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Abstract - In the present study a preliminary neural network modelling to improve our understanding of 
Recombinant Human Erythropoietin purification process in a plant was explored. A three layer feed-forward 
back propagation neural network was constructed for predicting the efficiency of the purification section 
comprising four chromatographic steps as a function of eleven operational variables. The neural network 
model performed very well in the training and validation phases. Using the connection weight method the 
predictor variables were ranked based on their estimated explanatory importance in the neural network and 
five input variables were found to be predominant over the others. These results provided useful information 
showing that the first chromatographic step and the third chromatographic step are decisive to achieve high 
efficiencies in the purification section, thus enriching the control strategy of the plant.  
Keywords: Neural network; Erythropoietin; Chromatographic purification; Modeling. 

INTRODUCTION 

Industrial biopharmaceutical production has gradu-
ally become dependent on large-scale processes using 
sensitive mammalian cell cultures (Glassey et al., 
2011). The biopharmaceutical market has witnessed 
the arrival of many new complex therapeutic pro-
teins produced in mammalian cell lines (Teixeira et 
al., 2009). Mammalian hosts have an innate capacity 
to perform post-translational modifications; in par-
ticular, glycosylation is of special interest as it influ-
ences the functionality, serum half-life and immuno-
genicity of such therapeutics. Several glycoproteins 

and monoclonal antibodies with relatively high pro-
duction needs are being identified as new drug candi-
dates (Walsh, 2006). The Chinese Hamster Ovary 
(CHO) cell line is one of the most used for obtaining 
biological therapeutics (Merten, 2006). 

Recombinant Human Erythropoietin (rhEPO) is a 
glycoprotein hormone produced by means of CHO 
cell culture. It has proven to be a highly effective 
therapeutic agent with no evidence of an adverse 
physiological effect due to the structural differences 
in terminal sialylation (Butler, 2005). Since EPO 
increases the number of peripheral red blood cells, 
there has been considerable interest in the therapeutic 
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use of EPO for the treatment of severe anemia. How-
ever, EPO is also massively misused for doping pur-
poses. The current pharmaceutical market value is 
over 12 billion US dollars a year (Hoeksema, 2011). 

Once a biopharmaceutical has been approved 
based on a given process, any significant deviation 
from the production protocol may require new clini-
cal trials to test the safety of the resulting product 
(“process defines the product”). Since clinical trials 
are very expensive, process improvements are made 
under very hard constraints. Therefore, production 
processes are normally run far below their potential 
maximum performance (Sommerfeld and Strube, 
2005; Teixeira et al., 2009). 

Production of rhEPO has potential for improve-
ment and is still being investigated (Hoeksema, 
2011; Surabattula et al., 2011). Its industrial process 
production has two main sections, fermentation and 
purification in chromatographic columns. In the case 
studied, fermentation takes place in stirred tank bio-
reactors with perfusion-based process, which can 
create relatively high product concentrations and 
volumetric throughput (Acuna et al., 2011). The 
purification section is based on 4 chromatographic 
steps which use affinity chromatography, ion ex-
change chromatography and molecular exclusion 
chromatography. 

In the plant of the case studied there has been a 
great instability in the purification section efficien-
cies. In spite of the fact that there is a great amount 
of registered information, there is a lack of knowl-
edge concerning the way the controlled variables 
impact purification efficiencies.  

Multivariate data analysis has a great potential for 
improving biopharmaceutical production. It can inter-
act with several other methods and techniques that 
analyze the biopharmaceutical manufacturing proc-
ess, leading to better understanding of it and exerting 
control of its quality. Biopharmaceutical processes 
typically lead to the generation of large multivariate 
data sets which are highly heterogeneous, correlated, 
non-linear in nature and with high levels of redun-
dancy and noise. The usefulness of multivariate data 
analysis techniques has been proven in the area of 
biopharmaceuticals. Their ability to reduce dimen-
sionality by removing the redundancy and noise 
leads to the identification of salient features in the 
data. These features can subsequently be used in 
bioprocess monitoring, fault detection and process 
optimization, as has been described extensively in 
the literature over the years (Teixeira et al., 2009; 
Glassey et al., 2011). The inner workings of the ma-
jority of batch pharmaceutical processes are not well 
understood for a fundamental or knowledge-driven 

model to be developed. Because such knowledge-
driven models provide a much more detailed and 
insightful view of the process, their development 
should be pursued and is indeed pursued, for selec-
tive critical parts of the process. For the majority of 
pharmaceutical processes or their processing steps, 
one needs to rely substantially on the development of 
data-driven models. The availability on an ever-in-
creasing set of off-line and on-line process measure-
ments (spectroscopic or otherwise) provides the en-
gineer with substantial data as the starting point for 
developing a data-driven model and, through it, at-
taining a certain understanding of the process (Troup 
and Georgakis, 2013) . 

Artificial Neural Networks (ANN) are a powerful 
tool in multivariate data analysis, applicable to a wide 
range of problems, especially in the domain of proc-
ess modeling. Since ANN have the ability to extract 
from experimental data the highly non-linear and 
complex relationships between the variables of the 
problem without any detailed knowledge of the sys-
tem (Si-Moussa et al., 2008; Khaouane et al., 2013) 
and, given the great amount of available experimen-
tal data in the study, it was decided to apply this ap-
proach. In this way, it was possible to extract useful 
information for making decisions without the need to 
have a theoretical model of process behaviour. 

Chromatography has developed from an analyti-
cal technology to a well-established separation proc-
ess in industry. Large-scale industrial applications 
have been reported from different industrial fields, 
e.g. in the petrochemical, pharmaceutical, bio-chemi-
cal, and also in the food industry (Engell and Toumi, 
2005). ANN have been widely used in liquid chro-
matography modeling (Korany et al., 2012; Webb et 
al., 2009; Tran et al, 2007; Novotna et al., 2005; 
Loukas, 2000; Gao and Engell, 2004; Satlawa et al., 
2013), but in all papers reported, the modeling of the 
chromatographic purification processes is limited to 
one column operation level, hence not covering the 
overall efficiency of a purification section with sev-
eral chromatographic steps. On the other hand, ANN 
have been applied in the rhEPO production process, 
but only in the fermentation section (Didier, 2008; 
Didier et al., 2009; Hoeksema, 2011; Forno et al., 
2009). No work has been reported concerning appli-
cation of ANN to the modelling of the industrial 
process of EPO purification.  

The objective of this preliminary study is to ex-
plore the possibilities of using neural network model-
ling to gain knowledge about the process, specifi-
cally how variables that are registered in this stage 
affect the purification section efficiency in the 
rhEPO production process; a method for quantifying 
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the explanatory contributions of the predictor vari-
ables in the network was applied and identified the 
variables with the biggest contribution to the effi-
ciency. This would be very interesting for further 
applications in monitoring and control of the process, 
and could be a great help to identify key parameters 
and to define control spaces, thus increasing the 
rhEPO productivity. 
 
 

MATERIALS AND METHODS 
 
Data Set 
 

The data used in this study were provided by the 
Center of Molecular Immunology in Havana, whose 
main research objective is the development of new 
products for the diagnosis and treatment of cancer 
and other diseases related to the immune system. 
Data were collected from the operation of the 
purification section in the rhEPO plant during one 
campaign, resulting in 204 records.  

Eleven input variables were studied: four related 
to the first chromatographic step (affinity chroma-
tography), two related to the second chromatographic 
step (affinity chromatography) and five related to the 
third chromatographic step (ion exchange chroma-
tography). The output variable of interest was rhEPO 
yield in bulbs (at the elution of the fourth chroma-
tographic step - molecular exclusion chromatography) 
per liter of supernatant. The selection of these vari-
ables was based on the domain knowledge and was 
made by taking into account criteria from the experts 
of the plant who considered these inputs relevant. 

Two variables related to the supernatant applied 
in the first chromatographic step were considered: 

1. Cell specific perfusion rate, which means the me-
dium consumption per cell per day (cspr, nL/cell.day), 
calculated as the dilution rate divided by the live cell 
concentration in the bioreactor.  

2. rhEPO mass in the supernatant applied (ma-
sasnhplc, g), calculated with rhEPO concentration 
measured via HPLC-RP (High Performance Liquid 
Chromatography in Reverse Phase).  

Variables related to the first chromatographic step, 
comprising two columns, were: 

3. Optical density at 280 nm at the elution of the 
first column (do280b, AU), measured via spectro-
photometry. 

4. rhEPO concentration at the elution of the second 
column (concg25b, mg/mL), measured by optical 
density. 

Variables related to the second chromatographic 
step were: 

5. Relation of the rhEPO mass applied divided by 
the packed gel volume in the first column (masa_vgch, 
g/L).  

6. Yield of the second chromatographic step with 
regard to the first chromatographic step (rendch_b, 
adim.), calculated as the mass of elution of the second 
step divided by the mass of elution of the first step. 

Variables related to the third chromatographic 
step were: 

7. Relation of the rhEPO mass applied divided by 
the packed gel volume in the column (masa_vgq, g/L). 

8. Relation of the optical density at 280 nm 
divided by the optical density at 260 nm of eluted 
stream in the column (releluq , adim.). 

9. Recovery of rhEPO in the elution of the 
column (recelucq, percent), calculated as the relation 
of the eluted mass divided by the total eluted mass in 
the third step.  

10. Relation of the acid rhEPO mass divided by 
the total rhEPO at the chromatographic step (eluq/ 
eluq+lavq, adim.). 

11. Yield of the third chromatographic step with 
regard to the second chromatographic step (rendq/ch, 
adim), calculated as the relation of the mass of elu-
tion of the third step divided by the mass of elution 
of the second step.  

Variables related to the fourth chromatographic 
step were: 

12. rhEPO yield in bulbs per liter of supernatant 
(rendbb/lsn, bulbs/L). This is the target variable of the 
study and is calculated as the relation of the amount of 
vials obtained divided by the volume of supernatant 
applied.  

In Table 1 the minimum, maximum, mean and 
standard deviation values of the variables are 
presented.  

Figure 1 is a synthetic presentation of records for 
rhEPO yield in bulbs per liter of supernatant before 
the modeling.  
 

Table 1: A summary of the data set. 
 

Variables  Minimum Maximum Mean Standard 
deviation

cspr 0.06 0.80 0.14 0.10 
masasnhplc 0.00 49.30 23.96 9.25 
do280b 0.08 1.75 0.67 0.33 
concg25b 0.12 1.99 0.72 0.33 
masa_vgch 0.00 8.04 2.25 1.07 
rendch_b 0.09 0.61 0.31 0.10 
masa_vgq 0.28 7.27 3.33 1.42 
releluq 0.81 1.99 1.83 0.09 
recelucq 11.59 87.37 54.44 15.46 
eluq/eluq+lavq 0.20 0.96 0.69 0.14 
rendq/ch 0.09 2.95 0.50 0.29 
rendbb/lsn 25 659 287 123 
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Figure 1: Synthetic presentation of records for rhEPO 
yield in bulbs per liter of supernatant. 
 
Neural Network 
 

An artificial neural network is a nonlinear 
statistical data modeling tool that simulates the 
structure and functional aspects of biological neural 
networks. Although many differing types of ANN 
exist, they do possess some common features. They 
are generally composed of numerous process ele-
ments, termed nodes, which are arranged together to 
form a network. The choice of the architecture of the 
network depends on the task to be performed and the 
architecture of the model is specified by the node 
characteristics, network topology and learning algo-
rithm. In standard architecture, neurons are grouped 
into different layers like input, output and hidden 
layers. The use of hidden layers confers on ANN the 
ability to describe nonlinear systems. Good descrip-
tions of ANN are given in the literature (Bose and 
Liang, 1996; Himmelblau, 2000). 

One of the most popular neural network para-
digms applied to the modeling of a wide range of 
nonlinear systems, especially chemical and biologi-
cal engineering processes, is the feed-forward back 
propagation neural network (Silva et al., 2000; 
Khaouane et al., 2013), which has been used in this 
paper with one hidden layer. 

In the present study, 11 variables are used as input 
parameters in developing of an ANN for rhEPO yield 
in bulbs per liter of supernatant prediction. These 
parameters are: cell specific perfusion rate (cspr), 
rhEPO mass applied in the supernatant (masasnhplc), 
optical density at 280 nm at the elution of the first 
column (do280b), rhEPO concentration at the elution 
of the second column (concg25b), relation of the 
rhEPO mass applied divided by the packed gel 
volume in the column (masa_vgch), yield of the 
second chromatographic step with regard to the first 
chromatographic step (rendch_b), relation between 
the rhEPO mass applied and packed gel volume in 

the column (masa_vgq), relation of the the optical 
density at 280 nm divided by the optical density at 
260 nm of eluted stream in the column (releluq), 
recovery of rhEPO in the elution of the column 
(recelucq), relation of the acid rhEPO mass divided 
by the total rhEPO in the chromatographic step 
(eluq/eluq+lavq) and yield of the third chromato-
graphic step with regard to the second chroma-
tographic step (rendq/ch). All inputs were normalized. 

The network was trained and validated by using 
70% and 30% of 204 data sets, respectively. The 
network training was carried out by the Levenberg–
Marquardt back propagation algorithm. A trial-and-
error approach was used to minimize the error in 
order to determine the optimal number of hidden 
neurons. The number of hidden neurons in the 
hidden layer is a crucial parameter. If the number is 
too small, the ANN may not reflect the complex 
relationship between input and output value. On the 
contrary, a large number may create such a complex 
network that it might lead to a very large output error 
caused by over fitting of the training sample set. In 
the present study, the number of neurons in the 
hidden layer was optimized using trial and error 
methods during the training stage. Neurons in the 
input layer have no transfer function. A tan-sigmoid 
(tansig) transfer function was used in the hidden 
layer, while a pure linear (purelin) transfer function 
was used in the output layer.  

To judge the performance of the network, the 
Mean Square Error function (MSE) and correlation 
coefficient (R-value) from post-training regression 
analysis were used. 

The development procedure of the ANN described 
above was carried out by elaborating a MATLAB 
program under MATLAB Neural Network Toolbox 
Release 14. 
 
Connection Weight Method  
 

Complex supervised learning Data Mining meth-
ods, such as Neural Networks, Support Vector Ma-
chines and ensembles, are capable of high quality 
prediction results and thus are useful to support deci-
sion making. However, the obtained models are often 
treated as black boxes, since they are difficult to 
understand by humans. Improving model interpret-
ability increases the acceptance of the Data Mining 
results by the domain users and this is an important 
issue in critical applications, such as control or medi-
cine (Cortez and Embrechts, 2011). 

One of the main limitations of artificial neural 
networks is the high inability to know, in an explicit 
way, the relations established between explanatory 
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variables (input) and dependent variables (output). 
This is a major reason why they are usually called 
“black boxes” (De Oña and Garrido, 2014). This arises 
from the fact that the internal characteristic of a 
trained network is a set of numbers that are very 
difficult to relate back to the application in a mean-
ingful fashion (Paliwal and Kumar, 2011). In the last 
few years, several methods have been proposed to 
assess the relative importance of each explanatory 
variable (Olden and Jackson, 2002; Olden et al., 
2004; Papadokonstantakis et al., 2006; Watts and 
Worner, 2008; Paliwal and Kumar, 2011; Cortez and 
Embrechts, 2013; De Oña and Garrido, 2014). Never-
theless, it has not been possible to reach a consensus 
on which is the best-performing method. Despite the 
variety of methods studied, there is no general con-
sensus on which model is the best for determining 
the contribution of variables (De Oña and Garrido, 
2014). 

The connection weight method is a well-known 
method existing in the literature which has been used 
with good results (Olden and Jackson, 2002; Olden 
et al., 2004; Papadokonstantakis et al., 2006; Watts 
and Worner, 2008; Paliwal and Kumar, 2011). This 
method calculates the sum of products of raw 
weights of the connection from the input node to the 
hidden nodes with the connection from hidden node 
to output nodes for all input nodes. The larger the 
sum for a given input node, the more the importance 
of the corresponding input variable. The relative im-
portance of a given input variable can be defined as  
 

∑
=

=
h

H
OHHII WWR

1
__ )(            (1) 

 
where RI is the relative importance of the input vari-
able I, h is the total number of hidden nodes, WI_H is 
the weight of the connection between input node I 
and hidden node H, and WH_O is the weight of the 
connection between hidden node H and output node.  

The connection weight method has been used in 
this study in order to rank the importance of inde-
pendent variables in predicting the output variable 
for the neural network.  
 
 

RESULTS AND DISCUSSION 
 

The properties of the training data determine the 
number of input and output neurons. In this study, 
the number of factors (cspr, masasnhplc, do280b, 
concg25b, masa_vgch, rendch_b, masa_vgq, releluq, 
recelucq, eluq/eluq+lavq, rendch_b) forced the number 

of input neurons to be eleven. The number of re-
sponses (rendbb/lsn) forced the number of output neu-
rons to be one. 

Only one hidden layer was tried and it was 
sufficient to predict with enough accuracy the rhEPO 
yield in bulbs per liter of supernatant. This is in line 
with the fact that the one-hidden-layer, feed-forward 
neural network trained by the back-propagation algo-
rithm is the type of neural network most frequently 
used, including applications in biological systems 
(Olden and Jackson, 2001). The number of neurons 
in the hidden layer is related to the convergence of 
the error term during the training process. An in-
crease in the number of hidden neurons up to a point 
usually results in a better learning performance. 
However, too many hidden neurons may allow too 
much freedom for the weights to be adjusted and 
result in learning the noise present in the database 
used in training. Too few hidden neurons limit the 
ability of the neural network to model the process. 
Therefore, in this study, the number of the hidden 
neurons was varied in the range of 10–11. Simplicity 
of the architecture and accuracy of the results were 
the requirements imposed to find the optimum archi-
tecture. After several trials, it was found that 11 
neurons in the hidden layer gave the best perform-
ance with an acceptable compromise between network 
estimation accuracy and network complexity. Thus, 
the architecture of the proposed ANN model had three 
layers: 11 neurons in the input layer, 11 neurons in 
the hidden layer, and 1 neuron in the output layer, 
(11,11,1), as shown in Figure 2. 
 

 
Figure 2: Structure of the ANN. 
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204 data points were selected and divided into 
two data sets, i.e., a training data set and a validation 
data set. In this study, the input data were divided 
into a training data set consisting of 70% of the input 
data and a validation data set consisting of 30% of 
the input data. The training and validation data sets 
were selected randomly, and the ANN model was 
trained using the training data set. The generalized 
performance of the network was estimated periodi-
cally by computing the validation error from the 
independent validation data set. The error decreased 
with increasing number of training cycles to a certain 
point, but again increased with increasing number of 
training cycles. The training was stopped after 22 
iterations as shown in Figure 3 to avoid over fitting of 
the network.  

 
Figure 3: Training performance of ANN model. 

 
The default performance function for feedforward 

networks is the Mean Square Error (MSE) - the aver-
age squared error between the network outputs and 
the target outputs.The stop criteria are based on the 
Mean Square Error for the validation set instead of 
that for the training set to ensure model generaliza-
tion. The average MSE was observed to have reached 
the error of 0.0042. 

The training result of the proposed feed forward 
network is displayed in Figure 4.  

 

 
 
Figure 4: Neural network training results for rhEPO 
yield in bulbs per liter of supernatant. 
 

As shown, there is a very good agreement be-
tween the experimental data and the trained ones. 
The correlation coefficient (R) is 0.958, close to 1, 
suggesting the accuracy of the network training. 
Similar values of the correlation coefficient ranging 
from 0.95 have been obtained in successful applica-
tions of neural network modeling to cell culture me-
dium optimization in the context of a bio-phar-
maceutical production process (Didier, 2008; Didier 
et al., 2009; Forno et al., 2009).  

These results are promising for further improve-
ment of the ANN and are acceptable for quantifying 
variable importance. The optimum calculated values 
of network parameters to be used in the connection 
weight method are given in Tables 2 and 3. 

 
Table 2: Input-Hidden Connection Weights. 

 
 Hidden  

1 
Hidden  

2 
Hidden  

3 
Hidden 

4 
Hidden 

 5 
Hidden 

6 
Hidden 

7 
Hidden 

8 
Hidden  

9 
Hidden 

10 
Hidden 

11 
cspr 1.1834 -0.4559 -1.5424 -1.3326 1.8806 1.5537 5.2080 -1.4968 2.4204 0.3100 -0.7291 
masasnhplc -0.1641 -1.1395 -6.1226 2.4692 2.1071 -5.2761 -5.4251 3.9285 5.8347 2.0714 -0.7815 
do280b 2.9358 0.5213 -1.6202 -2.5073 -2.1523 -0.5328 2.6329 -0.3467 -3.4046 -1.8871 5.6315 
concg25b 0.6944 -3.0041 1.1565 -2.6518 -2.6737 -3.7445 1.7374 -0.5962 -0.2978 2.1219 3.1660 
masa_vgch -2.5236 1.1302 -0.6582 -0.7584 -0.9348 -0.6585 -0.1724 -2.2712 0.7932 -1.1556 -2.0446 
rendch_b -1.5508 -2.1484 4.7661 -4.9239 -4.3216 -1.7353 6.3132 -4.1750 -1.4798 1.7401 6.3053 
masa_vgq 3.6117 0.8365 -2.0152 3.4442 5.5335 0.0546 -0.2832 2.4642 3.5945 -0.0018 2.6467 
releluq -1.5128 0.0662 -4.6685 -2.8800 -4.2641 0.1433 -6.8857 -5.0441 2.2867 0.4606 -4.6193 
recelucq 3.3886 -0.4008 -0.4751 -1.1501 3.2302 -0.7853 2.1595 3.4100 1.0116 -0.0417 1.2963 
eluq/eluq+lavq 0.0429 0.9763 -0.2705 1.5981 -1.0233 1.2912 -0.8733 -0.2075 -0.2812 -0.2847 0.2492 
rendq/ch 4.5918 4.5229 0.0315 0.2407 -1.7045 -0.2664 0.2204 -0.3274 3.4513 -0.6564 -1.0310 
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Table 3: Hidden-Output Connection Weights. 
 
 Hidden  

1 
Hidden  

2 
Hidden  

3 
Hidden 

4 
Hidden 

5 
Hidden 

6 
Hidden 

7 
Hidden 

8 
Hidden  

9 
Hidden 

10 
Hidden 

11 
rendbb/lsn 0.3047 0.1304 -0.2805 0.4239 0.5040 0.3187 0.3206 -0.0438 0.4948 1.3241 -0.1774 

 
Connection Weight Method  
 

In order to assess the relative contributions of the 
input variables in prediction of the output, the con-
nection weight method was applied. Tables 4 and 5 
show the Connection Weights Products for the neural 
network and relative importance of the input vari-
ables obtained with their rank, respectively. 

The relative contributions of the independent vari-
ables to the predictive output of the neural network 
depend primarily on the magnitude and direction of 
the connection weights. Input variables with larger 
connection weights represent greater intensities of 
signal transfer, and therefore are more important in 
the prediction process compared to variables with 
smaller weights. Negative connection weights repre-
sent inhibitory effects on neurons (reducing the in-
tensity of the incoming signal) and decrease the 
value of the predicted response, whereas positive con-
nection weights represent excitatory effects on neu-

rons (increasing the intensity of the incoming signal) 
and increase the value of the predicted response (Olden 
and Jackson, 2002). Since the Connection Weight Ap-
proach uses raw connection weights, it accounts for 
the direction of the input–hidden–output relationship 
and allows accounting for the contrasting influences 
thus resulting in the correct identification of the vari-
able contribution. This approach can thus success-
fully identify the true importance of all the variables 
in the neural network, including variables that ex-
hibit both strong and weak correlations with the re-
sponse variable (Olden et al., 2004). 

Table 5 shows that the relation of the applied 
rhEPO mass divided by the packed gel volume in the 
column of the third chromatographic step (masa_vgq) 
is ranked the first, which matchs with results 
obtained in the operation of the plant; it has been 
verified before from lab scale experiments that this 
column has a high reserve in terms of adsorption 
capacity.

 
 

Table 4: Connection Weights Products. 
 

 Hidden  
1 

Hidden  
2 

Hidden  
3 

Hidden 
4 

Hidden 
5 

Hidden 
6 

Hidden 
7 

Hidden 
8 

Hidden  
9 

Hidden 
10 

Hidden 
11 

cspr 0.3605 -0.0594 0.4327 -0.5648 0.9478 0.4952 1.6696 0.0656 1.1976 0.4105 0.1293 
masasnhplc -0.0500 -0.1486 1.7175 1.0466 1.0620 -1.6817 -1.7392 -0.1721 2.8869 2.7427 0.1386 
do280b 0.8944 0.0680 0.4545 -1.0627 -1.0847 -0.1698 0.8441 0.0152 -1.6845 -2.4987 -0.9990 
concg25b 0.2115 -0.3917 -0.3244 -1.1240 -1.3475 -1.1935 0.5570 0.0261 -0.1473 2.8096 -0.5616 
masa_vgch -0.7688 0.1474 0.1846 -0.3214 -0.4712 -0.2099 -0.0553 0.0995 0.3925 -1.5301 0.3627 
rendch_b -0.4725 -0.2802 -1.3370 -2.0870 -2.1780 -0.5531 2.0239 0.1829 -0.7322 2.3041 -1.1186 
masa_vgq 1.1003 0.1091 0.5653 1.4598 2.7888 0.0174 -0.0908 -0.1080 1.7785 -0.0024 -0.4695 
releluq -0.4609 0.0086 1.3096 -1.2207 -2.1491 0.0457 -2.2075 0.2210 1.1314 0.6099 0.8195 
recelucq 1.0324 -0.0523 0.1333 -0.4875 1.6280 -0.2503 0.6923 -0.1494 0.5005 -0.0552 -0.2300 
eluq/eluq+lavq 0.0131 0.1273 0.0759 0.6774 -0.5157 0.4116 -0.2800 0.0091 -0.1391 -0.3770 -0.0442 
rendq/ch 1.3989 0.5898 -0.0088 0.1020 -0.8591 -0.0849 0.0706 0.0143 1.7076 -0.8691 0.1829 

 
Table 5: Connection Weights method results. 

 
 Importance Rank 

Cspr 5.0846 3 
Masasnhplc 5.8027 2 
do280b -5.2234 11 
concg25b -1.4859 7 
masa_vgch -2.1700 9 
rendch_b -4.2475 10 
masa_vgq 7.1486 1 
Releluq -1.8924 8 
Recelucq 2.7619 4 
eluq/eluq+lavq -0.0418 6 
rendq/ch 2.2443 5 
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The rhEPO mass applied in the supernatant (ma-
sasnhplc) and the cell specific perfusion rate (cspr) 
ranked the second and the third, respectively, which is 
a very important result taking into account that these 
variables can be manipulated from fermentation. 

Recovery of rhEPO in the elution of the column 
(recelucq), yield of the third chromatographic step 
with regard to the second chromatographic step 
(rendq/ch) and relation between acid rhEPO mass 
and total rhEPO at the chromatographic step (eluq/ 
eluq+lavq) ranked the fourth, the fifth and the sixth, 
respectively.  

Given these results it is clear that the first chro-
matographic step and the third chromatographic step 
are decisive to get high rhEPO efficiencies in bulbs 
per liter of supernatant. Therefore, it is necessary to 
improve the control of these steps. It was decided to 
redefine three operational parameters: the in fermen-
tation area cspr variable was defined as critical pa-
rameter and the in purification area masa_vgch and 
masa_vgq variables were defined as key parameters. 

The following variables show negative values in 
Table 5: concg25b (rhEPO concentration at the elution 
of the second column of the first chromatographic 
step), releluq (relation of the optical density at 280 
nm divided by the optical density at 260 nm of eluted 
stream in the column of the third chromatographic 
step), masa_vgch (relation of the rhEPO mass ap-
plied divided by the packed gel volume in the first col-
umn of the second chromatographic step), rendch_b 
(yield of the second chromatographic step with re-
gard to the first chromatographic step) and do280b 
(optical density at 280 nm at the outlet of the first 
column). This result may be influenced by the great 
variability of these variables during the studied 
campaign. 

Although the connection weight method suffers 
from some drawbacks, particularly when a high de-
gree of interaction between predictor variables can 
be expected, it could be used in the model-building 
stage to help reduce the complexity of the model by 
suggesting the elimination of variables which either 
do not significantly impact the output variable or 
whose impact could be assessed by an input variable 
already in the model. In this regard the results ob-
tained in this preliminary study have given useful 
information for further research. In order to improve 
the ANN performance, input variables are being pre-
processed, using the Principal Components Analysis 
technique, before they are fed to the backpropagated 
ANN. More data is being gathered as well, so as to 
get an independent test set which was not used in 
both the training and validation process. In this way, 
the generalization capabilities of the developed neural 

network may be investigated for further simulation 
purposes. 
 
 

CONCLUSION 
 

In the present study, the possibilities of neural 
network modelling to gain knowledge about the pu-
rification process in rhEPO production were ex-
plored with satisfactory results. An ANN model was 
developed to predict the rhEPO yield in bulbs per 
liter of supernatant for the purification section as a 
function of eleven operational variables. The ANN 
model performed very well in the training and vali-
dation phases, and was very effective to capture most 
of the important patterns related to four chroma-
tographic purification steps. The connection weight 
method was used for quantifying the importance of 
the variables and its application showed five input 
variables to be predominant over the others. These 
results provided useful information showing that the 
first chromatographic step and the third chroma-
tographic step are decisive to get high rhEPO yields 
in bulbs per liter of supernatant, thus enriching the 
control strategy of the plant. The fairly good results 
obtained indicate that ANNs are promising tools not 
only in modelling of the EPO purification process, 
but also in providing insight from the learned rela-
tionship, which assist the modeller in understanding 
the process under investigation, as well as in evalua-
tion of the model. Given the usefulness of the results 
obtained with this preliminary neural network mod-
elling, improvement of the model will be the focus of 
future research. 
 
 

NOMENCLATURE 
 
ANN Artificial Neural Networks 
CHO Chinese Hamster Ovary 
concg25b rhEPO concentration at the elution 

of the second column 
cspr Cell specific perfusion rate 
do280b Optical density at 280 nm at the 

elution of the first column 
eluq/eluq+lavq Relation of the acid rhEPO mass 

divided by the total rhEPO at the 
chromatographic step 

EPO Erythropoietin 
h  Total number of hidden nodes 
HPLC-RP High Performance Liquid 

Chromatography in Reverse Phase  
masasnhplc rhEPO mass in the supernatant 

applied 
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masa_vgch Relation of the rhEPO mass applied 
divided by the packed gel volume in 
the column 

masa_vgq Relation between the rhEPO mass 
applied and packed gel volume in 
the column 

MSE Mean Square Error 
R Correlation coefficient 
recelucq Recovery of rhEPO in the elute of 

the column 
releluq Relation of the optical density at 280 

nm divided by the optical density at 
260 nm of the eluted stream in the 
column 

rendch_b Yield of the second chromatographic 
step with regard to the first 
chromatographic step 

rendq/ch Yield of the third chromatographic 
step with regard to the second 
chromatographic step 

rhEPO Recombinant Human Erythropoietin
RI Relative importance of the input 

variable I 
WH_O Weight of the connection between 

hidden node H and output node 
WI_H Weight of the connection between 

input node I and hidden node H 
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