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Abstract - This work reviews recent trends in the modeling of cellulose hydrolysis, within the perspective of 
application of kinetic models in a bioreactor engineering framework, including scale-up, design and process 
optimization. From this point of view, despite the phenomenological insight that mechanistic models can 
provide, the expectation that more detailed approaches could be a basis for extrapolations to different substrates 
and/or enzymatic pools is still not fulfilled. The complexity of the lignocellulosic matrix, the different 
mechanisms of catalytic action, the role of mass transfer limitations and the deviations from ideal mixing are 
important difficulties for the modeler, which will continue to impose more conservative approaches for scale-up. 
Nevertheless, the search for more robust models is a very important task, provided that the engineer is aware of 
their limitations. Data-driven, non-mechanistic models such as artificial neural networks, perhaps in combination 
with other approaches in the so-called hybrid models, is also a promising alternative. 
Keywords: Cellulose hydrolysis; Kinetics; Mathematical modeling; Bioreactor design. 

 
 
 

INTRODUCTION 
 

Modeling the enzymatic hydrolysis of 
lignocellulosic materials is probably one of the most 
challenging subjects in (bio)reactor engineering 
science at present, and the substantial number of 
publications and reviews about this topic echoes this 
situation. Indeed, the complexity of (ligno)cellulosic 
substrates and the multiplicity of mechanisms involved 
in the synergistic action of the pool of cellulolytic 
enzymes create a dilemma for the modeler: taking into 
account the ever-growing mass of information 
regarding substrate characteristics (which are of course 
quite sensitive to pre-treatment conditions), enzyme 
action, substrate-enzyme interactions and so forth, or 
simply relying on empiricism? Validate fundamental 
models with dozens of parameters or use black-box 
models? In fact, both approaches will most certainly 
lack generality, but which would be more reliable for 
real-world reactor design, catalyst optimization and 
cost evaluation?  

Zhang and Lynd (2004) reviewed the enzymatic 
hydrolysis of cellulose from the perspective of the 
development of an aggregate understanding of the 
action of the enzymatic pool. The key point in this 
approach is to incorporate within the model 
information regarding other substrate properties in 
addition to bulk concentrations. Thus, a classification 
scheme for models was proposed, based on the degree 
of detail of the description of substrate state variables 
and/or of the activities of the different enzymes: 
nonmechanistic, semimechanistic, functionally based 
and structurally based models. 

Nonmechanistic models, which are not based on a 
definable enzyme/substrate interaction model, can be 
very useful for data correlation, although they do not 
enhance the phenomenological understanding of the 
system.  

Semimechanistic models are based on a definable 
enzyme/substrate interaction model, but use only 
concentrations as the substrate state variable and/or 
with only one overall enzymatic activity. Besides 
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their utility for data correlation, semimechanistic 
models may also be useful for identification of some 
essential features of the hydrolysis mechanism.  

Functionally based models go further, including 
additional substrate state variables, such as 
crystallinity, and considering the action of multiple 
enzymes. Nevertheless, functionally based models 
can lead to an overwhelming number of parameters, 
demanding a large amount of experimental data for a 
consistent model-fitting and validation procedure 
that may discourage their application.  

Finally, structurally based models, which use 
structural information of the lignocellulose matrix, 
can be useful to provide insights into the relationship 
between structure and function. The development of 
meaningful kinetic models based on structural 
information, however, is still a major challenge. 

Zhang and Lynd (2004) suggested reinvigorating 
functional modeling of enzymatic hydrolysis, in 
order to make use of the large volume of information 
made available by the advancement of the methods 
for structural characterization of biomass.  

Bansal et al. (2009), in a more recent work, 
reinforced the interest in having models that account 
for major substrate and enzyme properties. However, 
as the authors reemphasize, such models must be 
validated by experimental data that is more detailed 
than simple conversion vs. time profiles. 

In short, the modeler faces at this point the “curse 
of dimensionality”: more fundamental insight 
demands more complex models and, thus, more 
parameters to be estimated, growing exponentially. 
Then, the question posed to the bioreactor engineer 
is to optimize the complexity of the model, which is 
bracketed, on one side, by the quality of the available 
information and the experimental effort needed for 
model validation and, on the other side, by the use 
that will be made of the model.  

We do not intend to present another extensive 
review of the subject, but only to sort out works in 
this area published during the last five years. The 
idea is to evaluate the latest trends in modeling of 
cellulose hydrolysis, but from the perspective of the 
application of kinetic models within a bioreactor 
engineering framework, where reactor design and 
process optimization are the ultimate goals. 
 
 

MINI-REVIEW 
 

Wang et al. (2004) proposed an empirical kinetic 
model for enzymatic degradation of cotton fibers. A 
nonlinear multivariate regression model (Equation 
(1)) was used to postulate the interaction among 

three independent variables (X1, X2 and X3) for 
predicting the conversion of substrate into total 

reducing sugars (TRS), the model output (
^
Y ). X1, 

X2 and X3 represent the effects of cellobiohydrolase, 
endoglucanase and β-glucosidase, respectively; X4, 
X5, X6 and X7 represent the synergistic effects 
between them.  
 

^

0 1 1 2 2 3 3

4 4 5 5 6 6 7 7

Y b b X b X b X

b X b X b X b X

= + + + +

+ + +
        (1) 

 
The analysis suggests that the enzymatic 

degradation of cotton fiber is a progressive process. 
Cellulose fibers are first depolymerized or solubilized 
by the synergism between cellobiohydrolase I and 
endoglucanase I and then the oligomers obtained were 
randomly hydrolyzed into glucose by endoglucanase I 
and β-glucosidase. This is an example of how a data-
driven model can provide information about the 
catalytic mechanism, since the significance of the 
cross-effects indicated the trend of action of the 
enzymatic pool. The authors argue that the model can 
be applied to the quantitative estimation of the effects 
of three main components of the cellulosic pool, 
cellobiohydrolase I, endoglucanase I and β-glucosidase 
separately or in combination, during the whole process 
of cellulose degradation. Of course, this claim must be 
put into perspective, since such a data-driven model 
would hardly be useful when the substrate or the 
enzymatic pool is changed. 

Li et al. (2004) examined the enzymatic 
hydrolyses of various cellulosic pulps in stirred 
Erlenmeyer flasks. To enhance saccharification, the 
reaction was also carried out in a stirred tank reactor 
with continuous ultrasonic irradiation. A pseudo-
homogeneous Michaelis-Menten equation with 
inhibition was then used for fitting. Sugars would be 
produced from a hypothetical soluble substrate 
whose initial concentration would correspond to the 
final conversion of the substrate (Equation (2)). This 
approach reflects a difficulty that often does not 
receive attention in the published models: how to 
quantify substrate concentration for a polymer that is 
initially solid and gradually made soluble? In fact, 
the “substrate” is the hydrolysable glucosidic bonds, 
but how to quantify rigorously their molarity or mass 
concentration? It is very important that the 
assumptions made by the modeler concerning this 
point are clearly stated. 
 

0

m I

dT kE (T T)
dt K [1 (1 / K )T] 0.9(T T)

∞

∞

−
=

+ + −
       (2) 
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In Equation (2), T∞ denotes the ultimate value of 
the total sugars concentration, T. Hence, 0.9 (T∞ − T) 
is the hypothetical substrate concentration in the 
pseudo-homogeneous Michaelis–Menten mechanism 
(the factor 0.9 takes into account an average 
stoichiometry of the hydrolysis); k is the apparent 
rate constant, KM is the apparent Michaelis constant 
and KI is proposed to be the apparent competitive 
inhibition constant between total sugar and cellulase. 
E0 is the initial enzyme concentration; t is time. The 
model was validated against time courses of TRS 
and glucose liberation during the saccharification, 
either with or without ultrasonic irradiation. The 
authors found that the variation in the properties of 
the pulp and the intensity of ultrasonic irradiation 
changed the apparent rate constant k, but had no 
effect on the apparent Michaelis and competitive 
product inhibition constants.  

Bezerra and Dias (2004) investigated the kinetics 
of an exoglucanase (Cel7A, from Trichoderma 
reesei) in the presence of cellobiose, with different 
enzyme/substrate (Avicel) ratios, in order to 
establish which of eight modified Michaelis-Menten 
hydrolysis models best explained the observed 
behavior. The kinetic parameters were estimated by 
non-linear least squares, employing integrated forms 
of Michaelis-Menten equations. It was found that the 
cellulose hydrolysis velocity, v, followed a model 
that takes into account competitive inhibition by 
cellobiose (as in Equation (3)).  
 

max 0

m ic 0

V Sv
K [1 (P / K )] S

=
+ +

          (3) 

 
Vmax is the maximal velocity, S is cellulose 

(transformed into potential cellobiose), P (product) is 
cellobiose; the subscript 0 is the initial concentration 
at t = 0. Km is the Michaelis-Menten constant and Kic 
is the (competitive) inhibition constant. 

Other models, incorporating mixed inhibitions 
and improvements like inhibition by substrate 
increased only slightly the performance of the model.  

In another work, Bezerra and Dias (2005) studied 
the effect of ethanol inhibition on Trichoderma 
reesei cellulases. To determine inhibition parameters 
for crude cellulase and for a purified exoglucanase 
(Cel7A), integrated Michaelis-Menten equations 
were used considering the presence of two inhibitors: 
cellobiose, as a hydrolysis product, and ethanol. 
Hydrolysis of cellulose by purified Cel7A showed 
competitive inhibition by both cellobiose and 
ethanol. Hydrolysis of cellulose by crude enzyme 
followed a model that also considered 
noncompetitive inhibition (as in Equation (4)).  

max 0

m ic 0 iu

V Sv
K [1 (I / K )] S [1 (I / K )]

=
+ + +

      (4) 

 
I is the ethanol plus cellobiose concentration and 

Kiu is an (uncompetitive) inhibition constant. Ethanol 
was a more effective inhibitor of the crude enzyme 
than of exoglucanase Cel7A, but cellobiose inhibition 
was much more important than ethanol inhibition in 
both cases.  

Carrillo et al. (2005) studied the kinetics of 
(sodium hydroxide) pretreated wheat straw hydrolysis 
using different concentrations of a commercial 
cellulase. As expected, compared to untreated wheat 
straw, the delignification pretreatment increased 
hydrolysis. The influence of enzyme concentration on 
the production of reducing sugars was studied by 
considering two different theoretical approaches:  

In the first one, the hydrolysis model and its 
kinetic parameters were determined from initial 
velocities assuming a Michaelis-Menten mechanism, 
but with solid substrate and soluble enzyme. This 
implies that enzyme and substrate concentrations are 
exchanged in the Michaelis equations, the enzyme, 
instead of the product, being released to the medium at 
the end of the reaction sequence. Hence, the initial 
hydrolysis velocity can be expressed as a function of 
the initial enzyme concentration (as in Equation (5a)).  
 

emax 0
0

e 0

V Ev
K E

=
+

                (5a) 

 
In this equation, v0 is the initial hydrolysis 

velocity, Vemax is the maximal velocity and Ke is the 
corresponding half-saturation constant. 

In the second strategy, the Chrastil approach (1988 
and 1988b, as in Equation (5b)) was used. All time 
constants for the rate of product formation are ranked, 
taking into account that, in a heterogeneous system, 
the time curves depend strongly on the heterogeneous 
rate-limiting structures of the substrate-enzyme 
system, including enzyme diffusion resistances. With 
this analysis, additional kinetic and structural 
characteristics may be inferred, which cannot be 
revealed from initial velocity analysis as proposed by 
Henri–Michaelis–Menten. The n and k' parameters 
offer quantitative information about the overall steric 
structure of the diffusion system and catalytic 
properties, respectively, and may be useful to follow 
the changes that necessarily occur in the substrate–
enzyme system while cellulose solubilization 
advances. 
 

n
0P P [1 exp( k ' E t)]∞= − −         (5b) 
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P and P∞ are the products which diffuse at time t 
and at equilibrium, respectively, k' is a rate constant 
proportional to the diffusion coefficient as defined by 
Fick’s law, and n is a structural diffusion resistance 
constant dependent on the steric structure of the 
system. The parameter n reflects the apparent 
reaction order. When diffusion resistance is small, n 
tends to 1. If the system is strongly limited by 
diffusion resistance, n is small. One may conclude 
from this work that distinct approaches to the kinetic 
modeling may be complementary, helping to 
understand the changes in the dynamics of this 
system while the reaction proceeds. Actually, this is 
a difficulty often present when one tries to fit simple 
pseudohomogeneous Michaelis-Menten equations to 
long term batch experiments for cellulose hydrolysis.  

Kadam et al. (2004) developed a multireaction 
semimechanistic kinetic model in which three 
hydrolysis reactions were modeled, one 
heterogeneous reaction for cellulose breakdown to 
cellobiose, another heterogeneous reaction for 
glucose formation from cellulose and one 
homogeneous reaction for hydrolyzing cellobiose to 
glucose. Cellulase adsorption onto lignocellulose 
was modeled by a Langmuir isotherm (as in 
Equation (6a)).  
 

imax iad iF
iB

iad iF

E K E SE
1 K E

=
+

          (6a) 

 
EiB is the bound enzyme concentration, EiF is the 

free enzyme concentration, Eimax is the maximum 
mass of enzyme that can adsorb onto a unit mass of 
substrate, and Kiad is the dissociation constant for the 
enzyme adsorption/desorption reaction. The products 
of hydrolysis, cellobiose, glucose and also xylose 
were considered to competitively inhibit the 
enzymatic reactions (see Equations (6b) - (6d)).  
 

1r 1B S
1

Cb G

1IG2 1IG 1IX

k E R Sr C C X1
K K K

=
+ + +

       (6b) 

 
2r 1B 2B S

2
Cb G

2IG2 2IG 2IX

k (E E )R Sr C C X1
K K K

+
=

+ + +
       (6c) 

 
3r 2F Cb

3
G

3M Cb
3IG 3IX

k E Cr
C XK 1 C

K K

=
⎛ ⎞
+ + +⎜ ⎟

⎝ ⎠

     (6d) 

 

In these equations, r1 is the cellulose-to-cellobiose 
reaction with competitive inhibition by glucose, 
cellobiose and xylose; r2 the cellulose-to-glucose 
reaction with competitive inhibition by glucose, 
cellobiose and xylose inhibition; r3 the cellobiose-to-
glucose reaction with competitive glucose and xylose 
inhibition. S is the substrate concentration at a given 
time, CG is the glucose concentration, CCb is the 
cellobiose concentration, X is the xylose 
concentration, KiIG are the inhibition constants of 
glucose on the enzymes, KiIG2 are the inhibition 
constants of cellobiose on the enzymes, KiIX are the 
inhibition constants of xylose on the enzymes, K3M is 
the substrate (cellobiose) saturation constant, and RS 
is the substrate reactivity (dimensionless). In an 
attempt to represent all the transformations of the 
substrate during the enzymatic hydrolysis, they were 
lumped into one parameter, RS, which was correlated 
with the normalized substrate concentration 
(RS=S/S0). These model parameters were estimated 
from experimental data for pretreated corn stover 
and the model matched well the experimental data.  

Zhang and Lynd (2006) presented a functionally 
based kinetic model for enzymatic hydrolysis of 
cellulose by the Trichoderma reesei cellulase 
system. The model represented the actions of 
endoglucanase I (EG1) and cellobiohydrolases 
(CBH) I and II. It also incorporated two substrate 
parameters: the degree of polymerization and the 
fraction of β-glucosidic bonds accessible to cellulase.  

The action of endoglucanase is consistent with a 
mechanism postulating that free EG1 adsorbs to a 
cellulose molecule to form an enzyme–cellulose 
complex. The adsorption occurs randomly with 
respect to chain length and the adsorption 
equilibrium constant (in Equation (7a)) describes the 
distribution with respect to cellulose molecules of all 
lengths. 
 

f a i
EG1 i n
dis

i
i n

EG1 [F (i 1)G ]
K

EG1G
=

=

−

=
∑
∑

       (7a) 

 
The quantity (i-1)Gi denotes the total 

concentration of β-glucosidic bonds in cellulose 
chains of DPi. Multiplying by the fraction of bonds 
accessible to cellulase, Fa, one has the concentration 
of accessible bonds in chains of DPi. In the second 
step of the mechanism, hydrolysis of cellulose 
molecules of DPi to smaller products is considered. 
Equation (7b) is an equation for the overall rate of 
formation of Gi due to the action of EG1. 
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EG1 t a k a i
EG1 k i 1
Gi EG1

dis a i
i n

k EG1 2 F G F (i 1)G

r
K F (i 1)G

= +

=

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠=
+ −

∑
∑

   (7b) 

 
Here Gi and Gk are cellulose molecules with a 

chain length (DP) of i and k, respectively, kEG1 is rate 
constant for EG1 cleavage of β-glucosidic bonds, 
subscript t is total enzyme, while f is free enzyme. 
Cellulose hydrolysis by cellobiohydrolases had rate 
equations that were functions of the degree of 
polymerization and of the fraction of β-glucosidic 
bonds accessible to cellulase.  

This is an attempt at a rational, phenomenological 
approach, embracing structural information of the 
substrate. Nevertheless, its application is limited by 
the lack of information to estimate some necessary 
parameters. Therefore, the authors relied on rate 
equations for CBH proposed in a previous work 
(Okazaki and Moo-Young, 1978). Initial enzyme-
limited reaction rates simulated by the model were 
consistent with important behavior reported in the 
literature, like the effects of substrate characteristics, 
the degree of endo/exoglucanase synergy and 
enzyme loading on relative reaction rates for 
different substrates. In a more recent work, Zhou et 
al. (2009) developed a general formalism, which can 
be reduced mathematically to the Zhang and Lynd 
(2006) and Okazaki and Moo-Young (1978) models. 
However, the authors state [Zhou et al., 2009b] that 
several experimental assays are required to provide a 
more detailed quantitative validation of their 
morphology-based approach, which correlates 
observed hydrolysis rates with the mesoscopic 
substrate morphology. Time-dependent results for 
the accessibility fraction Fa and DP could be directly 
compared to model predictions and they would 
provide a more stringent test of the model, as well as 
further constraints on model parameterization. 

In the work by O’Dwyer et al. (2007), glucose 
inhibition patterns for the Trichoderma reesei cellulase 
complex and lime-pretreated corn stover were 
identified. The ranges of substrate concentrations and 
enzyme loadings in which the linear form of a 
simplified HCH-1 model is valid were also identified. 
HCH-1 is a modified Michaelis–Menten model with 
non-competitive inhibition and a fraction of insoluble 
substrate available to bind with the enzyme (as in 
Equation (8a)): 
 

C C

C

dC kC Ei
dt C E

− =
α + ϕ + ε

         (8a) 

where CC is the cellulose concentration, E is the 
enzyme concentration, ϕ  is the fraction of the 
cellulose surface that is free to be hydrolyzed, and k, 
α, and ε are parameters that describe the degree of 
substrate reactivity and hence are related to biomass 
structural features. For multiple inhibitors, the 
inhibition parameter i, which is the fraction of total 
enzyme not inhibited by product, is given as 
 

1 G 2 Cb

1i
1 C C

=
+β +β

          (8b) 

 
where β1 and β2 are glucose (CG) and cellobiose 
(CCb) binding constants, respectively. 

With a high enzyme loading, the HCH-1 model 
can be integrated and simplified in a way that 
conversion into sugar is linear with the logarithm of 
enzyme loading (as in Equation (8c)).  
 

0x Bln(E ) A= +            (8c) 
 
where x is sugar conversion. Experiments were 
carried out with an excess of cellobiase to ensure that 
the results were not influenced by cellobiose 
inhibition. A non-competitive inhibition pattern was 
identified for the corn stover–cellulase system, 
validating the assumptions of the HCH-1 model.  

In another work by O’Dwyer et al. (2008), the fact 
that plots of biomass digestibility can be linear with 
the logarithm of enzyme loading was further explored, 
assuming that the slope and intercept of these mono-
log plots may characterize biomass reactivity. 
Nonmechanistic feed-forward back-propagation neural 
networks (Annema, 1995; Hagan et al., 1996) were 
designed to predict biomass digestibility by simulating 
the 1, 6, and 72-h slopes and intercepts of glucan, 
xylan, and total sugar hydrolyses of 147 poplar wood 
samples with a variety of lignin contents, acetyl 
contents, and crystallinity indices.  

An artificial neural network is an effective tool to 
represent nonlinear relations between input and 
output variables. They are black box models, not 
requiring a phenomenological description of how the 
output depends on the input. Instead, they learn from 
input-output data sets. A neural network is an array 
of nodes (neurons) linked by connections. The 
topology used in this work was the multilayer 
perceptron, supervised training network – a very 
popular architecture for predictive models. Two or 
more neurons of this kind of neural net can be 
combined in a layer and they are interconnected. 
Each connection has a scalar weight associated with 
it, which modifies the strength of the signal. The 
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function of the neuron is to sum the weighted inputs 
and pass the summation to neurons in the subsequent 
layer through a nonlinear transfer function. In this 
case, feedforward neural networks were used, where 
the information flows through the net only in one 
way. Supervised training of the neural net is simply 
the estimation of the weights, the model parameters, 
from a series of inputs and associated outputs.  

O’Dwyer et al. (2008) demonstrated the potential 
of neural networks to predict biomass digestibility. 
According to Bansal et al. (2009), models that 
interpolate over a wide range of the predicted and 
independent variables can be useful for designing 
processes under various conditions. Of course, this 
approach is very sensitive to the quality of the 
empirical data bank used for training. 

In heterogeneous catalytic systems, the 
interaction between reactant and catalyst can be 
different from the corresponding homogeneous 
situation, because of the peculiarity of the diffusion 
and molecular collision processes involved. The 
fractal theory, developed for processes with inherent 
irregularity and complexity, can be applied to 
heterogeneous catalysis. To better understand the 
heterogeneous enzymatic reactions, a “jammed” 
fractal Michaelis-Menten model was presented by 
Xu and Ding (2007), applying the general fractal 
formalism to the classical model of homogeneous 
enzymatic reactions coupled to a kinetic ‘‘jamming’’ 
effect caused by the overcrowding of enzyme/ 
substrate in confined space (like in vehicular traffic 
flow theory); see Equation (9).  
 

1 f
max

m
E V t P1 P K ln 1
jS 1 f S

−⎛ ⎞ ⎛ ⎞− = − −⎜ ⎟⎜ ⎟ − ⎝ ⎠⎝ ⎠
       (9) 

 
where j is a “jamming” factor and f is a “fractal 
dimension”. When E<<jS, the ‘‘jamming’’ effect 
becomes negligible; when f→0, the fractal effect 
becomes negligible. This kinetic model was applied 
to the hydrolysis of cellulose by cellobiohydrolase.  

In the work by Bommarius et al. (2008), Avicel 
was subjected to three different pretreatments (acid, 
alkaline, and organosolv) and subsequent exposure to a 
mixture of cellulases. Addition of β-glucosidase to 
avoid the inhibition of cellulase by cellobiose 
accelerated cellulose hydrolysis. All pretreatments of 
Avicel were found to slightly increase its degree of 
crystallinity in comparison with the untreated material. 
Adsorption of cellulase on cellulose and “jammed” 
fractal Michaelis-Menten kinetics were considered. 
Adsorption of cellulase and β-glucosidase on cellulose 
was significant. The conversion vs. time behaviors of 

Avicel (pretreated and untreated) were found to be 
similar. Jamming of adjacent cellulase enzymes when 
adsorbed on a microcrystalline cellulose surface was 
evident at higher concentrations of enzyme.  

In the work by Al-Zuhair (2008), a 
semimechanistic model based on a previous work by 
Gan et al. (2003) was derived to predict the rate of 
reducing sugar production, using Aspergillus niger 
cellulase for hydrolysis of two kinds of cellulose: 
amorphous carboxymethylcellulose and crystalline 
wood shavings. The experimental results were used 
to estimate the kinetic parameters. In the model, the 
complex structure of cellulose is divided into 
hydrolysable [Sc] and non-hydrolysable [Sx] 
regions. The non-hydrolysable regions are assumed 
to reversibly inhibit the reaction in a competitive 
manner. The fractions of the inactive and the active 
materials are defined by Equations (10a) and (10b). 
 

0[Sx]
[St]

φ =                (10a) 

 
0[Sc](1 )

[St]
− φ =               (10b) 

 
where [St] is the total cellulose surface concentration 
and φ is the inert fraction coefficient, which is 
assumed to be constant for each type of cellulose 
(low for carboxymethylcellulose but high for wood 
shavings). The inert fraction coefficient, φ, 
represents the substrate crystallinity index used by 
Fan and Lee (1980). There was good agreement 
between experimental results and model predictions.  

In the work by Liao et al. (2008), a kinetic model 
incorporating adsorption, enzymatic hydrolysis, and 
product inhibition was developed for enzymatic 
hydrolysis of differently pretreated fibers from dairy 
manure. Enzyme adsorption was modeled based on a 
Langmuir-type isotherm (with a change in the 
adsorption constant, represented by an empirical 
expression). Enzyme activity, instead of protein 
concentration, was used to describe the enzymatic 
hydrolysis in order to avoid the effect of manure 
protein on enzyme protein analysis. A first-order 
reaction rate, r, was applied to model the hydrolysis, 
with glucose inhibition (as in Equation (11)).  
 

eff

G

IG

kC ECr C1
K

=
+             (11) 

 
where Ceff is the concentration of cellulose available 
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for the enzyme, C
eff C

C0

CC C
C

λ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, CC is the 

cellulose concentration, CC0 is the original cellulose 
concentration, λ is the constant relating the percentage 
of cellulose available for the enzyme, EC is the 
concentration of enzyme absorbed by cellulose, 

ad
C

C

EEC C
C L H

=
+ +

, Ead is the enzyme activity 

adsorbed by fiber, L is the lignin concentration, H is 
the hemicellulose concentration, CG is the glucose 
concentration, and KIG is the inhibition constant for 
glucose. The model satisfactorily predicted the 
behavior of enzyme adsorption, hydrolysis, and 
product inhibition for all sample manure fibers.  

In their work, Zheng et al. (2009) presented a 
semimechanistic kinetic model (based on Kadam et 
al., 2004) to describe the enzymatic hydrolysis of 
creeping wild ryegrass. Their model incorporates two 
heterogeneous reactions of cellulose-to-cellobiose and 
cellulose-to-glucose and one homogeneous reaction of 
cellobiose-to-glucose. Adsorption of cellulase onto 
pretreated creeping wild ryegrass was modeled by a 
Langmuir adsorption isotherm. The model also 
incorporated the negative role of lignin (nonproductive 
adsorption) using a Langmuir isotherm adsorption of 
cellulase onto lignin. The model also considered the 
(competitive) inhibitions of cellulase by glucose and 
cellobiose. The model showed high accuracy for 
predicting cellulose hydrolysis trends. 

Hodge et al. (2009) developed an optimization 
strategy for cellulose hydrolysis at solid percentages 
higher than 15%, when inefficient stirring and 
mixing in tank reactors may become a problem. 
Starting from a previously developed model (Kadam 
et al., 2004) for batch operation and considering 
modifications to account for effects of feeding in 
fed-batch operation, a feeding policy (profile) was 
developed to maintain the insoluble solids 
concentration at a manageable level throughout the 
reaction course. Therefore, sugar concentration 
within the tank reactor may be increased without 
using a high initial load of insoluble solids. 

In the work by Morales-Rodríguez et al. (2010), 
optimization of fed-batch reactors for cellulose 
hydrolysis was studied. To this end, three different 
feedback (PI) control strategies were developed and 
evaluated using a first-principles model of the 
hydrolysis process. A (re-calibrated) model of Kadam 
et al. (2004) was used to test the performance of three 
control strategies: (1) insoluble solids control; (2) 
controller 1 + enzyme class I (CBH + EG) control; (3) 
controller 1 plus 2 and enzyme class II (BGD) control. 

Control strategy 3 gave promising results regarding 
cellulose conversion and amount of added enzyme. 
The authors claim that the amount of enzyme can be 
reduced 107% with respect to the base case operation, 
which uses a predefined fed-batch feeding strategy 
(Hodge et al., 2009). Nevertheless, this conclusion was 
based on simulations, and experimental validation is 
necessary to verify whether the re-calibrated model is 
valid for all simulated conditions. 

In ethanol production from cellulose, enzymatic 
hydrolysis and fermentative conversion may be 
performed sequentially, in a sequential hydrolysis and 
fermentation process (SHF) or in a simultaneous 
saccharification and fermentation (SSF) process. 
Drissen et al. (2009) affirm that choosing either is a 
trade-off between optimal enzyme temperatures and 
inhibitory glucose concentrations on the one hand 
(SHF) versus sub-optimal temperatures and ethanol-
inhibited cellulose hydrolysis on the other (SSF). 
Drissen et al. (2009) extended a published kinetic 
model to consider enzyme inhibition by ethanol, thus 
allowing the comparison between SSF and SHF. Their 
model assumed three enzyme-catalyzed reactions for 
cellulose hydrolysis: cellulose-to-cellobiose (reaction 1), 
cellobiose-to-glucose (reaction 2) and cellulose-to-
glucose (reaction 3). For reactions with cellulose as 
substrate, the active amount of enzyme was the 
adsorbed fraction (linear adsorption constant KL). For 
reactions yielding glucose, product inhibition was 
assumed (inhibition constants Ki,G and Ki,2). In 
addition, all enzymes were subject to thermal 
inactivation (constant KD). The nature of the cellulose 
substrate was assumed to be conversion-dependent, 
through a recalcitrance parameter (constant KREC). 
Finally, ethanol inhibition affected the rates of 
reactions 1 and 3 (inhibition constant Ki,EtOH). 
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Here CC is the cellulose concentration, CCb is the 

cellobiose concentration, CE is the enzyme 
concentration, CEtOH is the ethanol concentration, CG is 
the glucose concentration, eg is the β-glucosidase 
activity per g of protein in the enzyme preparation, etotal 
is the protein (enzyme) concentration per L reaction, 
kmax,i is the maximum specific rate constant, Km is the 
Michaelis constant for β-glucosidase, R is the gas 
constant, T is the absolute temperature, Ea is the 
activation energy. For modeling glucose consumption 
and biomass formation, standard Monod kinetics was 
assumed, expanded to include ethanol inhibition. The 
model predicted SSF processing to be superior. The 
superiority of SSF over SHF was confirmed 
experimentally, both with respect to ethanol yield from 
glucose and ethanol production rate.  

A kinetic model was presented by Zhang et al. 
(2009) to predict simultaneous saccharification and 
co-fermentation of paper sludge by a commercial 
cellulase preparation and a xylose-consuming 
genetically modified yeast Saccharomyces 
cerevisiae. A semi-mechanistic rate equation for 
cellulose hydrolysis proposed by South et al. (1995) 
was used and parameters for paper sludge came from 
the data of Shao (2007). The parameters presented in 
Shao’s model were based on cellulose hydrolysis 
only, but hemicellulose hydrolysis was of interest for 
the study by Zhang et al. (2009). Therefore, 
adsorption and some hydrolysis parameters were 
recalculated from Shao’s data. Adsorption of 
cellulase, hydrolysis of glucan to cellobiose with 
inhibition by cellobiose and ethanol, and hydrolysis 
of cellobiose to glucose with inhibition by glucose 
were considered (as in Equations (13a)-(13d)). 
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To extend the preexisting modeling to SSCF, it 

was necessary to address xylan hydrolysis (by a 
simple correlation model, as in Equation (13e)). 
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where BG is the β-glucosidase concentration in 
solution, c the conversion-independent component of 
cellulose in the rate function, Cs the specific capacity 
of carbohydrate component for cellulase, CE the 
concentration of carbohydrate–enzyme complex, CCb 
the cellobiose concentration, Ef the free cellulase 
concentration, Et the total cellulase concentration, 
Eth the ethanol concentration, CG the glucose 
concentration, Gn the cellulose component of the 
remaining substrate, k the cellulose hydrolysis rate 
constant, KC the rate constant for hydrolysis of 
cellobiose to glucose, KCG the inhibition of 
cellobiose hydrolysis by glucose, KS the Langmuir 
affinity constant, KSC the inhibition of cellulose 
hydrolysis by cellobiose, KSP the inhibition of 
cellulose hydrolysis by ethanol, m the exponent of 
declining glucan reactivity, and Xn the xylan 
component of the remaining substrate. 

The net rate of glucose formation was determined 
by the rate of formation by enzymatic hydrolysis and 
the rate of consumption by fermentation. Glucose 
fermentation was accounted for by a Monod 
equation with one additional term representing 
competitive inhibition of sugar uptake from xylose 
and another additional term representing ethanol 
inhibition. The rate of formation of xylose was 
described by an approach similar to that used for 
glucose. The overall cell mass formation rate was 
determined from the predicted cell growth due to 
glucose and xylose consumption and the predicted 
cell death due to the endogenous metabolism and 
ethanol toxicity. Ethanol production rate was 
calculated on the basis of sugars consumed. 

Experimental results showed that glucan and xylan 
enzymatic hydrolysis were highly correlated and that 
the low concentrations of xylose encountered during 
SSCF did not have a significant inhibitory effect on 
enzymatic hydrolysis. Ethanol was found to inhibit the 
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specific growth rate and accelerate cell death. The 
cellulose adsorption capacity and cellulose hydrolysis 
rate constants were found to have the greatest impact on 
ethanol production (for a fixed substrate loading, 
enzyme loading, and fermentation time), among the 
enzymatic hydrolysis-related constants. Ethanol yield 
and maximum ethanol tolerance had the greatest impact 
among the fermentation-related constants. 

In a companion paper, Zhang et al. (2009b) 
observed that their kinetic model could predict batch 
and fed batch fermentations well at solids 
concentrations up to 62.4 g L-1 but not at 82.0 g L-1. 
The authors concluded that a mass transfer limitation 
was responsible for the discrepancy between model 
and experimental data. 

In the work by Shao et al. (2009), the model of 
South et al. (1995) for simultaneous saccharification 
and fermentation of cellulosic biomass was extended 
and modified to accommodate intermittent feeding of 
substrate and enzyme and a cascade reactor 
configuration. 

Zhang et al. (2009) used artificial neural 
networks (Annema, 1995; Hagan et al., 1996), to 
describe the kinetics of enzymatic cellulose 
hydrolysis and compared with a quadratic 
polynomial (regression Equation (14)).  
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where Y is the response value of glucose 
concentration, X’1 is the cellulase activity, X’2 is the 
substrate concentration and X’3 is time. Three 
hydrolysis parameters served as input to the neural 
network model: cellulase activity, substrate 
concentration and time. The output was the glucose 
content. Experimental data were utilized to train the 
neural network using the classic backpropagation 
algorithm. The artificial neural network predictions 
showed better agreement with the reported 
experimental results than the quadratic polynomial.  

The model by Levine et al. (2010) is based on a 
mechanistic description that includes distinct adsorption 
and complexation steps for the enzyme. Individual 
cellulases of a well-defined enzyme mixture are 
explicitly tracked; substrate concentration and the 
degree of cellulose polymerization are monitored and 
surface concentrations of each cellulose chain length are 
individually described. Representation of the substrate is 
focused on capturing the time course of cellulose 
surface area; as the cellulose particles shrink, new 

chains are exposed and the total cellulose surface area is 
reduced. Particles are composed of cellulose chains of 
varying length described by a Poisson distribution based 
on the initial degree of polymerization. The cellulose 
particles shrink as soluble cello-oligosaccharides are 
released from the surface. A material balance describes 
the rate at which the particle radius changes with time. 

As soluble cello-oligosaccharides are released from 
the solid cellulose surface, fresh cellulose chains 
become part of the surface. A term is required in the 
equations for cellulose chain surface concentrations to 
account for this new chain exposure. Particles are 
assumed to be composed of a continuum of cellulose 
chains and their physical characteristics (e.g., sites per 
area and density) are assumed to remain constant as 
the particles shrink. The rate at which new chains are 
exposed is equal to the rate at which old chains are 
lost, since the number of sites per area is assumed to be 
constant. Individual chains have an exposure term that 
depends on the rate of loss of old chains and the initial 
degree of polymerization probability distribution 
function F. The cellulose chains on the surface are 
represented as a lattice of glucose units. In the case of 
lignocellulosic substrate, the representation of the 
surface can be modified to include non-hydrolyzable 
sites. Each enzyme that adsorbs onto this lattice 
occupies a certain number of sites. 

The mechanism by which cellulases catalyze the 
hydrolysis of cellulose followed three steps: (1) 
adsorption, (2) complexation, and (3) reaction. 
Adsorption and complexation were treated as 
reversible steps, while the reaction step was 
irreversible. Adsorption and desorption of the 
cellulases were described using site and enzyme 
balances, which provide concentrations of cellulose 
surface sites and solution-phase enzymes. All 
cellulases are allowed to adsorb onto identical free 
sites on the cellulose surface. Adsorption and 
desorption are treated as elementary reactions, leading 
to balance equations for adsorbed, uncomplexed 
enzyme concentrations. The catalysis step is assumed 
to be slow, allowing complexation/decomplexation to 
be considered close to equilibrium. The equilibrium 
assumption for complexation leads to a simple 
relationship between the surface concentrations of 
adsorbed complexed enzyme, adsorbed uncomplexed 
enzyme, and surface cellulose chains. The difference 
in the equilibrium relationship for endoglucanase and 
cellobiohydrolase enzymes stems from the ability of 
endoglucanase to complex with any glycosidic bond 
on the cellulose chain, while cellobiohydrolases can 
only complex with a specific chain end (reducing or 
non-reducing). Using the equilibrium relationship and 
considering the above-mentioned mechanism 
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(adsorption, complexation and reaction), balance 
equations for the surface concentration of solid 
cellulose chains of length i can be derived. Soluble 
cello-oligosaccharides are formed by enzymes acting 
on both soluble, short-chain sugars and on insoluble 
chains within the solid substrate. The equations 
describing the generation of soluble short-chain 
sugars assume a Michaelis–Menten mechanism for 
the soluble phase reaction terms, and rely on 
assumptions similar to those for the solid phase 
reaction terms.  

This model requires a variety of adsorption, kinetic, 
and physical parameters. Sets of experimental values 
were determined, or values from the literature were 
used. In the absence of reliable experimentally 
determined parameters, estimates were made by fitting 
the model to experimental data. The model explicitly 
tracks individual cellulases and key cellulose surface 
properties. Independent enzyme adsorption and 
complexation steps were incorporated in an attempt to 
capture the most important details of the enzyme–
substrate interaction. Individual enzyme hydrolysis 
(EG2 or CBHI) and mixed enzyme hydrolysis scenarios 
were used to compare model results with experimental 
data from the literature. The model results were not 
consistent with all of the experimental data, however. 

The cellulase enzymatic cocktail secreted by 
Trichoderma reesei has been intensively investigated 
with respect to its kinetics for cellulose hydrolysis. 
Nevertheless, β-glucosidase is very poorly secreted 
by T. reesei strains and complete hydrolysis of 
cellulose often requires supplementation with a 
commercial β-glucosidase preparation, such as that 
from Aspergillus niger. Possible differences between 
native T. reesei and supplemented β-glucosidases 
are usually not taken into consideration. In the work 
by Chauve et al. (2010), a comparative kinetic 
analysis between β-glucosidase from A. niger and 
β-glucosidase from T. reesei was performed.           
β-glucosidase from A. niger showed a lower specific 
activity than β-glucosidase from T. reesei and was 
also more sensitive to glucose inhibition. A 
Michaelis-Menten model considering competitive 
inhibition by glucose was validated and was able to 
predict the β-glucosidase activity of both enzymes. 

In the work by Rivera et al. (2010), a data-driven 
technique based on artificial neural networks and 
design of experiments was applied in order to 
identify optimal enzyme combinations. This 
technique was used to construct a model of the 
combined effects of cellulase and β-glucosidase 
loads on glucose yield after enzymatic hydrolysis. 
The authors state that their dynamic model can be 
used not only for the prediction of glucose 

concentration profiles for different enzymatic 
loadings, but also to obtain the optimum enzyme 
loading that leads to high glucose yield. 

One of the purposes of the study by Brown et al. 
(2010) was to compare models for the enzymatic 
hydrolysis of pretreated biomass. Experimental 
enzymatic hydrolysis data from AFEX (ammonia 
fiber explosion) treated wheat straw were modeled 
with two and three-parameter models from the 
literature. In order to evaluate the models, initial 
reaction rate data at 49°C were considered. For 
three-parameter models, the HCH-1 model fitted best 
the experimental data; for two-parameter models, 
Michaelis-Menten gave better results. As expected, 
three-parameter models fit the data better than the 
two-parameter models. The best three models at 
49°C were compared using initial rate data at three 
temperatures (35, 42 and 49°C). The HCH-1 model 
provided the best fit based on F values, the scatter 
plot and the residual sum of squares.  

In the work by Ko et al. (2010), rice straw was 
collected to convert cellulose into ethanol through 
enzymatic hydrolysis followed by fermentation. In 
their research, the kinetic model parameters of 
cellulose saccharification were determined from real 
experimental data for cellulase hydrolysis. The 
fermentation model was based on the cybernetic 
approach (Di Serio et al., 2003) including both 
glucose and ethanol inhibition. A more fundamental 
modeling of the growth behavior of S. cerevisiae 
requires a detailed knowledge of the intracellular 
control mechanisms that the Monod classical model 
is not able to describe. The cybernetic modeling 
framework is based on the hypothesis that 
microorganisms optimize the utilization of available 
substrates to maximize their growth rate at all times 
(Ramkrishna, 2003). The values of the single growth 
rates of the different metabolic pathways are 
calculated by means of a modified Monod equation, 
where each growth rate is proportional to the 
concentration of a postulated “key” enzyme within 
the metabolic pathway. The cybernetic modeling 
framework replaces the detailed modeling of 
regulating processes with the cybernetic variables    
ui and νi, representing the optimal strategies for the 
synthesis and activity, respectively, of the enzymes 
of the metabolic pathway, i. The value of ui can be 
assessed by assuming that cell resources will be 
allocated in such a way as to obtain the maximum 
biomass growth rate. A law of resource allocation (as 
in Equation (15a)) can be derived from the economic 
theory of marginal utility. The marginal utility of a 
good or service is the relative satisfaction gained (or 
lost) by an increase (or decrease) in its consumption. 
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The variable controlling the inhibition/activation 

mechanism of the “key” enzyme i (νi) is determined 
by considering a null inhibition effect when the 
microorganism grows on the substrate that 
accelerates the biomass growth rate to the utmost, 
whereas the inhibition effect progressively increases 
at a decreasing growth rate (see Equation (15b)).  
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Ko et al. (2010) simulated the operations of the 

SSF and the SHF processes. It was shown that the SSF 
process can be better at reducing the processing time 
when the desired ethanol concentration is high. Since 
operating the SSF process initially under aerobic 
conditions can help biomass growth, the time interval 
of the aeration phase was also investigated. It was 
shown that for rice straw the optimal duration of the 
aeration phase is 7 h (if the ethanol productivity is used 
as the performance index to be maximized). 

In their works, Andrić et al. (2010 and 2010b) 
stated that new bioreactor design strategies are 
required to alleviate product inhibition (quantified by 
the authors using the Michaelis–Menten model 
incorporating non-competitive product inhibition), 
thus enhancing the efficiency of enzymatic cellulose 
hydrolysis. Running the enzymatic hydrolysis at 
medium substrate concentrations in separate reactors 
that allow continuous glucose removal was the 
solution proposed by the authors. Membrane reactors 
allowing continuous, complete glucose removal are 
suggested. According to the authors, current 
membrane reactors are still not suitable for large scale 
operation. It is emphasized that industrial realization 
of cellulosic ethanol production requires more focus 
on the operational feasibility of different hydrolysis 
reactor designs, notably for membrane reactors. 

After this short overview of the more recent models 
for the enzymatic hydrolysis of lignocellulosic 
substrates, the question of their applicability for the 
design, optimization or control of bioreactors naturally 
arises. Given this variety of approaches, the response is 
certainly not straightforward. Table 1 is an attempt to 
summarize the different model characteristics from 
this point of view. 

 
 

Table 1: Different models for cellulose hydrolysis and their attributes. 
 

Model / Complexity Attribute / Potential application in 
bioreactor engineering 

Background information demanded by 
the model  

Nonmechanistic and semimechanistic:   

Wang et al. (2004):  
Nonlinear multivariate regression model 
to predict the conversion of substrate into 
total reducing sugars from the interaction 
among three independent variables: 
effects of CBH, EG and BG. 
Number of model parameters: without 
phenomenological parameters. 

Provides qualitative information about 
the interactions among three cellulytic 
enzimes during the whole process of 
cellulose degradation, but is essentially 
data-driven. Not reliable for extrapolation. 

Enzyme pool: three (with different 
enzyme concentrations). Cellulases from 
T. pseudokoningii, S-38. 
 

Li et al. (2004): 
Bezerra and Dias (2004), Bezerra and 
Dias (2005) and Chauve et al. (2010) – 
Pseudo-homogeneous Michaelis-Menten 
equations with different inhibitions 
(mainly competitive, by sugars). 
Number of model parameters: 3 or 4. 

Michaelis–Menten mechanism considers 
soluble substrates. Its direct application  
to heterogeneous reactions lacks 
phenomenological basis. However, 
pseudo-homogeneous Michaelis–Menten 
models fit well experimental data for low 
solid substrate loads, and can be a 
reasonable semi-empirical approach for 
this situation. 

Substrate: chemical characterization 
(cellulose content); 
Enzyme pool: one pseudo-enzyme. 
Cellulase from Trichoderma viride, 
provided by Meiji Seika Kaisha, was used 
in the work by Li et al. (2004). 
For the works by Bezerra and Dias (2004 
and 2005), Celluclast 1,5 L was provided 
by Novo Nordisk. It was used both as a 
crude enzyme and as a source of Cel7A 
exoglucanase. 
In the work by Chauve et al. (2010), a 
commercial β-glucosidase preparation 
(SP188; Novozymes) and T. reesei β-
glucosidase obtained from a crude 
enzyme preparation using the strain 
CL847 were used. 
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Continuation Table 1 
 
 

Model / Complexity Attribute / Potential application in 
bioreactor engineering 

Background information demanded by 
the model 

Nonmechanistic and semimechanistic:   
Carrillo et al. (2005): 

Two approaches: 
1. Michaelis-Menten mechanism, but 
with solid substrate and the soluble 
enzyme; 
2. Chrastil (1988) empirical approach. 
Number of model parameters: 2. 

The Henri–Michaelis–Menten equation is 
not directly applicable for enzymic 
hydrolysis of heterogeneous structures 
when the reaction is diffusion limited 
(i.e., for high substrate concentrations). In 
this regard, alternative empirical kinetic 
models were used by the authors. 

Substrate: chemical characterization 
(cellulose content); 
Enzyme: one pseudo-enzyme. 

Commercial cellulase supplied by 
Novozymes. 

O’Dwyer et al. (2007) and Brown et al. 
(2010): 
Simplified HCH-1 model. 
Number of model parameters: 3. 

HCH-1 is a modified Michaelis–Menten 
model with non-competitive inhibition 
and a fraction of insoluble substrate 
available to bind with the enzyme. This 
may be a reasonable approach for high 
substrate concentrations. 

Substrate: chemical characterization 
(cellulose content); 
Enzyme: one pseudo-enzyme. 
In the work by O’Dwyer et al. (2007), T. 
reesei cellulase received from NREL 
(Spezyme CP, Ge-nencor International) + 
Cellobiase Novozym 188, from Novo 
Nordisk Biochem, were used. 
In the work by Brown et al. (2010), T. 
reesei cellulase was used. 

Xu and Ding (2007) (and Bommarius et al., 
2008): 
“Jammed” fractal Michaelis-Menten model. 

Number of model parameters: 4. 

In heterogeneous catalytic systems, the 
interaction between reactant and catalyst 
can be different from the corresponding 
homogeneous situation, because of the 
peculiarity of the diffusion and molecular 
collision processes involved. The fractal 
theory can be applied to describe 
heterogeneous catalysis, although the 
model parameters are not generic. 

Substrate: chemical characterization 
(cellulose content); 
Enzyme: pseudo-enzyme. 
Trichoderma reesei Cel7A and Humicola 
insolens Cel7A cellobiohydrolases were 
prepared for the Xu and Ding study (2007). 
Bommarius et al. (2008) employed 
cellulase from Trichoderma reesei, 
commercially available (Celluclast). 

Liao et al. (2008): 
Kinetic model including adsorption, 
enzymatic hydrolysis and glucose 
inhibition for hydrolysis of differently 
pretreated fibers from dairy manure.  
Number of model parameters: 4. 

Considers enzyme adsorption, hydrolysis, 
and product inhibition. Langmuir 
adsorption is postulated. Extrapolation 
for different substrates is not 
straightforward. 

Substrate: chemical characterization 
(cellulose content); 

Enzyme: one pseudo-enzyme. 
Celluclast 1.5 L and Novozyme-188 
(Sigma) were used. 

Andrić et al. (2010 and 2010b): 

Michaelis–Menten model incorporating 
non-competitive product inhibition. 
Number of model parameters: 4. 

Product inhibition effects during 
enzymatic lignocellulose hydrolysis are 
lumped in one pseudo-enzyme, as most 
of the semimechanistic models do. 
Generalization is not straightforward, 
though the model functional form may be 
useful for studying minimization of 
inhibitory effects in specific cases. 

Substrate: chemical characterization 
(cellulose content); 
Enzyme: one pseudo-enzyme. 
In the works by Andric et al. (2010 and 
2010 b), Trichoderma reesei cellulases 
(Celluclast 1.5L) + A. niger β-glucosidase 
(Novozym 188) were used. 
 

Al-Zuhair (2008): 
Semimechanistic model based on Gan et 
al. (2003), in which the complex structure 
of cellulose is divided into hydrolysable 
and non-hydrolysable regions. The fractions 
of the inactive and the active materials 
are defined by equations considering the 
inert fraction coefficient, φ.  
Number of model parameters: 9. 

The inert fraction coefficient, φ, can be 
applied to represent the substrate 
crystallinity index used by Fan and Lee 
(1980). This approach is an attempt to 
consider structural information about the 
substrate, but the simplification of 
considering only one pseudoenzyme is kept.  

Substrate: chemical characterization 
(cellulose content); 

Enzyme: one pseudo-enzyme. 
For the work by Al-Zuhair (2008), 
cellulase from Aspergillus niger was 
obtained from Sigma–Aldrich. 
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Continuation Table 1 
 

Model / Complexity Attribute / Potential application in 
bioreactor engineering 

Background information demanded by 
the model 

Nonmechanistic and semimechanistic:   

Kadam et al. (2004): 

Three hydrolysis reactions were modeled 
(two heterogeneous and one homogeneous). 
Enzyme adsorption was postulated to 
follow a Langmuir isotherm. All the 
transformations of the substrate were 
lumped into one parameter, RS (substrate 
reactivity). 

Number of model parameters: 18. 

Quantifies the adsorbed enzyme 
fractions, but cellulase adsorption onto 
lignocellulose may not fulfill Langmuir 
assumptions (Zhang and Lynd, 2004). 

Substrate: chemical characterization 
(cellulose content); 

Enzyme: multiple enzymes. 

CPN commercial cellulase, from Iogen, 
and one β-glucosidase preparation (Novo 
188 from Novozymes Biotech), were 
used. 

Zheng et al. (2009): 

Semimechanistic kinetic model based on 
Kadam et al. (2004). The model also 
incorporated the negative role of lignin 
(nonproductive adsorption) using (again) 
a Langmuir isotherm adsorption of 
cellulase onto lignin. 
Number of model parameters: 16. 

More detailed information on enzyme 
adsorption is provided by the model, 
including nonproductive adsorption. The 
same objections concerning Langmuir 
assumptions hold. 

Substrate: chemical characterization 
(cellulose and lignin content); 

Enzyme: multiple enzymes. 
Cellulase (NOVO Celluclast 1.5 L, 
available from Sigma) and β-glucosidase 
(Novo 188, available from Sigma).  

Hodge et al. (2009):  

Based on Kadam et al. (2004), for batch 
operation, but considering modifications 
to account for effects of feeding in fed-
batch operation.  

Number of model parameters: 18. 

Model functional form may be applied in 
optimization strategies to maintain the 
insoluble solids concentration at a 
manageable level throughout the reaction 
course, but retuning of model parameters 
for specific cases is demanded. 

Substrate: chemical characterization 
(cellulose content); 

Enzyme: multiple enzymes 

Cellulase/β-glucosidase enzyme mixture was 
Spezyme CP (Genencor International). 

Morales-Rodríguez et al. (2010): 

The (re-calibrated) model of Kadam et al. 
(2004) was used.  

Number of model parameters: 9. 

Can be applied for the optimization of 
fed-batch operation of cellulose 
hydrolysis. But Morales-Rodríguez et al. 
(2010) presented simulated results, not 
completely validated experimentally. 

Substrate: chemical characterization 
(cellulose content); 

Enzyme: multiple enzymes. 
The cellulase/β-glucosidase enzyme mixture 
was the same as in Hodge et al. (2009). 

Drissen et al. (2009): 

Three enzyme-catalyzed reactions for 
cellulose hydrolysis. For reactions with 
(solid) cellulose as a substrate, the active 
enzyme was adsorbed. For reactions 
yielding glucose, product inhibition was 
considered. All enzymes were subject to 
thermal inactivation. The nature of the 
cellulose substrate was conversion-
dependent. Inhibition by ethanol was also 
considered. 

Number of model parameters: 12 (+5 for 
fermentation). 

Can be applied for comparing SSF and 
SHF in specific situations. 

Substrate: chemical characterization 
(cellulose content); 

Enzyme: one pseudo-enzyme. 
Cellubrix (Novozymes) was used. 

Zhang et al. (2009 and 2009b):  
Phenomena represented by the South 
model include adsorption of cellulase, 
hydrolysis of glucan to cellobiose with 
inhibition by cellobiose and ethanol, and 
hydrolysis of cellobiose to glucose with 
inhibition by glucose. To extend the 
preexisting modeling to SSCF, it was 
necessary to model xylan hydrolysis. 
Number of model parameters: 10 (+17, 
for microbial fermentation). 

Can be applied to predict simultaneous 
saccharification and co-fermentation. 
The kinetic model could predict batch 
and fed batch fermentations well at solids 
concentrations up to 62.4 g L-1 but not at 
82.0 g L-1 (the authors concluded that 
mass transfer limitation was responsible 
for the discrepancy between model and 
experimental data). 

Substrate: chemical characterization 
(cellulose and hemicellulose content); 
Enzyme: multiple enzymes. 

Spezyme CP, derived from Trichoderma 
reesei, was provided by Genecor 
International. β-Glucosidase (Novozyme 
188) was purchased from Sigma. 
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Continuation  Table 1 
 

Model / Complexity 
Attribute / Potential application in 
bioreactor engineering 

Background information demanded by 
the model 

Nonmechanistic and semimechanistic:   

Ko et al. (2010): 

Main focus on the fermentation model, 
based on the cybernetic approach 
including both the glucose and ethanol 
inhibition terms. 

Number of model parameters: 6 (+23, for 
the fermentation model). 

The fermentation model can be applied to 
simulate the operations of the SSF and 
the SHF processes. 

Substrate: chemical (cellulose content) 
and structural characterization (crystalline 
fraction);  

Enzyme: one pseudo-enzyme. 
Accellerase 1000 (Genencor) and Cellobiase 
188 (Novozyme). 

Functionally based:   

Zhang and Lynd (2006), with rate 
equations for CBH proposed in a 
previous work (Okazaki and Moo-Young, 
1978):  

The model represents the actions     
of endoglucanase I (EG1) and 
cellobiohydrolases (CBH) I and II. It also 
incorporates two substrate structural 
variables: the degree of polymerization 
and the fraction of β-glucosidic bonds 
accessible to cellulase. 

Number of model parameters: 11.  

This is an attempt at a rational, 
phenomenological approach, embracing 
structural information of the substrate. 
Nevertheless, its application is limited by 
the lack of information to estimate some 
necessary parameters. Therefore, the 
authors relied on rate equations for CBH 
proposed in a previous work (Okazaki 
and Moo-Young, 1978). No BG synergy 
is considered.  

Substrate: chemical characterization 
(cellulose content) and structural 
characterization (degree of polymerization 
and accessibility);  

Enzyme: multiple enzymes. 

The model uses rate and dissociation 
constants for the T. reesei CBH1, CBH2, 
and EG1.  

Levine et al. (2010): 

Based on a mechanistic description that 
includes distinct enzyme adsorption 
and complexation steps. Individual 
cellulases of a well-defined enzyme 
mixture are explicitly tracked; substrate 
concentration and the degree of 
cellulose polymerization are monitored; 
surface concentrations of each cellulose 
chain length are individually described. 
The catalytic mechanism considered three 
steps: (1) adsorption, (2) complexation, 
and (3) reaction.  

Number of model parameters: 20.  

The model explicitly tracks individual 
cellulases and key cellulose surface 
properties. In the case of lignocellulosic 
substrate, the representation of the 
surface can be modified to include non-
hydrolyzable sites. Independent enzyme 
adsorption and complexation steps have 
been incorporated in an attempt to 
capture the most important details of the 
enzyme–substrate interaction. Individual 
enzyme hydrolysis (EG2 or CBHI) and 
mixed enzyme hydrolysis scenarios were 
used to compare model results with 
experimental data from the literature. The 
model results were not consistent with all 
of the experimental data. 

Substrate: chemical characterization 
(cellulose content) and structural 
characterization (degree of polymerization);  

Enzyme: multiple enzymes. 

The model was tested using T. reesei 
CBHI and endoglucanase 2 (EG2) 
hydrolysis data. 

Nonmechanistic: neural networks:   

O’Dwyer et al. (2008): 

Nonmechanistic feed-forward back-
propagation neural networks designed to 
predict biomass digestibility of poplar 
wood samples with a variety of lignin 
contents, acetyl contents, and crystallinity 
indices. 

Number of model parameters: without 
phenomenological parameters. 

Can be applied to predict biomass 
digestibility.  
Here, one can see the possibility of 
combining Kadam et al. (2004) and 
O’Dwyer et al. (2008) models, in a 
hybrid approach. Kadam et al. model 
(2004) lacks a better representation of 
biomass digestibility, which could be 
achieved through its combination with 
O’Dwyer et al. (2008) model. 

Substrate: chemical and structural 
characterization (lignin contents, acetyl 
contents, and crystallinity indices); 

Enzyme: one enzyme. 

T. reesei cellulase received (Spezyme CP, 
Genencor International) + Cellobiase 
Novozym 188, from Novo Nordisk 
Biochem. 
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Continuation  Table 1 
 

Model / Complexity Attribute / Potential application in 
bioreactor engineering 

Background information demanded by 
the model 

Nonmechanistic and semimechanistic:   

Zhang et al. (2009): 

Artificial neural networks to describe the 
kinetics of enzymatic cellulose 
hydrolysis. Three hydrolysis parameters 
served as input of the neural network 
model: cellulase activity, substrate 
concentration and time. The output was 
the glucose content. 

Number of model parameters: without 
phenomenological parameters. 

The artificial neural network predictions 
showed better agreement with the 
reported experimental results than a 
quadratic polynomial. 

Substrate: chemical characterization 
(cellulose content); 

Enzyme: one pseudo-enzyme. 

Cellulase powder was purchased from 
Sigma-Aldrich. 

Rivera et al. (2010): 

A data-driven technique based on 
artificial neural networks and design of 
experiments was applied in order to 
identify optimal enzyme combinations. 
This technique was used to build up a 
model of the combined effects of 
cellulase and β-glucosidase loads on 
glucose yield after enzymatic hydrolysis. 

Number of model parameters: without 
phenomenological parameters. 

Can be used not only for the prediction of 
glucose concentration profiles for 
different enzymatic loadings, but also to 
obtain the optimum enzyme loading that 
leads to high glucose yield. 

Enzyme: multiple enzymes. 

Cellulase from Trichoderma reesei 
(Sigma-Aldrich) and β-glucosidase from 
Aspergillus niger (Novozym 188). The 
values of enzyme concentrations were 
simultaneously varied. 

 
 

DISCUSSION 
 

Table 1 is an attempt to show some recent models 
for cellulose hydrolysis, their attributes (and 
drawbacks) and the kind of information 
(experimental effort) they require to be applied. As it 
becomes apparent from this compilation, the 
complexity of the substrates and of the catalytic 
mechanism for this system is so high that 
considering all aspects in a generic, first-principles 
model is unfeasible at the present state of the art.  

One point to be stressed is that it is very 
important to understand what one means by 
“substrate concentration”. Often this information is 
not explicit in the publications. 

Most of the models do not try to correlate rate 
and equilibrium constants with temperature, using 
Arrhenius or Van t´Hoff equations (Drissen et al, 
2009, is one of the exceptions, considering thermal 
inactivation as well). The influence of pH on 
enzymatic rates of hydrolysis is not considered as 
well, probably because the number of parameters 
would increase accordingly and the authors prefer to 
model systems at constant temperature and pH.  

Two different views for modeling this complex 
system are present in the recent literature. The first 
one can be named application-driven models – for 

instance, the use of models to optimize the production 
of bioethanol. The tendency here is moving towards 
models of increasing complexity. Data-driven models, 
such as neural networks or multiple regression 
expressions, are being largely used. However, the 
higher the complexity of interactions that one wants to 
model, the lower the generality of the model itself. 
Hence, extensive experimental data are demanded in 
order to build a consistent, robust empirical model to 
be used for bioreactor design. 

On the other hand, models that take into account 
more fundamental aspects of the enzyme-
(ligno)celllulosic substrate interactions are being 
published, too. They can provide a better insight into 
the mechanism of action of the enzymatic pool. 
Their application to engineering problems cannot be 
discarded, yet their real use is restrained by the 
availability of data needed to support the tuning of 
parameters and to characterize structural aspects of 
the substrate. Indeed, the need for structural and 
chemical characterization of the substrate, the 
occurrence of thermal inactivation, the role of mass 
transfer resistances and of deviations from ideal 
mixing in the heterogeneous reactor, all these 
phenomena make the use of these more detailed 
models for reactor design and scale-up very difficult. 
Once again, the lack of generality is present, since 
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one would need information for each specific 
substrate/enzyme system – not forgetting the huge 
variability of lignocellulosic substrates.  

Certainly both tendencies will continue in the 
foreseeable future. We believe that engineering practice 
for design and scale-up will probably rely more on 
different empirical and semi-empirical approaches 
(nonmechanistic or semimechanistic): neural networks, 
regression analysis, and simple rate equations – here 
including pseudohomogeneous, two or three parameter 
equations based on reaction mechanisms that we know 
are not the “real thing” that is happening, but that fit 
well to the data. Besides, distinct approaches of kinetic 
modeling may be complementary. Using combinations 
of their functional forms perhaps may be an alternative 
to represent the dynamics of this system while the 
reaction proceeds. This is actually a difficulty often 
present when one tries to fit simple 
pseudohomogeneous equations to long-term batch 
experiments. 

Hybrid neural network-first principle models can 
also be considered for specific situations. Neural 
networks have been successfully used as “black-box” 
models of dynamic systems. Combining them with 
simplified (semimechanistic) first principles models, 
in order to form a combined (hybrid) model 
structure, may be an interesting solution. This 
methodology offers advantages over a completely 
“black-box” approach, since the semimechanistic 
part of the model would describe interactions based 
on physical considerations, while the neural network 
complements this model by estimating unmeasured 
process parameters. Such models are expected to 
perform better than completely “black-box’’ neural 
network models in process identification tasks. 

But one cannot disregard the future use of 
structurally based models, provided the evolution of 
methods for structural characterization of the 
substrate makes feasible the industrial use of 
advanced techniques –non-destructive spectroscopic 
methods, for instance. If this kind of information 
becomes available, the lack of empirical data may be 
overcome and the routine use of this kind of model 
may become a common practice. 

From our review of recent papers, we may state that 
there is still room for works that systematically compare 
different model conceptions against real data.  
 
 

CONCLUSION 
 

As a conclusion, we observe that semimechanistic 
models considering Langmuir and/or Michaelis-
Menten enzyme/substrate interactions are still 

largely applied (and improved, such as in the 
“jamming” fractal Michaelis-Menten). Inclusion of 
substrate structure-related state variables in addition 
to concentration and multiple enzymes can be 
considered in functionally based models. 
Unfortunately, the functionally based models can 
lead to a large number of parameters to fit to 
experimental data. Due to the increase in the number 
of parameters, such models need to be validated with 
experimental data other than conversion vs. time 
profiles. Many times, there is no rational basis to 
estimate some necessary parameters. 

Nonmechanistic approaches, such as artificial 
neural networks, which perform correlations without 
requiring mechanistic assumptions of how the output 
depends on the inputs, are an attractive alternative, 
although lacking capacity for generalization. Some 
studies demonstrated the potential of neural 
networks. Such models are able to interpolate over a 
large range of the predicted and independent 
variables. Artificial neural networks showed better 
performance than quadratic polynomials.  

Our intention with this mini-review was to draw a 
picture of recent approaches used for modeling 
cellulose enzymatic hydrolysis, mostly from a 
utilitarian point of view, namely, for applications in 
bioreactor engineering practice. With this in mind, 
the point to be addressed is: do the mathematical 
forms of the semi-mechanistic, mechanistic or 
functionally based models support generalization? 
Can they be applied for substrates and enzymatic 
pools different from those used by the authors – 
which will most certainly be the case for real 
industrial processes? In our opinion, the answer is 
essentially no, at least at the present stage of the 
research. 

Currently, all approaches require experimental 
validation for application in reactor design of specific 
processes. More structured models can inspire more 
confidence for extrapolations, but they require detailed 
information about substrate and/or enzymes, leading to 
a large experimental effort. Thus, scale-up procedures 
tend to be more conservative, relying on experimental 
data from pilot plants.  

Finally, considering the rising demand for 
sustainability (lower water consumption and/or 
lower consumption of energy to concentrate the 
product, resulting in high solids loading), fed-batch 
operation can be a very interesting process 
alternative. Still, the question of imperfect mixing in 
the solid-liquid reactor should be studied in the 
future. To scale up to the industrial level, it is 
important to model the deviation of the bioreactor 
from ideality, a field that deserves future attention. 
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NOMENCLATURE 
 
b’1 to b’9  regression coefficients 
b0  regression constant 
b1 to b7 regression coefficients 
BG  β-glucosidase concentration 

in solution  
g L-1

c   conversion-independent 
component of cellulose in 
rate function  

h-1

CC   cellulose concentration  g L-1

CCb   cellobiose concentration  g L-1 or g kg-1

CE   concentration of 
carbohydrate–enzyme 
complex 

g L-1

CE   enzyme concentration FPU L-1

Ceff   concentration of cellulose 
available for enzyme  

g L-1

CEtOH   ethanol concentration  g L-1

CG   glucose concentration  g L-1 or g kg-1 

Cs   specific capacity of 
carbohydrate component for 
cellulase  

g g-1

E   enzyme concentration  g L-1

E0  initial enzyme concentration g L-1

Ea  activation energy J mol-1

Ead  enzyme activity adsorbed by 
fiber  

unit L-1

EC   concentration of enzyme 
absorbed by cellulose 

unit L-1

Ef  free cellulase concentration g L-1

eg   β-glucosidase activity per g 
of protein in the enzyme 
preparation 

unit g-1

EiB  bound enzyme concentration g kg-1

EiF   free enzyme concentration g kg-1

Eimax   maximum mass of enzyme 
that can adsorb onto a unit 
mass of substrate 

g kg-1

Et   total cellulase concentration g L-1

Eth   ethanol concentration g L-1

etotal   protein (enzyme) 
concentration per L reaction 

g L-1

f   “fractal dimension” 
Fa   fraction of bonds accessible 

to cellulase 
Gi and 
Gk   

cellulose molecules with a 
chain length (DP) of i and k, 

mM

respectively  
Gn   cellulose component of the 

remaining substrate 
g L-1

H   hemicellulose concentration g L-1

I  ethanol plus cellobiose 
concentration  

mM

i   fraction of total enzyme not 
inhibited by product 

j  “jamming” factor 
k'  a rate constant proportional 

to the diffusion coefficient 
as defined by Fick’s law  

L g-1min-1

k  apparent rate constant h-1

k, α,  
and ε   

parameters that describe  
the degree of substrate 
reactivity 

h-1, g L-1 and 
dimensionless, 

respectively
K3M   substrate (cellobiose) 

saturation constant 
g kg-1

KC  rate constant for hydrolysis 
of cellobiose to glucose  

h-1

KCG   inhibition of cellobiose 
hydrolysis by glucose 

g L-1

KD   thermal inactivation 
constant  

h-1

Ke  half-saturation constant g L-1

kEG1  rate constant of EG1 β-
glucosidic bonds cleaved 

µmol mg-1

min-1

KI or Kic apparent competitive 
inhibition constant between 
total sugar and cellulase  

g L-1 or mM

Ki,EtOH   inhibition constant g L-1

Ki,G and 
Ki,2  

inhibition constants g L-1

Kiad   dissociation constant for the 
enzyme adsorption/ 
desorption reaction  

g g-1

KIG  inhibition constant for 
glucose 

g L-1

KiIG  inhibition constants of 
glucose on enzymes  

g kg-1

KiIG2  inhibition constants of 
cellobiose on enzymes  

g kg-1

KiIX   inhibition constants of 
xylose on enzymes  

g kg-1

Kiu   a (uncompetitive) inhibition 
constant  

mM

KL  adsorption constant  FPU L-1

KM or Km apparent Michaelis constant g L-1

kmax,i   maximum specific rate 
constant  

h-1

KREC  recalcitrance parameter 
KS  Langmuir affinity constant  L g-1

KSC   inhibition of cellulose 
hydrolysis by cellobiose  

g L-1
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KSP   inhibition of cellulose 
hydrolysis by ethanol  

g L-1

L   lignin concentration g L-1

m   exponent of declining 
glucan reactivity 

n   a structural diffusion 
resistance constant 
dependent on the sterical 
structure of the system 

P  product, cellobiose 
P and P∞   products which diffuse at 

time t and at equilibrium, 
respectively 

g L-1

r   a first-order reaction rate  g L-1h-1

R  gas constant  J mol-1K-1

r1  cellulose-to-cellobiose 
reaction with competitive 
inhibition by glucose, 
cellobiose and xylose 

g kg-1h-1

r2   cellulose-to-glucose reaction 
with competitive inhibition 
by glucose, cellobiose and 
xylose inhibition  

g kg-1h-1

r3  cellobiose-to-glucose 
reaction with competitive 
glucose and xylose 
inhibition 

g kg-1h-1

RS   substrate reactivity 
RT  gas constant times 

Temperature  
J mol-1

S   substrate, cellulose 
t   time h
T  total sugars concentration  g L-1

T∞  ultimate value of the total 
sugars concentration T 

g L-1

ui and vi cybernetic variables 
representing the optimal 
strategies for the synthesis 
and activity, respectively,  
of the enzymes of the 
metabolic pathway, i. 

v   cellulose hydrolysis  
velocity 

mM h-1

v0  initial hydrolysis velocity g L-1min-1

Vemax   maximal velocity  g L-1min-1

Vmax  maximal velocity mM h-1

x   sugar conversion 
X  xylose concentration g kg-1

X’1   cellulase activity FPU
X’2  substrate concentration  g L-1

X’3  time h
X1   independent variable, effect 

of cellobiohydrolase 

X2   independent variable, effect 
of endoglucanase 

X3  independent variable, effect 
of β-glucosidase 

X4, X5, 
X6 and 
X7   

represent the synergistic 
effects 

Xn  xylan component of the 
remaining substrate 

g L-1

Y   response value of glucose 
concentration  

g L-1

β1  and β2 are glucose (CG) and 
cellobiose (CCb) binding 
constants, respectively  

L g-1

λ   constant relating the 
percentage of cellulose 
available for enzyme 

φ   inert fraction coefficient 
ϕ    fraction of the cellulose 

surface that is free to be 
hydrolyzed 

^
Y   

conversion of substrate into 
total reducing sugars (TRS), 
the model output 

(i-1)Gi  denotes the total 
concentration of β-
glucosidic bonds in cellulose 
chains of DPi  

mM

[Sc] and 
[Sx]  

hydrolysable and non-
hydrolysable regions, 
respectively 

m2 m-3

[St]  total cellulose surface 
concentration 

m2 m-3

 
 
 

REFERENCES 
 
Al-Zuhair S., The effect of crystallinity of cellulose 

on the rate of reducing sugars production by 
heterogeneous enzymatic hydrolysis. Bioresource 
Technol., 99, 4078 (2008). 

Andrić P., Meyer A. S., Jensen P. A., Dam-Johansen 
K., Reactor design for minimizing product 
inhibition during enzymatic lignocellulose 
hydrolysis: I. Significance and mechanism of 
cellobiose and glucose inhibition on cellulolytic 
enzymes. Biotechnol. Adv., 28, No. 3, 308 
(2010). 

Andrić P., Meyer A. S., Jensen P. A., Dam-Johansen 
K., Reactor design for minimizing product 
inhibition during enzymatic lignocellulose 
hydrolysis: II. Quantification of inhibition and 



 
 
 
 

Recent Trends in the Modeling of Cellulose Hydrolysis                                                                               563 
 

 
Brazilian Journal of Chemical Engineering Vol. 28,  No. 04,  pp. 545 - 564,  October - December,  2011 

 
 
 
 

suitability of membrane reactors. Biotechnol. 
Adv., 28, No. 3, 407 (2010b). 

Annema, A., Feed-forward Neural Networks: Vector 
Decomposition Analysis, Modeling and Analog 
Implementation. Kluwer Academic Publishers, 
Boston (1995). 

Bansal, P., Hall, M., Realff M. J., Lee, J. H., 
Bommarius, A. S., Modeling cellulase kinetics on 
lignocellulosic substrates. Biotechnol. Adv., 27, 
No. 6, 833 (2009). 

Bezerra, R. M. F. and Dias, A. A., Discrimination 
among eight modified Michaelis–Menten kinetics 
models of cellulose hydrolysis with a large range 
of substrate/enzyme ratios. Appl. Biochem. 
Biotech., 112, 173 (2004). 

Bezerra, R. M. F. and Dias, A. A., Enzymatic kinetic 
of cellulose hydrolysis. Appl. Environ. Microb., 
126, 49 (2005). 

Bommarius, A. S., Katona, A., Cheben, S. E., Patel, 
A. S., Ragauskas, A. J., Knudson, K., Pu, Y., 
Cellulase kinetics as a function of cellulose 
pretreatment. Metab. Eng., 10, 370 (2008). 

Brown, R. F., Agbogbo, F. K., Holtzapple, M. T., 
Comparison of mechanistic models in the initial 
rate enzymatic hydrolysis of AFEX-treated wheat 
straw. Biotechnol. Fuels, 3, 6 (2010). 

Carrillo, F., Lis, M. J., Colom, X., Lopez-Mesas, M., 
Valldeperas, J., Effect of alkali pretreatment on 
cellulase hydrolysis of wheat straw: Kinetic 
study. Process Biochem., 40, 3360 (2005). 

Chauve, M., Mathis, H., Huc, D., Casanave, D., 
Monot, F., Ferreira, N. L., Comparative kinetic 
analysis of two fungal β–glucosidases. 
Biotechnol. Fuels, 3, 3 (2010). 

Chrastil, J., Enzymic product formation curves with 
the normal or diffusion limited reaction 
mechanism and in the presence of substrate 
receptors. Int. J. Biochem., 20, No. 7, 683 (1988). 

Chrastil, J., Determination of the first order 
consecutive reaction rate constants from final 
products, Comput. Chem., 12, No. 4, 289 
(1988b).  

Di Serio, M., Aramo, P., de Alteriis, E., Tesser, R., 
Santacesaria, E., Quantitative analysis of the key 
factors affecting yeast growth. Ind. Eng. Chem. 
Res., 42, 5109 (2003). 

Drissen, R. E. T., Maas, R. H. W., Tramper, J., 
Beeftink, H. H., Modeling ethanol production 
from cellulose: separate hydrolysis and 
fermentation versus simultaneous saccharification 
and fermentation. Biocatal. Biotransfor., 27, No. 
1, 27 (2009). 

Fan, L. T. and Lee, Y. H., Major chemical and 
physical features of cellulosic materials as 

substrates for enzymatic hydrolysis. Adv. 
Biochem. Eng., 14, 101 (1980).  

Gan, Q., Allen, S. J., Taylor, G., Kinetic dynamics in 
heterogeneous enzymatic hydrolysis of cellulose: 
an overview, an experimental study and 
mathematical modeling. Process Biochem., 38, 
1003 (2003). 

Hagan, M., Demuth, H., Beale, M., Neural Network 
Design. PWS Publishing, Boston (1996). 

Hodge, D. B., Karim, M. N., Schell, D. J., McMillan, 
J. D., Model-based fed-batch for high-solids 
enzymatic cellulose hydrolysis. Appl. Biochem. 
Biotech., 152, 88 (2009). 

Kadam, K. L., Rydholm, E. C., McMillan, J. D., 
Development and validation of a kinetic model 
for enzymatic saccharification of lignocellulosic 
biomass. Biotechnol. Progr., 20, 698 (2004). 

Ko, J., Su, W. J., Chien, I. L., Chang, D. M., Chou, 
S. H., Zhan, R. Y., Dynamic modeling and 
analysis of simultaneous saccharification and 
fermentation process to produce bio-ethanol from 
rice straw. Bioprocess Biosyst. Eng., 33, 195 (2010). 

Levine, S. E., Fox, J. M., Blanch, H. W., Clark, D. 
S., A mechanistic model of the enzymatic 
hydrolysis of cellulose. Biotechnol. Bioeng., 107, 
No. 1, 37 (2010). 

Li, C., Yoshimoto, M., Tsukuda, N., Fukunaga, K., 
Nakao, K., A kinetic study on enzymatic hydrolysis 
of a variety of pulps for its enhancement with 
continuous ultrasonic irradiation. Biochem. 
Bioeng. J., 19, 155 (2004). 

Liao, W., Liu, Y., Wen, Z., Frear, C., Chen, S., 
Kinetic modeling of enzymatic hydrolysis of 
cellulose in differently pretreated fibers from 
dairy manure. Biotechnol. Bioeng., 101, No. 3, 
441 (2008). 

Morales-Rodríguez, R., Capron, M., Huusom, J. K., 
Sin, G., Controlled fed-batch operation for 
improving cellulose hydrolysis in 2G bioethanol 
production. 20th European Symposium on 
Computer Aided Process Engineering – ESCAPE20 
(2010). 

O'Dwyer, J. P., Zhu, L., Granda, C. B., Holtzapple, 
M. T., Enzymatic hydrolysis of lime-pretreated 
corn stover and investigation of the HCH-
1Model: inhibition pattern, degree of inhibition, 
validity of simplified HCH-1 Model. Bioresource 
Technol., 98, 2969 (2007). 

O'Dwyer, J. P., Zhu, L., Granda, C. B., Chang, V. S., 
Holtzapple, M. T., Neural network prediction of 
biomass digestibility based on structural features. 
Biotechnol. Progr., 24, 283 (2008). 

Okazaki, M. and Moo-Young, M., Kinetics of 
enzymatic hydrolysis of cellulose: Analytical 



 
 
 
 

564                                      R. Sousa Jr., M. L. Carvalho, R. L. C. Giordano and R. C. Giordano 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

description of a mechanistic model. Biotechnol. 
Bioeng., 20, 637 (1978). 

Ramkrishna, D., On modeling of bioreactors for 
control. J. Process Control, 13, 581 (2003). 

Rivera, E. C., Rabelo, S. C., Garcia, D. D., Maciel, 
R., da Costa, A. C., Enzymatic hydrolysis of 
sugarcane bagasse for bioethanol production: 
determining optimal enzyme loading using neural 
networks. J. Chem. Technol. Biotechnol., 85, 983 
(2010). 

Shao, X., Lynd, L., Wyman, C., Bakker, A., Kinetic 
modeling of cellulosic biomass to ethanol via 
simultaneous saccharification and fermentation: 
Part I. Biotechnol. Bioeng., 102, No. 1, 59 
(2009).  

Shao, X. J., Cellulosic Biomass to Ethanol: Kinetic 
modeling, scale up, and reactor design. PhD 
Thesis, Dartmouth College, USA (2007). 

South, C. R., Hogsett, D. A. L., Lynd, L. R., 
Modeling simultaneous saccharification and 
fermentation of lignocellulose to ethanol in batch 
and continuous reactors. Enzyme Microb. 
Technol., 17, 797 (1995). 

Wang, L. S., Zhang, Y. Z., Yang, H., Gao, P. J., 
Quantitative estimate of the effect of cellulase 
components during degradation of cotton fibers. 
Carbohydr. Res., 339, 819 (2004). 

Xu, F. and Ding, H., A new kinetic model for 
heterogeneous (or spatially confined) enzymatic 
catalysis: contributions from the fractal and 
jamming (overcrowding) effects. Appl. Catal. A-
Gen., 317, 70 (2007). 

Zhang, J., Shao, X., Townsend, O. V., Lynd, L. R., 
Simultaneous saccharification and co-fermentation 

of paper sludge to ethanol by Saccharomyces 
Cerevisiae RWB222 – Part I. Biotechnol. 
Bioeng., 104, No. 5, 920 (2009). 

Zhang, J., Shao, X., Townsend, O. V., Lynd, L. R., 
Simultaneous saccharification and co-
fermentation of paper sludge to ethanol by 
Saccharomyces Cerevisiae RWB222 Part II. 
Biotechnol. Bioeng., 104, No. 5, 932 (2009b). 

Zhang, Y., Xu, J. L., Yuan, Z. H., Modeling and 
prediction in the enzymatic hydrolysis of 
cellulose using artificial neural network. Fifth 
Intern. Conf. Natural Comput., Tianjin, China 
(2009).  

Zhang, Y. H. P. and Lynd, L. R., Toward an 
aggregated understanding of enzymatic 
hydrolysis of cellulose: noncomplexed cellulase 
systems. Biotechnol. Bioeng., 88, No. 7, 797 
(2004). 

Zhang, Y. H. P. and Lynd, L. R., A functionally 
based model for hydrolysis of cellulose by fungal 
cellulase. Biotechnol. Bioeng., 94, No. 5, 888 
(2006). 

Zheng, Y., Pan Z., Zhang, R., Jenkins, B. M., Kinetic 
modeling for enzymatic hydrolysis of pretreated 
creeping wild ryegrass. Biotechnol. Bioeng., 102, 
No. 6, 1558 (2009). 

Zhou, W., Schüttler, H. B., Hao, Z., Xu, Y., 
Cellulose hydrolysis in evolving substrate 
morphologies I. Biotechnol. Bioeng., 104, No. 2, 
261 (2009). 

Zhou, W., Schüttler, H. B., Hao, Z., Xu, Y., 
Cellulose hydrolysis in evolving substrate 
morphologies II. Biotechnol. Bioeng., 104, No. 2, 
275 (2009b). 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


