Acessibilidade / Reportar erro

Carbon footprint of Brazilian cocoa produced in Pará state

Pegada de carbono do cacau brasileiro produzido no estado do Pará

Abstract

Pará is the main cocoa producing state in Brazil. To provide a comprehensive picture of the carbon cootprint from cocoa production (conventional and organic cultivation systems in Brazilian Trans-Amazon and Xingu regions), the Greenhouse Gas (GHG) Protocol methodology was used to calculate greenhouse gas emissions with a focus on the impact of climate changes. The carbon footprint was calculated based on original data collected in the conventional and organic cocoa cultivation of the Trans-Amazon and Xingu regions in the State of Pará. The harvesting, fermentation and drying steps were analyzed, with data collection in nine farms, three of each type of agricultural production: conventional; organic; and organic-fairtrade. The fruit is harvested manually, the husk is left at the field for natural fertilization without composting. The small amount of inputs, such as herbicides, insecticides and fertilizers, are used only on farms with cocoa conventional production. Eliminating the use of nitrogen fertilizers and implementing an efficient method of composting without the emission of methane in the air, the carbon footprint will be only 2.01 kg CO2 eq./kg cocoa, i.e., total reduction of 81%.

Keywords:
Sustainability; Organic; Greenhouse gases; Fairtrade; Composting; Certification

Resumo

Pará é o principal estado produtor de cacau do Brasil. Para fornecer uma imagem abrangente da Pegada de Carbono do cacau produzido nas regiões Transamazônica e Xingu do estado do Pará, foi utilizada a metodologia do protocolo Green House Gas para calcular as emissões de gases de efeito estufa, com enfoque no impacto das mudanças climáticas. A Pegada de Carbono foi calculada com base em dados originais coletados nos cultivos de cacau convencional e orgânico nessas regiões. Foram analisadas as etapas de colheita, fermentação e secagem, com coleta de dados em nove fazendas, três de cada tipo de produção agrícola: convencional, orgânica e orgânica-fairtrade. A fruta é colhida manualmente, sendo a casca deixada no campo para fertilização natural, sem compostagem. A pequena quantidade de insumos, como herbicidas, inseticidas e fertilizantes, é usada apenas em fazendas com produção convencional de cacau. Eliminando o uso de fertilizantes nitrogenados e implementando um método eficiente de compostagem sem emissão de metano no ar, a Pegada de Carbono seria de apenas 2,01 kg CO2 eq./kg de cacau, uma redução total de 81%.

Palavras-chave:
Sustentabilidade; Orgânico; Gases de efeito estufa; Comércio justo; Compostagem; Certificação

1 Introduction

Cocoa cultivation is an agricultural activity of great economic and social importance for the tropical climate, which is hot and humid, and according to Franco et al. (2019)Franco, L. B., Almeida, C. D. G. C., Freire, M. M., Franco, G. B., & Silva, S. A. (2019). Rainfall zoning for cocoa growing in Bahia State (Brazil) using fuzzy logic. Engenharia Agrícola, 39(spe), 48-55. http://dx.doi.org/10.1590/1809-4430-eng.agric.v39nep48-55/2019
http://dx.doi.org/10.1590/1809-4430-eng....
and Reay (2019)Reay, D. (2019). Climate-smart food. Cham: Springer. http://dx.doi.org/10.1007/978-3-030-18206-9.
http://dx.doi.org/10.1007/978-3-030-1820...
, the climatic needs and also its changes limit the expansion of the area cultivated with this crop worldwide.

According to the International Cocoa Organization (International Cocoa Organization, 2019), Brazil is the seventh largest producer of cocoa and ranks fifth in processing/cocoa grinding to obtain the main derivatives used by the chocolate industry (liquor/cocoa mass and cocoa butter).

Brazil is a country that has the entire production of the cocoa-chocolate chain, with projects to address cocoa sustainability, such as the CocoaAction (that is an initiative of the World Cocoa Foundation) and the implementation of labels/certifications (such as the Organic and Fairtrade) for sustainable cultivation (Chiapetti et al., 2020Chiapetti, J., Rocha, R. B., Conceição, A. S., Baiardi, A., Szerman, D., & VanWey, L. (2020). Panorama of cocoa cultivation in the Southern Coastal Territory of Bahia 2015-2019 (112 p.). Ilhéus: Floresta Viva Institute. Retrieved in 2021, June 08, from https://www.worldcocoafoundation.org/initiative/cocoaaction-brasil-en/.
https://www.worldcocoafoundation.org/ini...
; Silva et al., 2017Silva, A. R. A., Bioto, A. S., Efraim, P., & Queiroz, G. C. (2017). Impact of sustainability labeling in the perception of sensory quality and purchase intention of chocolate consumers. Journal of Cleaner Production, 141, 11-21. http://dx.doi.org/10.1016/j.jclepro.2016.09.024
http://dx.doi.org/10.1016/j.jclepro.2016...
; Queiroz, 2014Queiroz, G. C. (2014). Sustentabilidade e transparência. In: G. C. Queiroz, A. R. Rego & D. C. P. Jardim (Eds.), Brasil bakery & confectionery trends 2020 (Chap. 8, pp. 233-257). Campinas: ITAL. Retrieved in 2021, June 08, from https://alimentosprocessados.com.br/arquivos/Consumo-tendencias-e-inovacoes/Brasil-Bakery-&-Confectionery-Trends-2020.pdf.
https://alimentosprocessados.com.br/arqu...
).

Figure 1 shows the world production of cocoa beans from 2003/2004 to 2016/2017 (in 1,000 tons, Y axis), with approximately 4,552.000 tons of total world production in 2016/2017 (Statista, 2018Statista. (2018). Production of cocoa beans from 2003/2004 to 2016/2017, by region (in 1,000 tons). Retrieved in 2018, March 20, from https://www.statista.com/statistics/263139/production-of-cocoa-beans-since-2003-by-region/.
https://www.statista.com/statistics/2631...
).

Figure 1
World production of cocoa beans from 2003/2004 to 2016/2017 (in 1,000 tons). Source: Statista (2018)Statista. (2018). Production of cocoa beans from 2003/2004 to 2016/2017, by region (in 1,000 tons). Retrieved in 2018, March 20, from https://www.statista.com/statistics/263139/production-of-cocoa-beans-since-2003-by-region/.
https://www.statista.com/statistics/2631...
.

Figure 2 shows how cocoa production has increased in Brazil over the years, mainly due to the state of Pará, which became the first national cocoa producer owing to its increased productivity in recent years (Nunes, 2021Nunes, A. (2021). Pará lidera produção nacional de cacau pelo segundo ano consecutivo. Retrieved in 2021, June 08, from https://agenciapara.com.br/noticia/24646/.
https://agenciapara.com.br/noticia/24646...
; Mercado do Cacau, 2015Mercado do Cacau. (2015). Produção brasileira de cacau em 2015. Retrieved in 2018, March 20, from http://mercadodocacau.com/artigo/producao-brasileira-de-cacau-em-2015.
http://mercadodocacau.com/artigo/produca...
).

Figure 2
Cocoa production in Brazil over the years 2006-2020 (in 1,000 tons). Source: Nunes (2021)Nunes, A. (2021). Pará lidera produção nacional de cacau pelo segundo ano consecutivo. Retrieved in 2021, June 08, from https://agenciapara.com.br/noticia/24646/.
https://agenciapara.com.br/noticia/24646...
; Mercado do Cacau (2015)Mercado do Cacau. (2015). Produção brasileira de cacau em 2015. Retrieved in 2018, March 20, from http://mercadodocacau.com/artigo/producao-brasileira-de-cacau-em-2015.
http://mercadodocacau.com/artigo/produca...
.

More than 90% of the cocoa extracted from Pará comes from family farming, small and medium sized crops of 10 to 50 hectares, and performance is associated with the preservation characteristics of cocoa production in agroforestry systems (Globo Rural, 2019Globo Rural. (2019). Pará retoma liderança na produção brasileira de cacau, com a união de agricultores. Retrieved in 2021, June 11, from https://g1.globo.com/economia/agronegocios/globo-rural/noticia/2019/11/03/lideranca-na-producao-brasileira-de-cacau-volta-para-casa-no-para-com-a-uniao-de-agricultores.ghtml.
https://g1.globo.com/economia/agronegoci...
; Mendes, 2014Mendes, F. A. T. (2014). O estado do Pará e a produção brasileira de cacau. Brasília: Ministério da Agricultura, Pecuária e Abastecimento. Retrieved in 2018, March 20, from http://www.ceplacpa.gov.br/site/?p=3009.
http://www.ceplacpa.gov.br/site/?p=3009...
). Albrecht & Kandji (2003)Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 99(1-3), 15-27. http://dx.doi.org/10.1016/S0167-8809(03)00138-5
http://dx.doi.org/10.1016/S0167-8809(03)...
could define “agroforestry as any land-use system that involves the deliberate retention, introduction or mixture of trees on other woody perennials with agricultural crops, pastures and/or livestock to exploit the ecological and economic interactions of the different components”.

The state of Pará has about 30,000 producers distributed in 29 municipalities, which produce cocoa in conventional and organic cropping systems. Four cooperatives operate in the organic system, with approximately 150 families involved in the production of organic cocoa (Nunes, 2021Nunes, A. (2021). Pará lidera produção nacional de cacau pelo segundo ano consecutivo. Retrieved in 2021, June 08, from https://agenciapara.com.br/noticia/24646/.
https://agenciapara.com.br/noticia/24646...
, Globo Rural, 2019Globo Rural. (2019). Pará retoma liderança na produção brasileira de cacau, com a união de agricultores. Retrieved in 2021, June 11, from https://g1.globo.com/economia/agronegocios/globo-rural/noticia/2019/11/03/lideranca-na-producao-brasileira-de-cacau-volta-para-casa-no-para-com-a-uniao-de-agricultores.ghtml.
https://g1.globo.com/economia/agronegoci...
).

A survey carried out in 2019 by the Brazilian Council for Organic and Sustainable Production pointed out that the main reason cited for the consumption of organic products was health (84%), followed by the environment (9%), thus highlighting the consumer’s relationship with the organic product not using chemical products and, therefore, presenting less possibility of risks to their health and the environment (ORGANIS, 2019ORGANIS. (2019). Panorama do consumo de orgânicos no Brasil 2019. Retrieved in 2021, June 08, from https://organis.org.br/pesquisa-consumidor-organico-2019/.
https://organis.org.br/pesquisa-consumid...
).

Ecologically sustainable, economically viable and socially fair production foods is the definition associated with the Organic system, i.e., capable of integrating man into the environment (Santos & Monteiro, 2008Santos, G. C., & Monteiro, M. (2008). Organic system of food production. Alimentos e Nutrição Araraquara, 15(1), 73-86.).

Some farms in Pará produce cocoa under Organic and Fairtrade certified systems. Fairtrade is an organized social movement that assists producers in developing countries to promote sustainability through fair trading practices and fair price payments, following environmental standards and improving social and social conditions, local economic infrastructure Gruenwald (2009 as cited in Queiroz, 2014Queiroz, G. C. (2014). Sustentabilidade e transparência. In: G. C. Queiroz, A. R. Rego & D. C. P. Jardim (Eds.), Brasil bakery & confectionery trends 2020 (Chap. 8, pp. 233-257). Campinas: ITAL. Retrieved in 2021, June 08, from https://alimentosprocessados.com.br/arquivos/Consumo-tendencias-e-inovacoes/Brasil-Bakery-&-Confectionery-Trends-2020.pdf.
https://alimentosprocessados.com.br/arqu...
).

To provide a comprehensive picture of the Carbon Footprint from cocoa produced in the state of Pará (conventional and organic cultivation systems in Brazilian Trans-Amazon and Xingu regions) the GHG Protocol methodology was used to calculate greenhouse gases emissions (GHG) with a focus on impact of climate changes. The Carbon Footprint is a measure of the amount of carbon dioxide and other greenhouse gases emitted over the life cycle of a process or product. Emissions equivalent of carbon dioxide (CO2 eq.) is the unity of measurement of Carbon Footprint (Wiedmann & Minx, 2008Wiedmann, T., & Minx, J. (2008). A definition of 'carbon footprint'. In C. C. Pertsova (Ed.), Ecological economics research trends (Chap. 1, pp. 1-11). Hauppauge: Nova Science Publishers. Retrieved in 2021, June 11, from https://www.researchgate.net/publication/247152314_A_Definition_of_Carbon_Footprint/link/00b7d52b42ae1d9583000000/download.
https://www.researchgate.net/publication...
).

Some studies have shown similarity to the subject of analyze the environmental impacts in different cultivation systems. Ortiz-R et al. (2014)Ortiz-R, O. O., Villamizar-Gallardo, R. A., & Rangel, J. M. (2014). Applying life cycle management of Colombian cocoa production. Food Science and Technology, 34(1), 62-68. http://dx.doi.org/10.1590/S0101-20612014005000006
http://dx.doi.org/10.1590/S0101-20612014...
studied the Colombian cocoa production and aimed to assess and implement sustainability in agriculture, recommending agricultural practices based on Von Wirén-Lehr (2001 as cited in Ortiz-R et al., 2014). Ntiamoah & Afrane (2008)Ntiamoah, A., & Afrane, G. (2008). Environmental impacts of cocoa production and processing in Ghana: life cycle assessment approach. Journal of Cleaner Production, 16(16), 1735-1740. http://dx.doi.org/10.1016/j.jclepro.2007.11.004
http://dx.doi.org/10.1016/j.jclepro.2007...
studied the production and processing of Ghanaian cocoa, with the aim of providing comprehensive view of the environmental impacts associated with cocoa production and processing through the application of Life Cycle Assessment (LCA) methodology. Gateau et al. (2012)Gateau, L., Tran, T., Gattward, J., & Bastide, P. (2012). Avaliação ambiental por análise de ciclo de vida da cadeia do cacau brasileiro exportado para França. In Ministério da Agricultura, Pecuária e Abastecimento (Org.), 3º Congresso Brasileiro do Cacau – Inovação Tecnológica para o Brasil Liderar a Produção Mundial de Cacau. Brasília: CPLAC. aimed to adapt the LCA methodology to the production chain of cocoa from Bahia (Brazil) exported to a chocolatier in France, evaluating and comparing the environmental impact by LCA in four cultivation systems.

Figure 3 shows the comparison of the Carbon Footprint (emissions of Greenhouse Gas – GHG) of food products (Miah et al., 2018Miah, J. H., Griffiths, A., McNeill, R., Halvorson, S., Schenker, U., Espinoza-Orias, N. D., Morse, S., Yang, A., & Sadhukhan, J. (2018). Environmental management of confectionery products: life cycle impacts and improvement strategies. Journal of Cleaner Production, 177, 732-751. http://dx.doi.org/10.1016/j.jclepro.2017.12.073
http://dx.doi.org/10.1016/j.jclepro.2017...
).

Figure 3
Carbon Footprint of food products. Source: (1) = Jungbluth & Konig (2014), (2) =Espinoza-Orias et al. (2011)Espinoza-Orias, N., Stichnothe, H., & Azapagic, A. (2011). The carbon footprint of bread. The International Journal of Life Cycle Assessment, 16(4), 351-365. http://dx.doi.org/10.1007/s11367-011-0271-0
http://dx.doi.org/10.1007/s11367-011-027...
, (3) = Fusi et al. (2016), (4) = Rivera et al. (2014), (5) = Lescot (2012)Lescot, T. (2012). Carbon footprint analysis in banana production. Paris: Cirad. Retrieved in 2021, June 08, from http://www.fao.org/fileadmin/templates/banana/documents/WGs_outputs/WG01/Carbon_Footprint_study_on_banana_Final_Oct12.pdf.
http://www.fao.org/fileadmin/templates/b...
, (6) = Beauchemin et al. (2010), (7) = Konstantas et al. (2019), (8) = Nilsson et al. (2011), (9) = Santos Junior et al. (2017), (10) = Recanati et al. (2018 as cited in Miah et al., 2018Miah, J. H., Griffiths, A., McNeill, R., Halvorson, S., Schenker, U., Espinoza-Orias, N. D., Morse, S., Yang, A., & Sadhukhan, J. (2018). Environmental management of confectionery products: life cycle impacts and improvement strategies. Journal of Cleaner Production, 177, 732-751. http://dx.doi.org/10.1016/j.jclepro.2017.12.073
http://dx.doi.org/10.1016/j.jclepro.2017...
).

Miah et al. (2018)Miah, J. H., Griffiths, A., McNeill, R., Halvorson, S., Schenker, U., Espinoza-Orias, N. D., Morse, S., Yang, A., & Sadhukhan, J. (2018). Environmental management of confectionery products: life cycle impacts and improvement strategies. Journal of Cleaner Production, 177, 732-751. http://dx.doi.org/10.1016/j.jclepro.2017.12.073
http://dx.doi.org/10.1016/j.jclepro.2017...
calculated a Carbon Footprint of 5.30 and 6.77 kg CO2 eq./kg milk and dark chocolate confectionery, respectively. Cocoa production is the most important phase of chocolate life cycle, as Konstantas et al. (2018)Konstantas, A., Jeswani, H. K., Stamford, L., & Azapagic, A. (2018). Environmental impacts of chocolate production and consumption in the UK. Food Research International, 106, 1012-1025. PMid:29579893. http://dx.doi.org/10.1016/j.foodres.2018.02.042
http://dx.doi.org/10.1016/j.foodres.2018...
stated: “all the studies also found that the cultivation of cocoa beans was the main environmental hotspot followed by chocolate manufacturing and packaging”. The contribution analysis shows that production of raw materials is the main hotspot, accounting for 67% to 81% of the total impact (the Carbon Footprint varies between 2.91 and 4.15 kg CO2 eq./kg chocolate) (Konstantas et al., 2018Konstantas, A., Jeswani, H. K., Stamford, L., & Azapagic, A. (2018). Environmental impacts of chocolate production and consumption in the UK. Food Research International, 106, 1012-1025. PMid:29579893. http://dx.doi.org/10.1016/j.foodres.2018.02.042
http://dx.doi.org/10.1016/j.foodres.2018...
). Recanati et al. (2018)Recanati, F., Marveggio, D., & Dotelli, G. (2018). From beans to bar: a life cycle assessment towards sustainable chocolate supply chain. The Science of the Total Environment, 613–614, 1013-1023. PMid:28946374. http://dx.doi.org/10.1016/j.scitotenv.2017.09.187
http://dx.doi.org/10.1016/j.scitotenv.20...
calculated 2.62 kg CO2 eq./kg chocolate with 60% of this emission due to the cocoa production (1.55 kg CO2 eq. / 590 g cocoa). Neira (2016)Neira, D. P. (2016). Energy sustainability of Ecuadorian cacao export and its contribution to climate change. A case study through product life cycle assessment. Journal of Cleaner Production, 112, 2560-2568. http://dx.doi.org/10.1016/j.jclepro.2015.11.003
http://dx.doi.org/10.1016/j.jclepro.2015...
calculated 2.49 – 2.82 kg CO2 eq./kg chocolate (pure, 100% cocoa), with 66% of this emission due to the cocoa production (1.63 – 1.96 kg CO2 eq./kg cocoa).

So, this study aimed to calculate the Carbon Footprint, based on data collected during the growing, fermentation and drying of cocoa in the Trans-Amazon and Xingu regions in the state of Pará, as well as the potential that each types of cultivation system (conventional and organic) contributes to the reduction of the Carbon Footprint.

2 Materials and methods

To calculate the Carbon Footprint, the study was based on the 2006 IPCC – Intergovernmental Panel on Climate Change (Riitta et al., 2006Riitta, P., Sharma, C., & Yamada, M. (2006). Waste generation, composition and management data. In Intergovernmental Panel on Climate Change – IPCC (Org.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 5, Chap. 2, 23 p.). Geneva: IPCC. Retrieved in 2021, June 10, from https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_2_Ch2_Waste_Data.pdf.
https://www.ipcc-nggip.iges.or.jp/public...
, Riitta & Svardal, 2006Riitta, P. & Svardal, P. (2006). Solid waste disposal. In Intergovernmental Panel on Climate Change – IPCC (Org.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 5, Chap. 3, 40 p.). Geneva: IPCC. Retrieved in 2021, June 10, from https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf.
https://www.ipcc-nggip.iges.or.jp/public...
, Queiroz & Garcia, 2010Queiroz, G. C., & Garcia, E. E. C. (2010). Política nacional de resíduos sólidos – o impacto da nova lei contra o aquecimento global. Boletim de Tecnologia e Desenvolvimento de Embalagens, 22(3), 1-4., Yokote, 2003Yokote, A. Y. (2003). Inventário do ciclo de vida da distribuição de energia elétrica no Brasil (Master thesis) São Paulo University, São Paulo., GHG Protocol, 2016GHG Protocol. FGV EAESP. (2016). Nota Técnica: equação para cálculo das emissões de N2O provenientes do uso de fertilizante nitrogenado sintético – versão 1.0. São Paulo: FGV EAESP. Retrieved in 2021, June 15, from http://mediadrawer.gvces.com.br/ghg/original/ghg-protocol_nota-tecnica_equacao_fertilizante_sintetico_v1.pdf.
http://mediadrawer.gvces.com.br/ghg/orig...
). The GHG Protocol (2006) Corporate Standard provides standards and guidance for companies and other organizations to prepare an inventory of greenhouse gases emissions. It covers the accounting and reporting of the six greenhouse gases covered by the Kyoto Protocol — carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulphur hexafluoride (SF6).

Climate Change Impact Method - CML 2000 (Global Warming Potential - GPW 100) is the reference to calculate the emissions of carbon dioxide equivalent (CO2 eq.). Conversions of CO2 released into the atmosphere have the following ratios: CH4:CO2 (25:1); CO2:CO2 (1:1); N2O:CO2 (298:1).

Data collected from nine farms in Brazilian Amazon were the basis to all calculations and tables were generated using Microsoft Excel. Not all the questions asked in the survey applied to the nine farms were answered (such as liters of water and electricity for washing recipients), because the farmers could not provide some of the data, however, the lack of this data did not prevent calculations for the Carbon Footprint. It is noteworthy that despite the nine farms do not use water for irrigation, this is a wish of the majority of farmers visited.

In addition to the data collected on the farms, some "conversions" in the mass balances of cocoa growing, fermentation and drying were calculated. To calculate the percentage of mass losses and emissions released during the fermentation, drying and growing steps, the averages based on 10 cocoa varieties studied by Efraim (2009)Efraim, P. (2009). Contribuição à melhoria de qualidade de produtos de cacau no Brasil, por meio da caracterização de derivados de cultivares resistentes à vassoura-de-bruxa e de sementes danificadas pelo fungo (Tese de doutorado). Faculdade de Engenharia de Alimentos, Campinas. were used.

The scope is the calculation of the Carbon Footprint, within the system boundary (which are the fermentation, drying and growing steps) and with the following functional unit: results expressed in 1,000 kg of cocoa ready for commercialization.

Data were calculated for 1,000 kg (1 t is the functional unit) of cocoa produced, equivalent to 16 bags of 60 kg for the year 2014. For 1,000 kg of cocoa, 19.233 units (un) of cocoa pod were harvested, containing 2,959 kg of soft cacao (808 seeds × 3.663 g / seed ≈ 1,681 kg of fermented beans) (Efraim, 2009Efraim, P. (2009). Contribuição à melhoria de qualidade de produtos de cacau no Brasil, por meio da caracterização de derivados de cultivares resistentes à vassoura-de-bruxa e de sementes danificadas pelo fungo (Tese de doutorado). Faculdade de Engenharia de Alimentos, Campinas.). The cocoa pod was harvested manually and broken open with machetes. During harvest, the husk and the placenta were separated. The placenta was manually separated from the cocoa seeds surrounded by pulp. The fermentation used the cocoa seeds surrounded by pulp. The husk was left in the field as fertilizer.

The ideal would be to implement composting of the husk (rich in potassium) to allow the reduction of methane emission, which has a negative impact on global warming (climate changes). In relation to methane (CH4) emissions, 2006 IPCC is the reference to estimate the emissions of this gas from the disposal of the husk in the field (Riitta et al., 2006Riitta, P., Sharma, C., & Yamada, M. (2006). Waste generation, composition and management data. In Intergovernmental Panel on Climate Change – IPCC (Org.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 5, Chap. 2, 23 p.). Geneva: IPCC. Retrieved in 2021, June 10, from https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_2_Ch2_Waste_Data.pdf.
https://www.ipcc-nggip.iges.or.jp/public...
; Riitta & Svardal, 2006Riitta, P. & Svardal, P. (2006). Solid waste disposal. In Intergovernmental Panel on Climate Change – IPCC (Org.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 5, Chap. 3, 40 p.). Geneva: IPCC. Retrieved in 2021, June 10, from https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf.
https://www.ipcc-nggip.iges.or.jp/public...
; Queiroz & Garcia, 2010Queiroz, G. C., & Garcia, E. E. C. (2010). Política nacional de resíduos sólidos – o impacto da nova lei contra o aquecimento global. Boletim de Tecnologia e Desenvolvimento de Embalagens, 22(3), 1-4.) - see Equation 1.

L o = W * D O C * D O C f * M C F * F * 16 / 12 (1)

Where:

Lo - CH4 generation potential, kg CH4

W – mass of waste deposited, kg

DOC - Degradable Organic Carbon (content in % of wet waste = 20%);

DOCf – Fraction of DOC that can decompose (50% IPCC recommended default value);

MCF – Methane (CH4) Correction Factor for aerobic decomposition (50% - semi aerobic management);

F – Fraction of CH4 (50% IPCC default);

16/12 – molecular weight ratio – methane/carbon.

Then (Equation 2):

L o = W * 0.2 x 0.5 x 0.5 x 0.5 x 16 / 12 = 0.033 k g C H 4 / k g w a s t e * W k g w a s t e (2)

Regarding the nitrogen fertilizer, GHG Protocol (2016)GHG Protocol. FGV EAESP. (2016). Nota Técnica: equação para cálculo das emissões de N2O provenientes do uso de fertilizante nitrogenado sintético – versão 1.0. São Paulo: FGV EAESP. Retrieved in 2021, June 15, from http://mediadrawer.gvces.com.br/ghg/original/ghg-protocol_nota-tecnica_equacao_fertilizante_sintetico_v1.pdf.
http://mediadrawer.gvces.com.br/ghg/orig...
is the reference to calculate the emission of N2O (EN2O) – see Equation 3.

E N 2 O k g o f N 2 O = N F E R T * F E (3)

Where:

NFERT – mass of Nitrogen fertilizer, kg

EF– Emission Factor = 0.0275 Ministério da Ciência, Tecnologia e Inovação (2010 as cited in GHG Protocol, 2016GHG Protocol. FGV EAESP. (2016). Nota Técnica: equação para cálculo das emissões de N2O provenientes do uso de fertilizante nitrogenado sintético – versão 1.0. São Paulo: FGV EAESP. Retrieved in 2021, June 15, from http://mediadrawer.gvces.com.br/ghg/original/ghg-protocol_nota-tecnica_equacao_fertilizante_sintetico_v1.pdf.
http://mediadrawer.gvces.com.br/ghg/orig...
)

Moreover, according to Yokote (2003)Yokote, A. Y. (2003). Inventário do ciclo de vida da distribuição de energia elétrica no Brasil (Master thesis) São Paulo University, São Paulo. the emission factor for the diesel is 3.39 CO2 eq./L of diesel.

3 Results and discussion

Figure 4 shows the flowchart of the system boundary, separated by the steps of growing, fermentation and drying, with the values of mass losses and emissions (Efraim, 2009Efraim, P. (2009). Contribuição à melhoria de qualidade de produtos de cacau no Brasil, por meio da caracterização de derivados de cultivares resistentes à vassoura-de-bruxa e de sementes danificadas pelo fungo (Tese de doutorado). Faculdade de Engenharia de Alimentos, Campinas.).

Figure 4
Flowchart of the system boundary, based on data collected in 2014, in the state of Pará, Brazil. Others* - mass reduction due to biochemical reactions that occur during fermentation.

Table 1 shows the raw data collected from the survey model applied in the three conventional farms from the state of Pará - Brazil. It is worth noting that these farms do not have certified organic or Fairtrade cocoa production.

Table 1
Raw data collected in three conventional cocoa farms from the state of Pará - Brazil.

Analyzing the raw data collected (Table 1), the average productivity was 852 kg/ha, ranging from 666 to 1,167 kg/ha.

Table 2 shows the raw data collected in the three organic farms from the state of Pará – Brazil where there is no use of herbicides, insecticides and fertilizers.

Table 2
Raw data collected in three organic cocoa farms from the state of Pará – Brazil.

Analyzing the raw data collected (Table 2), the average productivity was 879 kg/ha, ranging from 611 to 1,250 kg/ha.

Table 3 shows the raw data collected in the three organic and Fairtrade certified farms from the state of Pará – Brazil where there is no use of herbicides, insecticides and fertilizers.

Table 3
Raw data collected in three Organic-Fairtrade cocoa farms from the state of Pará - Brazil.

Analyzing the raw data collected (Table 3), the average productivity was 755 kg/ha, ranging from 600 to 1,000 kg/ha.

Analyzing the raw data collected (Tables 1-3), the average productivity was 830 kg/ha, ranging from 600 to 1,250 kg/ha (Pará – Brazil). This coincides with the variation in average Colombian cocoa productivity (Ortiz-R et al., 2014Ortiz-R, O. O., Villamizar-Gallardo, R. A., & Rangel, J. M. (2014). Applying life cycle management of Colombian cocoa production. Food Science and Technology, 34(1), 62-68. http://dx.doi.org/10.1590/S0101-20612014005000006
http://dx.doi.org/10.1590/S0101-20612014...
) where the productivity ranged from 671 to 1,000 kg/ha. Gateau et al. (2012)Gateau, L., Tran, T., Gattward, J., & Bastide, P. (2012). Avaliação ambiental por análise de ciclo de vida da cadeia do cacau brasileiro exportado para França. In Ministério da Agricultura, Pecuária e Abastecimento (Org.), 3º Congresso Brasileiro do Cacau – Inovação Tecnológica para o Brasil Liderar a Produção Mundial de Cacau. Brasília: CPLAC. found productivity from 177 to 909 kg/ha for cocoa (Bahia – Brazil). Gockowski & Sonwa (2011)Gockowski, J., & Sonwa, D. (2011). Cocoa intensification scenarios and their predicted impact on CO 2 emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environmental Management, 48(2), 307-321. PMid:21191791. http://dx.doi.org/10.1007/s00267-010-9602-3
http://dx.doi.org/10.1007/s00267-010-960...
could report a productivity of 214 kg/ha for Côte d'Ivoire and 456 kg/ha for Ghana. Considering differences in region, climate, and the incidence of diseases like “Witches’ Broom” for example, this variation is expected (Efraim, 2009Efraim, P. (2009). Contribuição à melhoria de qualidade de produtos de cacau no Brasil, por meio da caracterização de derivados de cultivares resistentes à vassoura-de-bruxa e de sementes danificadas pelo fungo (Tese de doutorado). Faculdade de Engenharia de Alimentos, Campinas.). It is interesting to note a good productivity in both organic and conventional production in this study.

Conventional cocoa farms use small amounts of herbicides, insecticides and fertilizers (organic cocoa does not use them). Nitrogen fertilizers contribute to the greenhouse effect due to N2O emissions. In a study of LCA cocoa in Ghana, these fertilizers are the main contributors to the impact on cocoa production (Ntiamoah & Afrane, 2008Ntiamoah, A., & Afrane, G. (2008). Environmental impacts of cocoa production and processing in Ghana: life cycle assessment approach. Journal of Cleaner Production, 16(16), 1735-1740. http://dx.doi.org/10.1016/j.jclepro.2007.11.004
http://dx.doi.org/10.1016/j.jclepro.2007...
). On the other hand, the use of organic fertilizers significantly contributes to the reducing of environmental impacts such as CO2 eq emissions (Ortiz-R et al., 2014Ortiz-R, O. O., Villamizar-Gallardo, R. A., & Rangel, J. M. (2014). Applying life cycle management of Colombian cocoa production. Food Science and Technology, 34(1), 62-68. http://dx.doi.org/10.1590/S0101-20612014005000006
http://dx.doi.org/10.1590/S0101-20612014...
). In this context, the importance of organic cultivation for the environment is clear. Studies have shown that nitrogen fertilizers can also cause dependence on the soil, as they kill organisms and micro-flora that contribute to soil richness and plant development (Ecycle, 2015Ecycle. (2015). O uso de fertilizantes é um problema sem solução na agricultura? Retrieved in 2018, March 20, from http://www.ecycle.com.br/component/content/article/35/1329-como-o-que-uso-fertilizantes-agricultura-emissoes-desequilibrio-efeito-estufa-problema-aquecimento-global-contaminacao-meio-ambiente.html.
http://www.ecycle.com.br/component/conte...
).

Regarding the transportation of cocoa in the field, the means used were tractor, motorcycle, animal traction and carriole, each with little or no fossil fuel.

It is also worth noting that the farms that produce cocoa with the Organic or Organic-Fairtrade labels do not sell all their products using these certifications. This makes them less profitable because they sell a part of their products as conventional cocoa. Although the value of certified products is higher, cocoa producers cannot always sell all their entire production with certification, since the sale can take longer and producers sometimes need quick cash to "pay the bills for the day".

It is also important to note that analyzed farms with Fairtrade-Organic certification sell 71% of their cocoa with certification, but farms with single Organic certification only sell 45% with certification. It can be said that the cocoa producers can sell a greater amount of cocoa using the Fairtrade system, which is mindful of economically sustainable trade and has an interest in the export market, than the single organic certification system, which has a lower commercial value in comparison.

It is noted that the farms have a total area greater than the area destined to cocoa cultivation, as shown in Tables 1-3. These farms are located in the regions of Trans-Amazon and Xingu in the state of Pará, in the middle of the Amazon rainforest, and the area that is not used for planting cocoa is associated with a preserved forest or a reforestation area with native forest.

Table 4 presents the Environmental Parameters collected of the Brazilian Cocoa produced in the state of Pará, calculated for 1,000 kg (1 ton is the functional unit) of cocoa ready for commercialization in 2014.

Table 4
Environmental Parameters - 1,000 kg of Brazilian Cocoa produced in Pará state (2014).

Table 5 shows the Carbon Footprint (GHG emissions in CO2 eq.) for the Environmental Parameters collected (Table 4).

Table 5
Carbon Footprint for the Brazilian Cocoa produced in Pará state (2014).

The Carbon Footprint results in 10,462.37 kg CO2 eq /t cocoa produced in Pará (Brazil) and, after carrying out a suitable composting process and eliminating the emission of methane, the amount of CO2 released into the atmosphere decreased to 2.59 kg CO2 eq/kg cocoa (a reduction of approximately 75%). Vervuurt (2019)Vervuurt, W. (2019). Modelling GHG emissions of cacao production at plot level in the Republic of Côte d’Ivoire (Master thesis). Environmental System Analysis and Plant Production Systems, Wageningen University & Research, Wageningen. found, on average, 3.6 kg CO2 eq./kg cocoa (Côte d'Ivoire); Neira (2016)Neira, D. P. (2016). Energy sustainability of Ecuadorian cacao export and its contribution to climate change. A case study through product life cycle assessment. Journal of Cleaner Production, 112, 2560-2568. http://dx.doi.org/10.1016/j.jclepro.2015.11.003
http://dx.doi.org/10.1016/j.jclepro.2015...
reported 1.63 - 1.96 kg CO2 eq/kg cocoa (Ecuador); Ortiz-R et al. (2016)Ortiz-R, O., Villamizar-Gallardo, R. A., Naranjo-Merino, C. A., García-Caceres, R. G., & Castañeda-Galvís, M. T. (2016). Carbon footprint of the Colombian cocoa production. Journal of the Brazilian Association of Agricultural Engineering, Jaboticabal, 36(2), 260-270. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n2p260-270/2016
http://dx.doi.org/10.1590/1809-4430-Eng....
calculated 2.89 kg CO2 eq./kg cocoa (Colombia); Ntiamoah & Afrane (2008 as cited in Ortiz-R et al., 2016Ortiz-R, O., Villamizar-Gallardo, R. A., Naranjo-Merino, C. A., García-Caceres, R. G., & Castañeda-Galvís, M. T. (2016). Carbon footprint of the Colombian cocoa production. Journal of the Brazilian Association of Agricultural Engineering, Jaboticabal, 36(2), 260-270. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n2p260-270/2016
http://dx.doi.org/10.1590/1809-4430-Eng....
) found 3.22 kg CO2 eq./kg cocoa (Ghana). Ortiz-R et al. (2016)Ortiz-R, O., Villamizar-Gallardo, R. A., Naranjo-Merino, C. A., García-Caceres, R. G., & Castañeda-Galvís, M. T. (2016). Carbon footprint of the Colombian cocoa production. Journal of the Brazilian Association of Agricultural Engineering, Jaboticabal, 36(2), 260-270. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n2p260-270/2016
http://dx.doi.org/10.1590/1809-4430-Eng....
could report that, without an adequate composting process of the husk, the Carbon Footprint rises to 8.89 kg CO2 eq./kg cocoa (Colombia), very close to 10.46 kg CO2 eq./kg cocoa calculated in the present study. Bockel et al. (2021)Bockel, L., Gopal, P., & Ouédraogo, S. A. (2021). Preliminary impact appraisal of cocoa value chain rehabilitation in Ghana: 2018–2028. Accra: FAO/COCOBOD. https://doi.org/10.4060/cb3176en.
https://doi.org/10.4060/cb3176en...
highlighted the importance to the Food and Agriculture Organization (FAO) of the United Nations for agroforestry and sustainable Research & Development projects to decrease the Carbon Footprint. In addition, Myers (2020)Myers, A. (2020). Barry Callebaut reduces its carbon footprint by -8.1% as sustainability targets remain on track. Retrieved in 2021, March 15, from https://www.confectionerynews.com/Article/2020/12/07/Barry-Callebaut-reduces-its-carbon-footprint-by-8.1-as-sustainability-targets-remain-on-track?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright.
https://www.confectionerynews.com/Articl...
reported that Barry Callebaut, an important player in the cocoa processing sector, reduced its Carbon Footprint from 3.93 to 3.65 kg CO2 eq./kg cocoa from 2019 to 2020 linked to sustainability targets.

Based on the total world production 2016/2017 (Figure 1) and the CO2 eq./t cocoa calculated in this study, the world Carbon Footprint of the cocoa beans production would be approximately 4.8x1010 kg CO2 eq. By eliminating the emission of methane, after performing an appropriate composting process, the amount of CO2 released into the atmosphere decreased to 1.2x1010 kg CO2 eq (75% of reduction = 3.6x1010 kg CO2 eq).

It is important to note that cocoa cultivation, in a production cycle of 40 years, fixes the carbon in the soil maintaining a stock of approximately 90 t C/ha from year 25 to 40 with a sequestration rate of approximately 3.6 t C/ha from year 1 to 25 (Gockowski & Sonwa, 2011Gockowski, J., & Sonwa, D. (2011). Cocoa intensification scenarios and their predicted impact on CO 2 emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environmental Management, 48(2), 307-321. PMid:21191791. http://dx.doi.org/10.1007/s00267-010-9602-3
http://dx.doi.org/10.1007/s00267-010-960...
).

Jacobi et al. (2014)Jacobi, J., Andres, C., Schneider, M., Pillco, M., Calizaya, P., & Rist, S. (2014). Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agroforestry Systems, 88(6), 1117-1132. http://dx.doi.org/10.1007/s10457-013-9643-8
http://dx.doi.org/10.1007/s10457-013-964...
could state that:

  • total carbon stock in simple agroforestry systems was about 128 t C/ha (about 60 t C/ha in soil, 35 t C/ha in shade trees and the difference in biomass below ground);

  • monoculture stored significantly less carbon (about 86 t C/ha with about 55 t C/ha in soil, 2 t C/ha in shade trees and the difference in biomass below ground);

  • organic farming practices in general and agroforestry in particular were often seen as having greater potential for carbon sequestration than common agricultural practices and were also often seen as making positive contributions to agrobiodiversity and natural biodiversity.

Albrecht & Kandji (2003)Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 99(1-3), 15-27. http://dx.doi.org/10.1016/S0167-8809(03)00138-5
http://dx.doi.org/10.1016/S0167-8809(03)...
concluded that perennial systems like agroforests can store and conserve considerable amounts of carbon in living biomass and in wood products. Carbon sequestration in soils is also relevant by implementing agroforestry practices (around 95 t C/ha in soil and biomass).

It is worth noting that the Carbon Footprint was calculated with a focus only on the data collected on the farms surveyed in that specific year, not considering other emissions or temporality (Bessou et al., 2014Bessou, C., Basset-Mens, C., Latunussa, C., Vélu, A., Heitz, H., Vanniere, H., & Caliman, J. P. (2014). LCA of perennial crops: implications of modeling choices through two contrasted case studies. In R. Schenck & D. Huizenga (Eds.), Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014). Vashon: ACLCA.).

Other important fact is the possibility of obtaining carbon credits (1,2 U$/t CO2 eq), which could even help to pay for "solar compost bins" to the "family farmers". Other source of funds to finance the development and availability of these "solar compost bins" for the small family farms would be the chocolate industry and/or industries that uses certified cocoa/chocolate and/or “reduced Carbon Footprint chocolate/cocoa” (Kimura et al., 2010Kimura, A., Wada, Y., Kamada, A., Masuda, T., Okamoto, M., Goto, S., Tsuzuki, D., Cai, D., Oka, T., & Dan, I. (2010). Interactive effects of carbon footprint information and its accessibility on value and subjective qualities of food products. Appetite, 55(2), 271-278. PMid:20600412. http://dx.doi.org/10.1016/j.appet.2010.06.013
http://dx.doi.org/10.1016/j.appet.2010.0...
).

If the chocolate industry e/or industries that uses chocolate started to use a Self-Declaration Environmental label indicating the Carbon Footprint reduction on their product package, they would add value to the product and promote Sustainable Development, and possibly increase sales to the "more sustainable consumers" who cares about a lower impact of the product in the environment (greenhouse effect), also improving the incomes of these family farmers.

4 Conclusions

Environmental impact assessment methods serve as a reference in environmental studies to determine more accurately the significance of an environmental change. There are some stages of harvesting, fermentation and drying that can be improved to lower the environmental impact, especially when looking at the CO2 eq. released into the atmosphere (10.46 kg CO2 eq./kg cocoa produced in Pará- Brazil). A planned composting method replacing the husk disposal procedure as fertilizer reduces methane emission and greenhouse effect to 2.59 kg CO2 eq./kg cocoa (approximately 75% of reduction). The non-use of nitrogen fertilizers can contribute to the reduction of environmental impacts, being beneficial to the environment and improving the cultivation of organic products, as the removal of fertilizers in the process promotes a reduction in CO2 emissions. Therefore, eliminating the use of nitrogen fertilizers and implementing an efficient composting method reduces the Carbon Footprint of cocoa produced in Pará (Brazil) to 2.01 kg CO2 eq./kg cocoa (a total reduction of approximately 81%).

Another point of contention lies in the fact that the farms that have certified cocoa are not getting the profit due to difficulty selling 100% of their certified product. Therefore, is necessary the implementation of socio-economic policies for a better distribution and dissemination of cocoa certificates. This would ensure the return of aggregated value, because, as noted, products that generate lower environmental and social impacts benefit the producer, the consumer, and the environment.

It is important to remember that Carbon Footprint studies are dynamic and the data can always be refined, substituted or complemented with updated information to improve the representativeness of the analyzed sector. Based on this study, the cocoa sector in Brazil can quantify the benefits of future actions on sustainable (environmental and socio-economic aspects) improvement in cocoa production.

Acknowledgements

The authors thank the financial support provided by FAPESP (12/24472-6), Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPQ) for the fellowship to Giovanna Maria Cappa Hernandes and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 for the fellowship to Adriana Reis de Andrade Silva; to CEPLAC - Brazil; to the farmers of Altamira, in the state of Pará - Brazil; and to Harald - Industry and Food Ltda.

  • Cite as: Hernandes, G. M. C., Efraim, P., Silva, A. R. A. & Queiroz, G. C. (2022). Carbon footprint of Brazilian Cocoa produced in Pará state. Brazilian Journal of Food Technology, 25, e2020263. https://doi.org/10.1590/1981-6723.26320
  • Funding: FAPESP (12/24472-6), Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPQ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

References

  • Bockel, L., Gopal, P., & Ouédraogo, S. A. (2021). Preliminary impact appraisal of cocoa value chain rehabilitation in Ghana: 2018–2028. Accra: FAO/COCOBOD. https://doi.org/10.4060/cb3176en
    » https://doi.org/10.4060/cb3176en
  • Chiapetti, J., Rocha, R. B., Conceição, A. S., Baiardi, A., Szerman, D., & VanWey, L. (2020). Panorama of cocoa cultivation in the Southern Coastal Territory of Bahia 2015-2019 (112 p.). Ilhéus: Floresta Viva Institute. Retrieved in 2021, June 08, from https://www.worldcocoafoundation.org/initiative/cocoaaction-brasil-en/
    » https://www.worldcocoafoundation.org/initiative/cocoaaction-brasil-en/
  • GHG Protocol. FGV EAESP. (2016). Nota Técnica: equação para cálculo das emissões de N2O provenientes do uso de fertilizante nitrogenado sintético – versão 1.0 São Paulo: FGV EAESP. Retrieved in 2021, June 15, from http://mediadrawer.gvces.com.br/ghg/original/ghg-protocol_nota-tecnica_equacao_fertilizante_sintetico_v1.pdf
    » http://mediadrawer.gvces.com.br/ghg/original/ghg-protocol_nota-tecnica_equacao_fertilizante_sintetico_v1.pdf
  • Jungbluth, N., & Konig, A. (2014). Environmental impacts of chocolate in a life cycle perspective Surich: ESU-Services Ltd.
  • Lescot, T. (2012). Carbon footprint analysis in banana production Paris: Cirad. Retrieved in 2021, June 08, from http://www.fao.org/fileadmin/templates/banana/documents/WGs_outputs/WG01/Carbon_Footprint_study_on_banana_Final_Oct12.pdf
    » http://www.fao.org/fileadmin/templates/banana/documents/WGs_outputs/WG01/Carbon_Footprint_study_on_banana_Final_Oct12.pdf
  • Nilsson, K., Sund, V., & Floren, B. (2011). The environmental impact of the consumption of sweets, crisps and soft drinks. TemaNord 2011 (509 p.). Copenhagen: Nordic Council of Ministers.
  • Reay, D. (2019). Climate-smart food. Cham: Springer. http://dx.doi.org/10.1007/978-3-030-18206-9
    » http://dx.doi.org/10.1007/978-3-030-18206-9
  • Bessou, C., Basset-Mens, C., Latunussa, C., Vélu, A., Heitz, H., Vanniere, H., & Caliman, J. P. (2014). LCA of perennial crops: implications of modeling choices through two contrasted case studies. In R. Schenck & D. Huizenga (Eds.), Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014) Vashon: ACLCA.
  • Gateau, L., Tran, T., Gattward, J., & Bastide, P. (2012). Avaliação ambiental por análise de ciclo de vida da cadeia do cacau brasileiro exportado para França. In Ministério da Agricultura, Pecuária e Abastecimento (Org.), 3º Congresso Brasileiro do Cacau – Inovação Tecnológica para o Brasil Liderar a Produção Mundial de Cacau Brasília: CPLAC.
  • Queiroz, G. C. (2014). Sustentabilidade e transparência. In: G. C. Queiroz, A. R. Rego & D. C. P. Jardim (Eds.), Brasil bakery & confectionery trends 2020 (Chap. 8, pp. 233-257). Campinas: ITAL. Retrieved in 2021, June 08, from https://alimentosprocessados.com.br/arquivos/Consumo-tendencias-e-inovacoes/Brasil-Bakery-&-Confectionery-Trends-2020.pdf
    » https://alimentosprocessados.com.br/arquivos/Consumo-tendencias-e-inovacoes/Brasil-Bakery-&-Confectionery-Trends-2020.pdf
  • Riitta, P. & Svardal, P. (2006). Solid waste disposal. In Intergovernmental Panel on Climate Change – IPCC (Org.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 5, Chap. 3, 40 p.). Geneva: IPCC. Retrieved in 2021, June 10, from https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf
    » https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf
  • Riitta, P., Sharma, C., & Yamada, M. (2006). Waste generation, composition and management data. In Intergovernmental Panel on Climate Change – IPCC (Org.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Vol. 5, Chap. 2, 23 p.). Geneva: IPCC. Retrieved in 2021, June 10, from https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_2_Ch2_Waste_Data.pdf
    » https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_2_Ch2_Waste_Data.pdf
  • Wiedmann, T., & Minx, J. (2008). A definition of 'carbon footprint'. In C. C. Pertsova (Ed.), Ecological economics research trends (Chap. 1, pp. 1-11). Hauppauge: Nova Science Publishers. Retrieved in 2021, June 11, from https://www.researchgate.net/publication/247152314_A_Definition_of_Carbon_Footprint/link/00b7d52b42ae1d9583000000/download
    » https://www.researchgate.net/publication/247152314_A_Definition_of_Carbon_Footprint/link/00b7d52b42ae1d9583000000/download
  • Ecycle. (2015). O uso de fertilizantes é um problema sem solução na agricultura? Retrieved in 2018, March 20, from http://www.ecycle.com.br/component/content/article/35/1329-como-o-que-uso-fertilizantes-agricultura-emissoes-desequilibrio-efeito-estufa-problema-aquecimento-global-contaminacao-meio-ambiente.html
    » http://www.ecycle.com.br/component/content/article/35/1329-como-o-que-uso-fertilizantes-agricultura-emissoes-desequilibrio-efeito-estufa-problema-aquecimento-global-contaminacao-meio-ambiente.html
  • GHG PROTOCOL - Programa Brasileiro GHG Protocol. FGV EAESP – Centro de Estudos em Sustentabilidade. (2016, Março 3). Nota Técnica: equação para cálculo das emissões de N2O provenientes do uso de fertilizante nitrogenado sintético – version 1.0. Retrieved in 2016, September 5, from www.ghgprotocolbrasil.com.br.
  • Globo Rural. (2019). Pará retoma liderança na produção brasileira de cacau, com a união de agricultores Retrieved in 2021, June 11, from https://g1.globo.com/economia/agronegocios/globo-rural/noticia/2019/11/03/lideranca-na-producao-brasileira-de-cacau-volta-para-casa-no-para-com-a-uniao-de-agricultores.ghtml
    » https://g1.globo.com/economia/agronegocios/globo-rural/noticia/2019/11/03/lideranca-na-producao-brasileira-de-cacau-volta-para-casa-no-para-com-a-uniao-de-agricultores.ghtml
  • International Cocoa Organization – ICCO. (2019). Quarterly Bulletin of Cocoa Statistics – November 2019 London: ICCO. Retrieved in 2022, Feb 09, from https://www.icco.org/quarterly-bulletin-of-cocoa-statistics-november-2019/.html
    » https://www.icco.org/quarterly-bulletin-of-cocoa-statistics-november-2019/.html
  • Mendes, F. A. T. (2014). O estado do Pará e a produção brasileira de cacau Brasília: Ministério da Agricultura, Pecuária e Abastecimento. Retrieved in 2018, March 20, from http://www.ceplacpa.gov.br/site/?p=3009
    » http://www.ceplacpa.gov.br/site/?p=3009
  • Mercado do Cacau. (2015). Produção brasileira de cacau em 2015 Retrieved in 2018, March 20, from http://mercadodocacau.com/artigo/producao-brasileira-de-cacau-em-2015
    » http://mercadodocacau.com/artigo/producao-brasileira-de-cacau-em-2015
  • Myers, A. (2020). Barry Callebaut reduces its carbon footprint by -8.1% as sustainability targets remain on track Retrieved in 2021, March 15, from https://www.confectionerynews.com/Article/2020/12/07/Barry-Callebaut-reduces-its-carbon-footprint-by-8.1-as-sustainability-targets-remain-on-track?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright
    » https://www.confectionerynews.com/Article/2020/12/07/Barry-Callebaut-reduces-its-carbon-footprint-by-8.1-as-sustainability-targets-remain-on-track?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright
  • Nunes, A. (2021). Pará lidera produção nacional de cacau pelo segundo ano consecutivo Retrieved in 2021, June 08, from https://agenciapara.com.br/noticia/24646/
    » https://agenciapara.com.br/noticia/24646/
  • ORGANIS. (2019). Panorama do consumo de orgânicos no Brasil 2019 Retrieved in 2021, June 08, from https://organis.org.br/pesquisa-consumidor-organico-2019/
    » https://organis.org.br/pesquisa-consumidor-organico-2019/
  • Statista. (2018). Production of cocoa beans from 2003/2004 to 2016/2017, by region (in 1,000 tons) Retrieved in 2018, March 20, from https://www.statista.com/statistics/263139/production-of-cocoa-beans-since-2003-by-region/
    » https://www.statista.com/statistics/263139/production-of-cocoa-beans-since-2003-by-region/
  • Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 99(1-3), 15-27. http://dx.doi.org/10.1016/S0167-8809(03)00138-5
    » http://dx.doi.org/10.1016/S0167-8809(03)00138-5
  • Beauchemin, K. A., Janzen, H. H., Little, S. M., McAllister, T. A., & McGinn, S. M. (2010). Life cycle assessment of greenhouse gas emissions from beef production in western Canada: a case study. Agricultural Systems, 103, 371-379. http://dx.doi.org/10.1016/j.agsy.2010.03.008
    » http://dx.doi.org/10.1016/j.agsy.2010.03.008
  • Espinoza-Orias, N., Stichnothe, H., & Azapagic, A. (2011). The carbon footprint of bread. The International Journal of Life Cycle Assessment, 16(4), 351-365. http://dx.doi.org/10.1007/s11367-011-0271-0
    » http://dx.doi.org/10.1007/s11367-011-0271-0
  • Franco, L. B., Almeida, C. D. G. C., Freire, M. M., Franco, G. B., & Silva, S. A. (2019). Rainfall zoning for cocoa growing in Bahia State (Brazil) using fuzzy logic. Engenharia Agrícola, 39(spe), 48-55. http://dx.doi.org/10.1590/1809-4430-eng.agric.v39nep48-55/2019
    » http://dx.doi.org/10.1590/1809-4430-eng.agric.v39nep48-55/2019
  • Fusi, A., Guidetti, R., & Azapagic, A. (2016). Evaluation of environmental impacts in the catering sector: the case of pasta. Journal of Cleaner Production, 132, 146-160. http://dx.doi.org/10.1016/j.jclepro.2015.07.074
    » http://dx.doi.org/10.1016/j.jclepro.2015.07.074
  • Gockowski, J., & Sonwa, D. (2011). Cocoa intensification scenarios and their predicted impact on CO 2 emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environmental Management, 48(2), 307-321. PMid:21191791. http://dx.doi.org/10.1007/s00267-010-9602-3
    » http://dx.doi.org/10.1007/s00267-010-9602-3
  • Jacobi, J., Andres, C., Schneider, M., Pillco, M., Calizaya, P., & Rist, S. (2014). Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agroforestry Systems, 88(6), 1117-1132. http://dx.doi.org/10.1007/s10457-013-9643-8
    » http://dx.doi.org/10.1007/s10457-013-9643-8
  • Kimura, A., Wada, Y., Kamada, A., Masuda, T., Okamoto, M., Goto, S., Tsuzuki, D., Cai, D., Oka, T., & Dan, I. (2010). Interactive effects of carbon footprint information and its accessibility on value and subjective qualities of food products. Appetite, 55(2), 271-278. PMid:20600412. http://dx.doi.org/10.1016/j.appet.2010.06.013
    » http://dx.doi.org/10.1016/j.appet.2010.06.013
  • Konstantas, A., Jeswani, H. K., Stamford, L., & Azapagic, A. (2018). Environmental impacts of chocolate production and consumption in the UK. Food Research International, 106, 1012-1025. PMid:29579893. http://dx.doi.org/10.1016/j.foodres.2018.02.042
    » http://dx.doi.org/10.1016/j.foodres.2018.02.042
  • , , , , & , (Journal of Cleaner Production, 230). Evaluation of environmental sustainability of biscuits at the product and sectoral levels. , 1217-1228.
  • Miah, J. H., Griffiths, A., McNeill, R., Halvorson, S., Schenker, U., Espinoza-Orias, N. D., Morse, S., Yang, A., & Sadhukhan, J. (2018). Environmental management of confectionery products: life cycle impacts and improvement strategies. Journal of Cleaner Production, 177, 732-751. http://dx.doi.org/10.1016/j.jclepro.2017.12.073
    » http://dx.doi.org/10.1016/j.jclepro.2017.12.073
  • Neira, D. P. (2016). Energy sustainability of Ecuadorian cacao export and its contribution to climate change. A case study through product life cycle assessment. Journal of Cleaner Production, 112, 2560-2568. http://dx.doi.org/10.1016/j.jclepro.2015.11.003
    » http://dx.doi.org/10.1016/j.jclepro.2015.11.003
  • Ntiamoah, A., & Afrane, G. (2008). Environmental impacts of cocoa production and processing in Ghana: life cycle assessment approach. Journal of Cleaner Production, 16(16), 1735-1740. http://dx.doi.org/10.1016/j.jclepro.2007.11.004
    » http://dx.doi.org/10.1016/j.jclepro.2007.11.004
  • Ortiz-R, O. O., Villamizar-Gallardo, R. A., & Rangel, J. M. (2014). Applying life cycle management of Colombian cocoa production. Food Science and Technology, 34(1), 62-68. http://dx.doi.org/10.1590/S0101-20612014005000006
    » http://dx.doi.org/10.1590/S0101-20612014005000006
  • Ortiz-R, O., Villamizar-Gallardo, R. A., Naranjo-Merino, C. A., García-Caceres, R. G., & Castañeda-Galvís, M. T. (2016). Carbon footprint of the Colombian cocoa production. Journal of the Brazilian Association of Agricultural Engineering, Jaboticabal, 36(2), 260-270. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n2p260-270/2016
    » http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n2p260-270/2016
  • Queiroz, G. C., & Garcia, E. E. C. (2010). Política nacional de resíduos sólidos – o impacto da nova lei contra o aquecimento global. Boletim de Tecnologia e Desenvolvimento de Embalagens, 22(3), 1-4.
  • Recanati, F., Marveggio, D., & Dotelli, G. (2018). From beans to bar: a life cycle assessment towards sustainable chocolate supply chain. The Science of the Total Environment, 613–614, 1013-1023. PMid:28946374. http://dx.doi.org/10.1016/j.scitotenv.2017.09.187
    » http://dx.doi.org/10.1016/j.scitotenv.2017.09.187
  • Rivera, X. C. S., Espinoza-Orias, N., & Azapagic, A. (2014). Life cycle environmental impacts of convenience food: comparision of ready and home-made meals. Journal of Cleaner Production, 73, 294-309. http://dx.doi.org/10.1016/j.jclepro.2014.01.008
    » http://dx.doi.org/10.1016/j.jclepro.2014.01.008
  • Santos Junior, H. C. M., Maranduba, H. L., Almeida Neto, J. A., & Rodrigues, L. B. (2017). Life cycle assessment of cheese production process in a small-sized dairy industry in Brazil. Environmental Science and Pollution Research International, 24(4), 3470-3482. PMid:27873115. http://dx.doi.org/10.1007/s11356-016-8084-0
    » http://dx.doi.org/10.1007/s11356-016-8084-0
  • Santos, G. C., & Monteiro, M. (2008). Organic system of food production. Alimentos e Nutrição Araraquara, 15(1), 73-86.
  • Silva, A. R. A., Bioto, A. S., Efraim, P., & Queiroz, G. C. (2017). Impact of sustainability labeling in the perception of sensory quality and purchase intention of chocolate consumers. Journal of Cleaner Production, 141, 11-21. http://dx.doi.org/10.1016/j.jclepro.2016.09.024
    » http://dx.doi.org/10.1016/j.jclepro.2016.09.024
  • Efraim, P. (2009). Contribuição à melhoria de qualidade de produtos de cacau no Brasil, por meio da caracterização de derivados de cultivares resistentes à vassoura-de-bruxa e de sementes danificadas pelo fungo (Tese de doutorado). Faculdade de Engenharia de Alimentos, Campinas.
  • Vervuurt, W. (2019). Modelling GHG emissions of cacao production at plot level in the Republic of Côte d’Ivoire (Master thesis). Environmental System Analysis and Plant Production Systems, Wageningen University & Research, Wageningen.
  • Yokote, A. Y. (2003). Inventário do ciclo de vida da distribuição de energia elétrica no Brasil (Master thesis) São Paulo University, São Paulo.

Edited by

Associate Editor: Leda Coltro.

Publication Dates

  • Publication in this collection
    16 Mar 2022
  • Date of issue
    2022

History

  • Received
    13 Nov 2020
  • Accepted
    12 Oct 2021
Instituto de Tecnologia de Alimentos - ITAL Av. Brasil, 2880, 13070-178 Campinas - SP / Brasil, Tel 55 19 3743-1762 - Campinas - SP - Brazil
E-mail: bjftsec@ital.sp.gov.br