xD  molecular diffusivity of species i 
in the x phase or region,  

m2/s

σiD  effective diffusivity tensor of 
species i in the σ region,  

m2/s

γκi efD  effective diffusivity tensor on 
the microscale of species i,  

m2/s 

Di
* effective diffusivity tensor on 

the intermediate scale of species 
i,  

m2/s

I unit tensor  (-)
kx thermal conductivity in the x 

phase or region,  
kg m/s3 K

efK  effective thermal conductivity 
tensor,  

kg m/s3 K

j  lattice vectors (j= 1, 2, 3),  m

x  characteristic length associated 
with the x phase or region,  

m

L characteristic length,  m
yxn  outwardly directed unit normal 

vector pointing from the y phase 
(or region) toward the x phase 
(or region)  

(-)

r position vector,  m
or  radius of the averaging volume 

on the microscale,  
m

1r  radius of the averaging volume 
on the intermediate scale,  

m

 

Ri reaction rate of species i,  
 

kmol/m2 s

six closure variable associated with 
the x region or phase, species i , 

s/m

t time,  s
V volume,  m3

Vx volume of the x phase or region 
contained within the averaging 
volume,  

m3

σV  averaging volume,  m3

x position vector locating the 
centroid of the averaging 
volume,  

m

xy  position vector locating points 
relative to the centroid in the x
phase or region,  

m

 
Greek Letters 
 
β intermediate scale phase (-)

xε  volume fraction of the x phase 
or region 

(-)

γ, κ microscale phases  (-)
η macroscale phase (-)
σ intermediate scale region (-)
ω macroscale region  (-)

xψ  closure variable associated 
with the x phase or region, 
kmol/m3 

(-)
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