Acessibilidade / Reportar erro

Hydrochemistry applied to assess the chemical weathering and soil removal rates in the Sorocaba River basin, São Paulo State

ABSTRACT:

Chemical weathering and soil removal rates are responsible for the Earth’s landscape, composition of surface and groundwater, producing the soils and buffering the composition of the atmosphere. This study aimed to assess the chemical weathering and soil removal rates in the Sorocaba River basin, São Paulo State, Brazil, allowing answering the questions about the dynamics of fluvial transport of dissolved and suspended solids, the chemical weathering processes and associated atmospheric/soil CO2 consumption, and the relationship between chemical weathering and soil erosion rates. The annual specific flux of total suspended solids and total dissolved solids were 49.59 and 60.97 t/km2/yr. The chemical weathering process dominant in the Sorocaba River basin was the monosiallitization (RE = 2.4), with an associated atmospheric/soil CO2 consumption of 2.3 × 105 mol/km2/yr. The chemical weathering and soil removal rates were 7.2 and 29.8 m/Myr, respectively, indicating a soil thickness reduction. Finally, the soil removal rate in the Sorocaba River basin is almost 3-fold higher than the Cenozoic soil removal rates, being this difference related to the current land use which increased the soil removal processes.

KEYWORDS:
Fluvial geochemistry; disturbed watershed; water-rock interactions; rainwater and anthropogenic influences

INTRODUCTION

Chemical weathering is typically a destructive process, which allows the development of new minerals from the weathering of primary minerals. In addition, water-rock interactions are responsible for the Earth’s landscape, composition of surface and groundwater, producing the soils and buffering the composition of the atmosphere, being this process one of the main mechanisms of atmospheric CO2 removal and consequent deposition of carbonates Ca2+ and Mg2+ in oceans, playing an important role in moderating terrestrial climate (Gaillardet et al. 1999Gaillardet J., Dupré B., Louvat P., Allègre C.J. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4):3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
https://doi.org/https://doi.org/10.1016/...
, Millot et al. 2002Millot R., Gaillardet J., Dupré B., Allègre C.J. 2002. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of Canadian Shield. Earth and Planetary Science Letters, 196(1-2):83-98. https://doi.org/10.1016/S0012-821X(01)00599-4
https://doi.org/https://doi.org/10.1016/...
). Residual products are subject to other processes of the supergene cycle, such as erosion, transport, and sedimentation, which ultimately lead to continental denudation, with consequent flattening on the relief (Teixeira et al. 2000Teixeira W., Toledo M.C.M., Fairchild T.R., Taioli F. 2000. Decifrando a Terra. São Paulo, Oficina de textos, 568 p.).

Pioneering studies to investigate the nature and composition of the dissolved and suspended load transported by rivers were performed in the 1960-70s (Barth 1961Barth T.F.W. 1961. Abundance of the elements, areal averages and geochemical cycles. Geochimica et Cosmochimica Acta, 23(1-2):1-8. https://doi.org/10.1016/0016-7037(61)90086-2
https://doi.org/https://doi.org/10.1016/...
, Johnson et al. 1968Johnson N.M., Likens G.E., Bormann F.H., Pierce P.S. 1968. Rate of chemical weathering of silicate minerals in New Hampshire. Geochimica et Cosmochimica Acta, 32(5):531-545. https://doi.org/10.1016/0016-7037(68)90044-6
https://doi.org/https://doi.org/10.1016/...
, Gibbs 1970Gibbs R.J. 1970. Mechanisms controlling world river water chemistry. Science, 170(3962):1088-1090. https://doi.org/10.1126/science.170.3962.1088
https://doi.org/https://doi.org/10.1126/...
, Tardy 1971Tardy Y. 1971. Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chemical Geology, 7(4):253-271. https://doi.org/10.1016/0009-2541(71)90011-8
https://doi.org/https://doi.org/10.1016/...
, Martin and Meybeck 1979Martin J.M., Meybeck M. 1979. Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7(3):173-206. https://doi.org/10.1016/0304-4203(79)90039-2
https://doi.org/https://doi.org/10.1016/...
). Since then, many studies have been carried out to assess chemical weathering and soil erosion rates using mass-balance models adjusted to atmospheric and anthropogenic (mainly originating from domestic sewage and industrial and agricultural activities) contributions, once the total river fluxes integrate the contributions of these different sources (Probst 1986Probst J.L. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical e chemical erosion rates in a calcareous molasse basin. Journal des Sciences Hydrologiques, 31(1):61-79. https://doi.org/10.1080/02626668609491028
https://doi.org/https://doi.org/10.1080/...
, 1992Probst J.L. 1992. Géochimie et Hydrologie de l’Érosion Continentale. Mécanisms Bilan Global Actuel et Fluctuations au Cours des 500 Derniers millions d’annés. Sciences Géologiques Bulletin, 94:1-161., Meybeck 1987Meybeck M. 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287:401-428. https://doi.org/10.2475/ajs.287.5.401
https://doi.org/https://doi.org/10.2475/...
, Lasaga et al. 1994Lasaga A.C., Soler J.M., Ganor J., Burch T.E., Nagy K.L. 1994. Chemical weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta, 58(10):2361-2386. https://doi.org/10.1016/0016-7037(94)90016-7
https://doi.org/https://doi.org/10.1016/...
, White and Blum 1995White A.F., Blum A.E. 1995. Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9):1729-1747. https://doi.org/10.1016/0016-7037(95)00078-E
https://doi.org/https://doi.org/10.1016/...
, Boeglin and Probst 1996Boeglin J.I., Probst J.L. 1996. Transports fluviaux de matières dissoutes et particulaires sur un basin versant em région tropicale: le basin versant Du Niger au cours de la période 1990-1993. Science Géologique Bulletin, 49(1-4):25-45. https://doi.org/10.3406/sgeol.1996.1934
https://doi.org/https://doi.org/10.3406/...
, 1998Boeglin J.I., Probst J.L. 1998. Physical and chemical weathering rates and CO2 consumption in a tropical lateritic environment: the upper Niger basin. Chemical Geology, 148(3-4):137-156. https://doi.org/10.1016/S0009-2541(98)00025-4
https://doi.org/https://doi.org/10.1016/...
, Boeglin et al. 1997Boeglin J.L., Mortatti J., Tardy Y. 1997. Érosion chimique et mécanique sur le basin amont du Niger (Guinée, Mali). Bilan géochimique de l’altération en milieu tropical. Comptes Rendus de l’Academie des Sciences, Series IIA, 325(3):185-191. https://doi.org/10.1016/S1251-8050(97)88287-0
https://doi.org/https://doi.org/10.1016/...
, Gaillardet et al. 1999Gaillardet J., Dupré B., Louvat P., Allègre C.J. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4):3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
https://doi.org/https://doi.org/10.1016/...
, Semhi et al. 2000Semhi K., Amiotte-Suchet P., Clauer N., Probst J.L. 2000. Impact of nitrogen fertilizers on the natural weathering-erosion process and fluvial transport in the Garonne basin. Applied Geochemistry, 15(6):865-878. https://doi.org/10.1016/S0883-2927(99)00076-1
https://doi.org/https://doi.org/10.1016/...
, Millot et al. 2002Millot R., Gaillardet J., Dupré B., Allègre C.J. 2002. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of Canadian Shield. Earth and Planetary Science Letters, 196(1-2):83-98. https://doi.org/10.1016/S0012-821X(01)00599-4
https://doi.org/https://doi.org/10.1016/...
, Meybeck et al. 2003Meybeck M., Laroche L., Dürr H.H., Syvitski J.P.M. 2003. Global variability of daily total suspended solids and their fluxes in rivers. Global and Planetary Change, 39(1-2):65-93. https://doi.org/10.1016/S0921-8181(03)00018-3
https://doi.org/https://doi.org/10.1016/...
, Walling and Fang 2003Walling D.E., Fang D. 2003. Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 39(1-2):111-126. https://doi.org/10.1016/S0921-8181(03)00020-1
https://doi.org/https://doi.org/10.1016/...
, Riebe et al. 2004Riebe C.S., Kirchner J.W., Finkel R.C. 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters , 224(3-4):547-562. https://doi.org/10.1016/j.epsl.2004.05.019
https://doi.org/https://doi.org/10.1016/...
, Chakrapani 2005Chakrapani G.J. 2005. Factors controlling variations in river sediment loads. Current Science, 88(4):569-575., Weijden and Pacheco 2006Weijden H.V., Pacheco F.A.L. 2006. Hydrogeochemistry in the Vouga River basin (central Portugal): Pollution and chemical weathering. Applied Geochemistry, 21(4):580-613. https://doi.org/10.1016/j.apgeochem.2005.12.006
https://doi.org/https://doi.org/10.1016/...
, Louvat et al. 2008Louvat P., Gislason S.R., Allègre C.J. 2008. Chemical and mechanical erosion rates in Iceland as deduced from river dissolved and solid material. American Journal of Science, 308(5):679-726. http://dx.doi.org/10.2475/05.2008.02
https://doi.org/http://dx.doi.org/10.247...
, Gurumurthy et al. 2012Gurumurthy G.P., Balakrishna K., Riotte J., Braun J.J., Audry S., Shankar H.N.U., Manjunatha B.R. 2012. Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300-301:61-69. https://doi.org/10.1016/j.chemgeo.2012.01.016
https://doi.org/https://doi.org/10.1016/...
, Laraque et al. 2013Laraque A., Moquet J.S., Alkattan R., Steiger J., Mora A., Adèle G., Castellanos B., Lagane C., Lopez J.L., Perez J., Rodriguez M, Rosales J. 2013. Seasonal variability of total dissolved fluxes and origin of major dissolved elements within a large tropical river: The Orinoco, Venezuela. Journal of South American Earth Sciences, 44:4-17. http://dx.doi.org/10.1016/j.jsames.2012.12.011
https://doi.org/http://dx.doi.org/10.101...
, Li et al. 2014Li S., Lu X.X., Bush R. 2014. Chemical weathering and CO2 consumption in the Lower Mekong River. Science of the Total Environment, 472:162-177. http://dx.doi.org/10.1016/j.scitotenv.2013.11.027
https://doi.org/http://dx.doi.org/10.101...
). The interest in assessing the chemical weathering and soil removal rates in watersheds under different geological and climatic setting also occurred in Brazil (Stallard and Edmond 1981Stallard R.F., Edmond J.M. 1981. Geochemistry of the Amazon Basin. 1. Precipitation chemistry and marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research, 86(C10):9844-9858. https://doi.org/10.1029/JC086iC10p09844
https://doi.org/https://doi.org/10.1029/...
, 1983Stallard R.F., Edmond J.M. 1983. Geochemistry of the Amazon Basin. 2. The influence of the geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88(C14):9671-9688. https://doi.org/10.1029/JC088iC14p09671
https://doi.org/https://doi.org/10.1029/...
, 1987Stallard R.F., Edmond J.M. 1987. Geochemistry of the Amazon Basin. 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 92(C8):8293-8302. https://doi.org/10.1029/JC092iC08p08293
https://doi.org/https://doi.org/10.1029/...
, Moreira-Nordemann 1980Moreira-Nordemann L.M. 1980. Use of 234U/238U disequilibrium in measuring chemical weathering rate of rocks. Geochimica et Cosmochimica Acta, 44(1):103-108. https://doi.org/10.1016/0016-7037(80)90180-5
https://doi.org/https://doi.org/10.1016/...
, 1984Moreira-Nordemann L.M. 1984. Salinity and weathering rate of rocks in a semi-arid region. Journal of Hydrology, 71(1-2):131-147. https://doi.org/10.1016/0022-1694(84)90074-X
https://doi.org/https://doi.org/10.1016/...
, Mortatti et al. 1997Mortatti J., Victória R.L., Tardy Y. 1997. Balanço de alteração e erosão química na bacia amazônica. Geochimica Brasiliensis, 11(1):2-13. https://doi.org/10.21715/gb.v11i1.121
https://doi.org/https://doi.org/10.21715...
, 2008Mortatti J., Probst J.L., Fernandes A.M., Mortatti B.C., Oliveira H. 2008. Influence of discharge on silicate weathering dynamics of the Tiete river basin: major cations and dissolved silica approach. Geochimica Brasiliensis, 22(1):15-26. https://doi.org/10.21715/gb.v22i1.275
https://doi.org/https://doi.org/10.21715...
, Gaillardet et al. 1997Gaillardet J., Dupre B., Allegre C.J., Négrel P. 1997. Chemical and physical denudation in the Amazon River Basin. Chemical Geology, 142(3-4):141-173. https://doi.org/10.1016/S0009-2541(97)00074-0
https://doi.org/https://doi.org/10.1016/...
, Bortoletto Junior et al. 2002Bortoletto Junior M.J., Mortatti J., Probst J.L. 2002. Erosão química na bacia hidrográfica do rio Corumbataí (SP). Geochimica Brasiliensis, 16(1):99-111. https://doi.org/10.21715/gb.v16i1.501
https://doi.org/https://doi.org/10.21715...
, Conceição and Bonotto 2003Conceição F.T., Bonotto D.M. 2003. Use of U-isotopes disequilibrium to evaluate the weathering rates and fertilizer derived uranium at São Paulo State, Brazil. Environmental Geology, 44:408-418. http://dx.doi.org/10.1007/s00254-003-0775-4
https://doi.org/http://dx.doi.org/10.100...
, 2004Conceição F.T., Bonotto D.M. 2004. Weathering rates and anthropogenic influences in a sedimentary basin, São Paulo State, Brazil. Applied Geochemistry, 19(4):575-591. http://dx.doi.org/10.1016/j.apgeochem.2003.07.002
https://doi.org/http://dx.doi.org/10.101...
, Mortatti and Probst 2003Mortatti J., Probst J.L. 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chemical Geology, 197(1-4):177-196. https://doi.org/10.1016/S0009-2541(02)00349-2
https://doi.org/https://doi.org/10.1016/...
, Bonotto et al. 2007Bonotto D.M., Fujimori K., Moreira-Nordemann L.M. 2007. Determination of weathering rate of the Morro do Ferro Th-REEs deposit, Brazil using U-isotope method. Applied Radiation and Isotopes, 65(5):474-481. http://dx.doi.org/10.1016/j.apradiso.2006.11.003
https://doi.org/http://dx.doi.org/10.101...
, Sardinha et al. 2010Sardinha D.S., Bonotto D.M., Conceição F.T. 2010. Weathering rates at Alto Sorocaba basin, Brazil, using U-isotopes and major cations. Environmental Earth and Sciences, 61:1025-1036. http://dx.doi.org/10.1007/s12665-009-0424-7
https://doi.org/http://dx.doi.org/10.100...
, Fernandes et al. 2012Fernandes A.M., Nolasco M.B., Hissler C., Mortatti J. 2012. Mechanical erosion in a tropical river basin in Southeastern Brazil: chemical characteristics and annual fluvial transport mechanisms. Journal of Geological Research, 8(1-2). http://dx.doi.org/10.1115/2012/127109
https://doi.org/http://dx.doi.org/10.111...
, 2016aFernandes A.M., Conceição F.T., Spatti Junior E.P., Sardinha D.S., Mortatti J. 2016a. Chemical weathering rates and atmospheric/soil CO2 consumption of igneous and metamorphic rocks under tropical climate in southeastern Brazil. Chemical Geology, 443:54-66. https://doi.org/10.1016/j.chemgeo.2016.09.008
https://doi.org/https://doi.org/10.1016/...
, Conceição et al. 2015Conceição F.T., Sardinha D.S., Godoy L.H., Fernandes A.M., Pedrazzi F.J.M. 2015. Influência sazonal no transporte específico de metais totais e dissolvidos nas águas fluviais da Bacia do Alto Sorocaba (SP). Geochimica Brasiliensis, 29(1):23-34. http://dx.doi.org/10.5327/Z0102-9800201500010003
https://doi.org/http://dx.doi.org/10.532...
, Couto Júnior et al. 2019Couto Júnior A.A., Conceição F.T., Fernandes A.M., Spatti Júnior E.P., Lupinacci C.M., Moruzzi R.B. 2019. Land use changes associated with the expansion of sugar cane crops and their influences on soil removal in a tropical watershed in São Paulo State (Brazil). Catena, 172:313-323. https://doi.org/10.1016/j.catena.2018.09.001
https://doi.org/https://doi.org/10.1016/...
, Spatti Júnior et al. 2019Spatti Júnior E.P., Conceição F.T., Fernandes A.M., Sardinha D.S., Menegário A.A., Moruzzi R.B. 2019. Chemical weathering rates of clastic sedimentary rocks from the Paraná Basin in the Paulista Peripheral Depression, Brazil. Journal of South American Earth Science, 96:102369. http://dx.doi.org/10.1016/j.jsames.2019.102369
https://doi.org/http://dx.doi.org/10.101...
).

The state of São Paulo established 21 units of Water Resources Management (UGRHI), according to Law No. 7,663, published in December 30th, 1991 (São Paulo 1991São Paulo. 1991. Lei nº 7.663/91 - Estabelece normas de orientação à Política Estadual de Recursos Hídricos bem como ao Sistema Integrado de Gerenciamento de Recursos Hídricos. Available at: <Available at: http://www.al.sp.gov.br/norma/?id=18836 >. Accessed on: Jun 22, 2016.
http://www.al.sp.gov.br/norma/?id=18836...
). The Sorocaba River basin belongs to UGRHI-10 (Médio Tiête - Sorocaba), presents well-defined climatic seasonality (tropical climate) and a diverse geological and geomorphological context. Successive cycles of development and diversification of human activities have occurred since its occupation in the seventeenth century. Nowadays, this watershed covers 18 municipalities (1,212,376 inhabitants), an important industrial park, with over 1,850 enterprises and large agricultural areas (IBGE 2010Instituto Brasileiro de Geografia e Estatística (IBGE) . Dados do Censo 2010. Diário Oficial da União, Brasília, DF, 4 nov. 2010. Available at: <Available at: http://www.ibge.gov.br/censo2010/dados_divulgados/index.php?uf=35 >. Accessed on: Dec 3, 2010.
http://www.ibge.gov.br/censo2010/dados_d...
). Approximately 65% of the demands for public supply in the Sorocaba River basin are supplied by Itupararanga Reservoir (IPT 2006Instituto de Pesquisas Tecnológicas (IPT). 2006. Relatório Zero da Bacia do Sorocaba e Médio Tietê - Atualização 2005. Relatório Técnico nº 80 401-205. São Paulo, IPT.). Despite its importance, few studies have been conducted in the Sorocaba River basin related to the rainwater chemical composition and annual atmospheric deposition (Conceição et al. 2011Conceição F.T., Sardinha D.S., Navarro G.R.B., Antunes M.L.P., Agelucci V.A. 2011. Composição química das águas pluviais e deposição anual na bacia do Alto Sorocaba (SP). Química Nova, 34(4):610-616. http://dx.doi.org/10.1590/S0100-40422011000400011
https://doi.org/http://dx.doi.org/10.159...
, 2013Conceição F.T., Antunes M.L.P., Angelucci V.A., Moruzzi R.B., Navarro G.R.B. 2013. Rainwater chemical composition and annual atmospheric deposition in Sorocaba, (São Paulo State), Brazil. Revista Brasileira de Geofísica, 31(1):5-15. http://dx.doi.org/10.22564/rbgf.v31i1.242
https://doi.org/http://dx.doi.org/10.225...
), the chemical weathering rates in the Upper Sorocaba River basin (Sardinha et al. 2010Sardinha D.S., Bonotto D.M., Conceição F.T. 2010. Weathering rates at Alto Sorocaba basin, Brazil, using U-isotopes and major cations. Environmental Earth and Sciences, 61:1025-1036. http://dx.doi.org/10.1007/s12665-009-0424-7
https://doi.org/http://dx.doi.org/10.100...
, Fernandes et al. 2016aFernandes A.M., Conceição F.T., Spatti Junior E.P., Sardinha D.S., Mortatti J. 2016a. Chemical weathering rates and atmospheric/soil CO2 consumption of igneous and metamorphic rocks under tropical climate in southeastern Brazil. Chemical Geology, 443:54-66. https://doi.org/10.1016/j.chemgeo.2016.09.008
https://doi.org/https://doi.org/10.1016/...
), the water quality of the Itupararanga Reservoir (Pedrazzi et al. 2013Pedrazzi F.J.M., Conceição F.T., Sardinha D.S., Moschini-Carlos V., Pompêo M. 2013. Spatial and temporal quality of water in the Itupararanga Reservoir, Alto Sorocaba basin (SP), Brazil. Journal of Water Resources and Protection, 5(1):64-71. http://dx.doi.org/10.4236/jwarp.2013.51008
https://doi.org/http://dx.doi.org/10.423...
, 2014Pedrazzi F.J.M., Conceição F.T., Sardinha D.S., Moschini-Carlos V., Pompêo M. 2014. Avaliação da qualidade de água do Reservatório de Itupararanga, bacia do Alto Sorocaba (SP). Geociências, 33(1):26-38.), and the origin and flux of trace elements and isotopic composition of particulate organic matter in suspended sediment (Fernandes et al. 2012Fernandes A.M., Nolasco M.B., Hissler C., Mortatti J. 2012. Mechanical erosion in a tropical river basin in Southeastern Brazil: chemical characteristics and annual fluvial transport mechanisms. Journal of Geological Research, 8(1-2). http://dx.doi.org/10.1115/2012/127109
https://doi.org/http://dx.doi.org/10.111...
, 2016bFernandes A.M., Hissler C., Conceição F.T., Spatti Junior E.P., Mortatti J. 2016b. Combined analysis of trace elements and isotopic composition of particulate organic matter in suspended sediment to assess their origin and flux in a tropical disturbed watershed. Environmental Pollution, 218:844-854. http://dx.doi.org/10.1016/j.envpol.2016.08.008
https://doi.org/http://dx.doi.org/10.101...
).

Thus, this study aims to assess the chemical weathering and soil removal rates in the Sorocaba River basin, allowing answering the following questions:

  • What are the dynamics of fluvial transport of dissolved and suspended solids?;

  • What are the chemical weathering processes and associated atmospheric/soil CO2 consumption?;

  • What is the relationship between the chemical weathering and soil removal rates?

STUDY AREA

The Sorocaba River basin is located in the southeastern portion of São Paulo State, Brazil, between latitudes 23 and 24ºS and longitudes 47 and 48ºW, and occupies an area of 5,269 km2. Considered the most important tributary of the left bank of Tietê River, Sorocaba River travels 227 km before flowing into Tiete River, in Laranjal Paulista municipality (IPT 2006Instituto de Pesquisas Tecnológicas (IPT). 2006. Relatório Zero da Bacia do Sorocaba e Médio Tietê - Atualização 2005. Relatório Técnico nº 80 401-205. São Paulo, IPT.). This watershed is inserted into two main geomorphological units: Atlantic Plateau and Paulista Peripheral Depression (Ross 1996Ross J.L.S. 1996. Geografia do Brasil. São Paulo, EDUSP, 546 p. v. 3. - Fig. 1). The Atlantic Plateau presents metamorphic rocks belonging to the São Roque Group and Embu Complex, with associated granitic rocks (Godoy et al. 1996Godoy A.M., Hackspacher P.C., Oliveira M.A.F. 1996. Geologia da folha Sorocaba. Geociências, 15:89-110.). The relief is comprised of hills shapes with convex tops and deep valleys with altitudes that range between 800 and 1,000 m a.s.l. and slope above 20% (Ross 1996Ross J.L.S. 1996. Geografia do Brasil. São Paulo, EDUSP, 546 p. v. 3., Perrota et al. 2005Perrota M.M., Salvador E.D., Lopes R.C., D’Agostinho L.Z., Peruffo N., Gomes S.D., Sachs L.L.B., Meira V.T., Garcia M.G.M., Lacerda Filho J.V. 2005. Mapa geológico do Estado de São Paulo, escala 1:750.000. São Paulo, Programa Geologia do Brasil - PGB, CPRM.). In the Paulista Peripheral Depression outcrop the sedimentary rocks belonging to the Parana Sedimentary Basin (Paleozoic-Mesozoic), i.e., Itararé Group (diamictic, sandstones, mudstones, and rhythmites), Guatá Group (siltstones and sandstones), and Passa Dois Group (siltstones, mudstones, and shales) (Conceição and Bonotto 2004Conceição F.T., Bonotto D.M. 2004. Weathering rates and anthropogenic influences in a sedimentary basin, São Paulo State, Brazil. Applied Geochemistry, 19(4):575-591. http://dx.doi.org/10.1016/j.apgeochem.2003.07.002
https://doi.org/http://dx.doi.org/10.101...
, IPT 2006Instituto de Pesquisas Tecnológicas (IPT). 2006. Relatório Zero da Bacia do Sorocaba e Médio Tietê - Atualização 2005. Relatório Técnico nº 80 401-205. São Paulo, IPT.). The relief presents hills with tabular and large convex tops, prevailing altitudes between 600 and 700 m a.s.l. and slopes ranging from 5 to 10% (Ross 1996Ross J.L.S. 1996. Geografia do Brasil. São Paulo, EDUSP, 546 p. v. 3., Perrota et al. 2005Perrota M.M., Salvador E.D., Lopes R.C., D’Agostinho L.Z., Peruffo N., Gomes S.D., Sachs L.L.B., Meira V.T., Garcia M.G.M., Lacerda Filho J.V. 2005. Mapa geológico do Estado de São Paulo, escala 1:750.000. São Paulo, Programa Geologia do Brasil - PGB, CPRM.).

Figure 1.
Geological map of Sorocaba River basin with location of the fluvial sampling point at the Tatuí municipality, and the pluviometric and fluviometric stations (E4-019 and 4E-004, respectively).

The predominant soils in the study area are Red Argisol (49%), Red Latosol (38%), and Red-Yellow Latosol (9%), according to the Brazilian soil classification (EMBRAPA 2013Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). 2013. Sistema brasileiro de classificação de solos. 3. ed. Brasília, EMBRAPA., Oliveira et al. 1999Oliveira J.B., Camargo M.N., Rossi M., Calderano Filho B. 1999. Mapa pedológico do Estado de São Paulo: legenda expandida. Campinas, Instituto Agronômico; Rio de Janeiro, Embrapa-Solos, 64 p.), corresponding to Ultisols and Oxisols in the USDA nomenclature (USDA 1999United States Department of Agriculture (USDA). 1999. Soil Taxonomy - A basic system of soil classification for making and interpreting soils surveys. 2. ed. Washington, D.C., US Department of Agricultural Soil Conservation Service, 754 p.), respectively. Forests, fields, and Savanna characterized the original vegetation. Currently, with the agricultural occupation and the urbanization processes, land use is characterized by the predominance of the pastures and fields (77%), followed by areas with agricultural crops (14%), reforestation areas (3%), original vegetation cover (2%), and urban areas (4%) (IPT 2006Instituto de Pesquisas Tecnológicas (IPT). 2006. Relatório Zero da Bacia do Sorocaba e Médio Tietê - Atualização 2005. Relatório Técnico nº 80 401-205. São Paulo, IPT.).

The climate is Cwa type, according to the Köppen classification (Köppen 1948Köppen W. 1948. Climatologia. Mexico, Fondo de Cultura Econômica, 478 p.), characterized by the predominance of rainfall in summer and dryness in winter, with an average annual temperature of 18 to 22ºC (IPT 2006Instituto de Pesquisas Tecnológicas (IPT). 2006. Relatório Zero da Bacia do Sorocaba e Médio Tietê - Atualização 2005. Relatório Técnico nº 80 401-205. São Paulo, IPT.). Figure 2A shows the monthly averages of rainfall and discharge in the Sorocaba River basin from 1979 to 2008, calculated from the monthly historical data of the Pluviometric station E4-019 (23º20’S, 47º41’W) and the Fluviometric station 4E-004 (23º19’S, 47º46’W) (DAEE 2010Departamento de Águas e Energia Elétrica (DAEE). 2010. Banco de dados hidrológicos. Available at: <Available at: http://www.hidrologia.daee.sp.gov.br/ >. Accessed on: Jun 15, 2016.
http://www.hidrologia.daee.sp.gov.br/...
), respectively. During this period, the average annual rainfall was 1,276 mm, where January and August were the months with the highest and lowest rainfall values (236 and 35 mm, respectively). In the same historical period, the average annual discharge was 53.8 m3/s, with the highest monthly average in February (98.3 m3/s) and lowest in August (33.7 m3/s). Figure 2B shows a significant positive linear correlation between the average monthly values of rainfall and discharge of these 30 years.

Figure 2.
(A) Monthly average rainfall and discharge for a 30-year period (1979-2008) in the Sorocaba River basin, and (B) relationship between the monthly average rainfall and discharge for the same period.

MATERIALS AND METHODS

Sampling and analytical methods

The river sampling point was established approximately 500 m upstream from the confluence of the Sorocaba and Tatuí rivers, in the municipality of Tatuí (Lat. 23º19’09”S, Long. 47º46’44”W), as can be seen in Figure 1, covering an area of 3,942 km2, i.e., 74.8% of the total area of the Sorocaba River basin, with a total population of 1,061,023 inhabitants (IBGE 2010Instituto Brasileiro de Geografia e Estatística (IBGE) . Dados do Censo 2010. Diário Oficial da União, Brasília, DF, 4 nov. 2010. Available at: <Available at: http://www.ibge.gov.br/censo2010/dados_divulgados/index.php?uf=35 >. Accessed on: Dec 3, 2010.
http://www.ibge.gov.br/censo2010/dados_d...
) and the urban sewage treatment percentage estimated at 17.5% (IPT 2006Instituto de Pesquisas Tecnológicas (IPT). 2006. Relatório Zero da Bacia do Sorocaba e Médio Tietê - Atualização 2005. Relatório Técnico nº 80 401-205. São Paulo, IPT.). This sampling point was chosen due to there being a fluviometric station installed (limnimetric ruler and an automatic limnigraph), managed by DAEE/CTH, with daily discharge data since 1940. These data were used to validate the discharge measurements performed during the sampling period.

Twelve fluvial water sample collections were carried out at the Sorocaba River, covering one complete hydrological cycle (Jun/2009 to Jun/2010). Sorocaba River waters (1,000 mL) were collected in each sampling at 1.5 m deep, using a single-stage punctual sampler. The samples were separated into two 500 mL aliquots, one crude and the other preserved with 0.1 mL of concentrated H2SO4. Both aliquots were stored in identified polyethylene bottles and kept at 4ºC until laboratory processing.

Discharge (Q), hydrogenionic potential (pH), electrical conductivity (EC), and temperature (T) were characterized in the field using direct reading equipment. The discharge was represented by the product of the wet river channel cross-section area (m2), obtained by bathymetry, and the average velocity of the water flow in this section (m/s) quantified using a Digital Micromolinete Global Water FP 101. The pH values were determined using a DM2 Digimed portable pHmeter, with a relative accuracy of 0.01% and calibrated with standard solutions DM-S1B (pH 4.01) and DM-S1A (pH 6.86). In addition, EC and T were quantified using the Digimed DM3 sensor, with a resolution of 0.01 mS/cm, relative accuracy of 0.05% and automatic temperature compensation, previously calibrated with conductivity standard solutions DM S6A (1,412 mS/cm and DM S6B (146.9 mS/cm).

Crude fluvial water samples were filtered through cellulose membrane filters (0.45 mm), previously dried and weighed. These filtered samples were analyzed by ion chromatography Dionex ICS-90 equipped with analytical columns IonPac® CS12A 4x250 mm and IonPac® AS14A 4x250 mm, for the quantification of dissolved ions (Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-, PO4 3-, and NO3 -), with a detection limit of 0.001 mg/L (Dionex Corporation 2004Dionex Corporation. 2004. ICS-90 ion chromatography system operator’s manual. California: Dionex Corporation. (Document n.031851, revision 4).) and quantification limit of 0.01 mg/L (Ribani et al. 2004Ribani M., Bottoli C.B.G., Collins C.H., Jardim I.C.S.F., Melo L.F.C. 2004. Validação em métodos cromatográficos e eletroforéticos. Química Nova, 27(5):771-780. http://dx.doi.org/10.1590/S0100-40422004000500017
https://doi.org/http://dx.doi.org/10.159...
). The HCO3 - was represented by the alkalinity content and was quantified by the Gran method (Edmond 1970Edmond J.M. 1970. High precision determination of titration alkalinity and total carbon dioxide content of seawater by potentiometric titration. Deep-Sea Research Part I: Oceanographic Research Papers, 17(4):737-750. https://doi.org/10.1016/0011-7471(70)90038-0
https://doi.org/https://doi.org/10.1016/...
). The preserved fluvial water samples were filtered through a glass fiber membrane filter (0.3-0.6 mm) and used in the quantification of dissolved Si4+ concentration by optical emission spectrometry with inductively coupled argon plasma, ICP-OES Optima 3000 DV, with a detection limit of 0.02 mg/L, and the result was expressed in terms of SiO2. The total dissolved solids (TDS) correspond to the sum of dissolved cations, anions and silica. The total suspended solids (TSS) was quantified by gravimetry (APHA 1999American Public Health Association (APHA). 1999. Standard Methods for the Examination of Water and Wastewater. 20. ed. Washington D.C., APHA.), considering the retained material in the cellulose membrane filter after drying in a stove at 60ºC to constant weight. The analysis of the river water samples was performed at Stable Isotope Laboratory (dissolved ions, HCO3 - and TSS) and Analytical Chemistry Laboratory (dissolved silica), both located at CENA/USP.

Theoretical background

The fluvial fluxes (F W , in t/km2/yr) of dissolved chemical species, TDS and TSS related to chemical weathering and soil removal processes, were calculated using a mass balance model expressed in Equation 1 (White and Blum 1995White A.F., Blum A.E. 1995. Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9):1729-1747. https://doi.org/10.1016/0016-7037(95)00078-E
https://doi.org/https://doi.org/10.1016/...
), considering negligible the fluxes from the biomass change and derived from the ionic exchange sites in clay minerals.

F W = F r i v e r - F r a i n f a l l - F a n t h r o p o g e n i c (1)

In which:

  • Friver =  the measured river flux (t/km2/yr);
  • Frainfall =  the atmospheric inputs (t/km2 /yr);
  • Fanthropogenic =  the anthropogenic influences (t/km2/yr).

The R E index can be used to determine the predominant process of chemical weathering of rocks in a drainage basin. Initially proposed by Tardy (1971Tardy Y. 1971. Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chemical Geology, 7(4):253-271. https://doi.org/10.1016/0009-2541(71)90011-8
https://doi.org/https://doi.org/10.1016/...
), this index is equivalent to the molecular ratio (SiO2)/(Al2O3) of secondary minerals neoformation within the soil profile. Boeglin and Probst (1998Boeglin J.I., Probst J.L. 1998. Physical and chemical weathering rates and CO2 consumption in a tropical lateritic environment: the upper Niger basin. Chemical Geology, 148(3-4):137-156. https://doi.org/10.1016/S0009-2541(98)00025-4
https://doi.org/https://doi.org/10.1016/...
) modified the R E index, being expressed by the molar ratio of chemical dissolved species in the surface waters (Eq. 2).

R E = 3 K + 3 N a + 2 C a + 1.25 M g - S i O 2 0.5 K + 0.5 N a + C a + 0.75 M g (2)

The atmospheric/soil CO2 consumption during chemical weathering processes (F CO2 - in mol/km2/yr) was estimated by the sum of corrected fluxes of Na+, K+, Ca2+, and Mg2+ (F (ion)sil - in mol/km2/yr), according to Equation 3 (Gaillardet et al. 1999Gaillardet J., Dupré B., Louvat P., Allègre C.J. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4):3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
https://doi.org/https://doi.org/10.1016/...
, Gurumurthy et al. 2012Gurumurthy G.P., Balakrishna K., Riotte J., Braun J.J., Audry S., Shankar H.N.U., Manjunatha B.R. 2012. Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300-301:61-69. https://doi.org/10.1016/j.chemgeo.2012.01.016
https://doi.org/https://doi.org/10.1016/...
).

F C O 2 = F N a s i l + F K s i l + 2 F C a s i l + 2 F M g s i l (3)

The chemical weathering of rocks (IQ - in t/km2/yr) can be estimated through the sum of the corrected annual fluvial flux of Na+, K+, Ca2+, Mg2+, and SiO2 (F W (ion) - in t/km2/yr), i.e., after correction of atmospheric inputs and anthropogenic contributions, according to Equation 5 (Probst 1992Probst J.L. 1992. Géochimie et Hydrologie de l’Érosion Continentale. Mécanisms Bilan Global Actuel et Fluctuations au Cours des 500 Derniers millions d’annés. Sciences Géologiques Bulletin, 94:1-161.). The ratio among the IQ and the average density of rocks for the watershed represent the chemical weathering rate (Wq - in m/Myr), as expressed in Equation 5.

I Q = F W ( N a + ) + F W ( K + ) + F W ( C a 2 + ) + F W ( M g 2 + ) + F W ( S i O 2 ) (4)

W q = I Q ρ (5)

The soil removal rates (W m in m/Myr) can be calculated through Equation 5; however, the use of corrected TSS annual flux (t/km2/yr) and the average soil density (g/cm3) is necessary instead of IQ and average density of rocks, respectively (Mortatti et al. 1997Mortatti J., Victória R.L., Tardy Y. 1997. Balanço de alteração e erosão química na bacia amazônica. Geochimica Brasiliensis, 11(1):2-13. https://doi.org/10.21715/gb.v11i1.121
https://doi.org/https://doi.org/10.21715...
, Boeglin and Probst 1998Boeglin J.I., Probst J.L. 1998. Physical and chemical weathering rates and CO2 consumption in a tropical lateritic environment: the upper Niger basin. Chemical Geology, 148(3-4):137-156. https://doi.org/10.1016/S0009-2541(98)00025-4
https://doi.org/https://doi.org/10.1016/...
).

RESULTS

Table 1 shows the results of Q, pH, EC, T and the concentrations of dissolved ions and SiO2, TDS, and TSS, with their respective discharge weighted average for the study period.

Table 1.
Physical and chemical parameters for the Sorocaba River surface waters.

The discharge showed seasonal variation in consonance with the historical data of the monthly average (Fig. 2A), with the highest value obtained in Jan/2010 (230.40 m3/s) and the lowest in Jun/2009 (28.77 m3/s). Despite the similar seasonality, the average discharge for the study period (95.69 m3/s) was 1.8 times higher than the historical annual average for the period of 1979-2008 (53.8 m3/s). This is justified by the fact that the rainfall in the study period (2,101 mm) was higher than the historical average (1,276 mm), with a direct impact on the discharge values. During the historical period, a similar occurrence was observed only in 1983, with an annual rainfall of 2,054.0 mm and average discharge of 143.49 m3/s.

The Sorocaba River waters presented a pH close to neutral, ranging from 6.5 to 6.9. The EC showed a significant seasonal variation (annual average of 104.6 mS/cm), with values below 74 mS/cm in the months of highest rainfall and discharge, and values above 135 mS/cm in Jun and Jul/2009. During the dry season (May to October), EC values were higher than the expected limit for natural waters, i.e., 100 mS/cm (Hermes and Silva 2004Hermes L.C., Silva A.S. 2004. Avaliação da qualidade das águas: manual prático. Brasília, Embrapa Informação Tecnológica, 55 p.). The T followed the seasonal variation, with the lower values in winter (16.5ºC in Aug/2009) and higher in summer (27.5ºC in Jan/2010).

The concentration of [TSS] was directly related to the discharge (Fig. 3A). According to Probst (1986Probst J.L. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical e chemical erosion rates in a calcareous molasse basin. Journal des Sciences Hydrologiques, 31(1):61-79. https://doi.org/10.1080/02626668609491028
https://doi.org/https://doi.org/10.1080/...
), for most world rivers the model obtained for the relationship between [TSS] and Q ([TSS] = a.Q b ) presents positive b exponent with values between 1 and 2, indicating that the increase in [TSS] is a function of the discharge increase. This exponent in the model established for the Sorocaba River was 0.7039, indicating that the [TSS] was also influenced by rainfall. This influence is highlighted in the November and December 2009, when the fluvial water sampling was performed after two days of significant precipitation, with accumulated volumes of 45.8 and 25.9 mm, respectively.

Figure 3.
Relationships (A) between discharge and [TSS] and (B) between discharge and [TDS], (C) and charge balance in the Sorocaba River in the study period, with S+ and S- corresponding to total dissolved cations and anions, respectively.

On the other hand, the relationship between [TDS] and discharge was inverse and significant (Fig. 3B), which characterizes the dilution process with increasing discharge. Among the dissolved chemical species that composes the TDS, evaluable on a molar basis of C WAV , the anionic predominance of HCO3 - (33.1%) was verified, followed by Cl-, SO4 2-, NO3 -, and PO4 3-, while for the cations the greatest participation was Na+, with 20.6%, followed by Ca2+, Mg2+, and K+, respectively, and the SiO2 represented 12.8% of the TDS. The relationship “sum of cation vs. sum of anion” (Probst 1992Probst J.L. 1992. Géochimie et Hydrologie de l’Érosion Continentale. Mécanisms Bilan Global Actuel et Fluctuations au Cours des 500 Derniers millions d’annés. Sciences Géologiques Bulletin, 94:1-161.), in meq/L, indicated a deficit of anionic charge in the charge balance (Fig. 3C). It can be attributed to the presence of dissolved organic anions not counted in this study, such as dissolved organic carbon (Probst et al. 1992Probst J.L., Nkounkou R.R., Krempp G., Bricquet J.P., Thiébaux J.P., Olivry J.C. 1992. Dissolved major elements exported by the Congo and the Ubangui rivers during the period 1987-1989. Journal of Hydrology, 135(1-4):237-257. https://doi.org/10.1016/0022-1694(92)90090-I
https://doi.org/https://doi.org/10.1016/...
, Boeglin and Probst 1996Boeglin J.I., Probst J.L. 1996. Transports fluviaux de matières dissoutes et particulaires sur un basin versant em région tropicale: le basin versant Du Niger au cours de la période 1990-1993. Science Géologique Bulletin, 49(1-4):25-45. https://doi.org/10.3406/sgeol.1996.1934
https://doi.org/https://doi.org/10.3406/...
, Laraque et al. 2013Laraque A., Moquet J.S., Alkattan R., Steiger J., Mora A., Adèle G., Castellanos B., Lagane C., Lopez J.L., Perez J., Rodriguez M, Rosales J. 2013. Seasonal variability of total dissolved fluxes and origin of major dissolved elements within a large tropical river: The Orinoco, Venezuela. Journal of South American Earth Sciences, 44:4-17. http://dx.doi.org/10.1016/j.jsames.2012.12.011
https://doi.org/http://dx.doi.org/10.101...
).

DISCUSSION

Dynamics of fluvial transport in the Sorocaba River basin

The fluvial fluxes integrate the contributions of the chemical weathering and soil removal processes that occur in natural watersheds. However, nowadays it is also necessary to consider the atmospheric inputs and anthropogenic influences in the fluvial dynamics (Stallard and Edmond 1981Stallard R.F., Edmond J.M. 1981. Geochemistry of the Amazon Basin. 1. Precipitation chemistry and marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research, 86(C10):9844-9858. https://doi.org/10.1029/JC086iC10p09844
https://doi.org/https://doi.org/10.1029/...
, Mortatti et al. 1997Mortatti J., Victória R.L., Tardy Y. 1997. Balanço de alteração e erosão química na bacia amazônica. Geochimica Brasiliensis, 11(1):2-13. https://doi.org/10.21715/gb.v11i1.121
https://doi.org/https://doi.org/10.21715...
, Semhi et al. 2000Semhi K., Amiotte-Suchet P., Clauer N., Probst J.L. 2000. Impact of nitrogen fertilizers on the natural weathering-erosion process and fluvial transport in the Garonne basin. Applied Geochemistry, 15(6):865-878. https://doi.org/10.1016/S0883-2927(99)00076-1
https://doi.org/https://doi.org/10.1016/...
, Bortoletto Junior et al. 2002Bortoletto Junior M.J., Mortatti J., Probst J.L. 2002. Erosão química na bacia hidrográfica do rio Corumbataí (SP). Geochimica Brasiliensis, 16(1):99-111. https://doi.org/10.21715/gb.v16i1.501
https://doi.org/https://doi.org/10.21715...
, Conceição and Bonotto 2004Conceição F.T., Bonotto D.M. 2004. Weathering rates and anthropogenic influences in a sedimentary basin, São Paulo State, Brazil. Applied Geochemistry, 19(4):575-591. http://dx.doi.org/10.1016/j.apgeochem.2003.07.002
https://doi.org/http://dx.doi.org/10.101...
, Weijden and Pacheco 2006Weijden H.V., Pacheco F.A.L. 2006. Hydrogeochemistry in the Vouga River basin (central Portugal): Pollution and chemical weathering. Applied Geochemistry, 21(4):580-613. https://doi.org/10.1016/j.apgeochem.2005.12.006
https://doi.org/https://doi.org/10.1016/...
, Mortatti et al. 2008Mortatti J., Probst J.L., Fernandes A.M., Mortatti B.C., Oliveira H. 2008. Influence of discharge on silicate weathering dynamics of the Tiete river basin: major cations and dissolved silica approach. Geochimica Brasiliensis, 22(1):15-26. https://doi.org/10.21715/gb.v22i1.275
https://doi.org/https://doi.org/10.21715...
, Conceição et al. 2010Conceição F.T., Sardinha D.S., Souza A.D.G., Navarro G.R.B. 2010. Anthropogenic influences on annual flux of cations and anions at Meio Stream Basin, São Paulo State, Brazil. Water Air and Soil Pollution, 205:79-91. https://doi.org/10.1007/s11270-009-0057-1
https://doi.org/https://doi.org/10.1007/...
, Hissler et al. 2015Hissler C., Hostache R., Iffly J.F., Pfister L., Stille P. 2015. Anthropogenic Rare Earth Element fluxes into floodplains: coupling between geochemical monitoring and hydrodynamic-sediment transport modelling. Comptes Rendus Geoscience, 347(5-6):294-303. https://doi.org/10.1016/j.crte.2015.01.003
https://doi.org/https://doi.org/10.1016/...
, 2016Hissler C., Stille P., Iffly J.F., Guignard C., Chabaux F., Pfister L. 2016. Origin and dynamics of Rare Earth Elements during flood events in contaminated river basins: Sr-Nd-Pb evidence. Environmental Science & Technology, 50(9):4624-4631. https://doi.org/10.1021/acs.est.5b03660
https://doi.org/https://doi.org/10.1021/...
).

The F river of dissolved chemical species, TDS and TSS were quantified in the specific transport form, the result of the product between C WAV and average discharge of the study period weighted by surface of study area, according to the stochastic methodology proposed by Probst (1992Probst J.L. 1992. Géochimie et Hydrologie de l’Érosion Continentale. Mécanisms Bilan Global Actuel et Fluctuations au Cours des 500 Derniers millions d’annés. Sciences Géologiques Bulletin, 94:1-161.). F rainfall was represented by the specific input of solute, obtained from the total precipitation in the study period (2,101 mm) and the average concentration of dissolved chemical species obtained by Fernandes (2012Fernandes A.M. 2012. Características hidrogeoquímicas da bacia de drenagem do rio Sorocaba, SP: processos erosivos mecânicos e químicos. PhD Thesis, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 197 p.).

The F anthropogenic for dissolved chemical species, TDS and TSS were obtained using secondary data, despite the uncertainties associated with these data regarding the reality of the studied basin. In relation to dissolved load, it was considering the per capita values of the dissolved chemical species present in untreated domestic effluents discharged directly in the river (g/hab/day) established by Mortatti et al. (2008Mortatti J., Probst J.L., Fernandes A.M., Mortatti B.C., Oliveira H. 2008. Influence of discharge on silicate weathering dynamics of the Tiete river basin: major cations and dissolved silica approach. Geochimica Brasiliensis, 22(1):15-26. https://doi.org/10.21715/gb.v22i1.275
https://doi.org/https://doi.org/10.21715...
, 2012Mortatti J., Vendramini D., Oliveira H. 2012. Avaliação da poluição doméstica fluvial na zona urbana do município de Piracicaba, SP, Brasil. Ambiente e Água, 7(2):110-119. http://dx.doi.org/10.4136/ambi-agua.846
https://doi.org/http://dx.doi.org/10.413...
) for the Médio Tietê basin (SiO2 = 0.84, Ca2+ = 7.50, Mg2+ = 1.3, Na+ = 13.1, K+ = 2.6, HCO3 - = 42.0, Cl- = 7.1, and SO4 2- = 12.5), and the total population upstream of the sampling point (1,061,023 inhabitants). The anthropogenic contribution of SiO2 was considered negligible, such as reported in other studies (Mortatti et al. 2008Mortatti J., Probst J.L., Fernandes A.M., Mortatti B.C., Oliveira H. 2008. Influence of discharge on silicate weathering dynamics of the Tiete river basin: major cations and dissolved silica approach. Geochimica Brasiliensis, 22(1):15-26. https://doi.org/10.21715/gb.v22i1.275
https://doi.org/https://doi.org/10.21715...
, 2012Mortatti J., Vendramini D., Oliveira H. 2012. Avaliação da poluição doméstica fluvial na zona urbana do município de Piracicaba, SP, Brasil. Ambiente e Água, 7(2):110-119. http://dx.doi.org/10.4136/ambi-agua.846
https://doi.org/http://dx.doi.org/10.413...
). On the other hand, the F anthropogenic associated to suspended sediment load was represented by the per capita TSS load contained in untreated urban sewage (0.022 kg/hab/day), obtained from average production of untreated urban sewage (100 L/hab/day) and respective TSS average concentration (220 mg/L), both global references data published by Tchobanoglous and Burton (1991Tchobanoglous G., Burton F.L. 1991. Wastewater engineering: treatment, disposal and reuse. 3. ed. New York, McGraw-Hill, 1334 p.), the total population upstream of the sampling point and the respective percentage of urban sewage treatment (17.5%) (IBGE 2010Instituto Brasileiro de Geografia e Estatística (IBGE) . Dados do Censo 2010. Diário Oficial da União, Brasília, DF, 4 nov. 2010. Available at: <Available at: http://www.ibge.gov.br/censo2010/dados_divulgados/index.php?uf=35 >. Accessed on: Dec 3, 2010.
http://www.ibge.gov.br/censo2010/dados_d...
).

The fluxes of cations, anions, silica, TDS, and TSS in the Sorocaba River basin are shown in Table 2. The total fluvial flux of TDS was 33% higher than that observed to TSS flux. Among the dissolved chemical species, the HCO3 - presented the highest fluvial flux, corresponding to 43% of TDS, followed by SiO2 (16.4%), Ca2+ (11.8%), Na+ (10.1%), and Cl- (7.8%), while the fluvial flux presented by SO4 2-, NO3 -, K+, Mg2+ and PO4 3- were lower than 5 t/km2/yr and together represented the remaining 10.9% of TDS. The atmospheric inputs account for 17.3% of the total specific flux of TDS in the Sorocaba River. Regarding the anthropogenic inputs, there was a higher contribution to the dissolved load (ca. 14% of the fluvial TDS) than to the suspended solids load (ca. 4% of the fluvial TSS).

Table 2.
The annual flux (t/km2/yr) of total suspended solids (TSS), total dissolved solids (TDS), dissolved silica, cations and anions in the Sorocaba River basin.

Assuming that the suspended load represents approximately 90% of the total sediment river flux (Walling and Fang 2003Walling D.E., Fang D. 2003. Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 39(1-2):111-126. https://doi.org/10.1016/S0921-8181(03)00020-1
https://doi.org/https://doi.org/10.1016/...
), the specific flux of the total suspended solids exported by the Sorocaba River was estimated at 45.59 t/km2/yr. After correction of the anthropogenic contributions, the specific flux related to the soil removal (F w ) was 43.81 t/km2/yr. According to the classification proposed by Meybeck et al. (2003Meybeck M., Laroche L., Dürr H.H., Syvitski J.P.M. 2003. Global variability of daily total suspended solids and their fluxes in rivers. Global and Planetary Change, 39(1-2):65-93. https://doi.org/10.1016/S0921-8181(03)00018-3
https://doi.org/https://doi.org/10.1016/...
) for the world’s rivers, from very low to extremely high, the soil removal in the Sorocaba River basin was considered as medium-specific sediment flux (range from18.25 to 73 t/km2/yr).

Chemical weathering processes and atmospheric/soil CO2 consumption

The weathering process is characterized according to the classification proposed by Pedró (1966Pedró G. 1966. Essais sur la caractérisation géochimique des différents processus zonaux résultant de l’altération de roches superficielles (cycle aluminosillicique). Comptes Rendus de l’Academie de Science de Paris, 262:1821-1831.), where R E ≈ 0 characterizes the total hydrolysis process called allitization, with only aluminum and iron fixed as insoluble hydroxides; when R E ≈ 2, the process is called partial hydrolysis with monosiallitization, occurring the kaolinite formation; and to R E ≈ 4 the predominant process is the partial hydrolysis with bisiallitization and is related to the formation of mineral 2:1, such as montmorillonite.

The predominant process of chemical weathering of rocks in the Sorocaba River basin, was determined using the R E index (Eq. 2) and corresponded to 2.4, value that characterizes the predominance of partial hydrolysis with a tendency to monosiallitization, i.e., to the kaolinite stability domain, similar to that observed in the Amazonas River basin (Mortatti and Probst 2003Mortatti J., Probst J.L. 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chemical Geology, 197(1-4):177-196. https://doi.org/10.1016/S0009-2541(02)00349-2
https://doi.org/https://doi.org/10.1016/...
). However, in two watersheds (Tietê and Piracicaba river basins) located in the same region of the Sorocaba River, a different situation was verified, i.e., a tendency to the bisiallitization domain, probably due to extensive agricultural areas with a high degree of soil tillage, fact that may influence the remobilization of major ions instead of silica (Bortoletto Junior 2004Bortoletto Junior M.J. 2004. Características hidrogeoquímicas e processos erosivos mecânicos e químicos nas bacias de drenagem dos rios Tietê e Piracicaba. PhD Thesis, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 202 p.).

According to Conceição and Bonotto (2004Conceição F.T., Bonotto D.M. 2004. Weathering rates and anthropogenic influences in a sedimentary basin, São Paulo State, Brazil. Applied Geochemistry, 19(4):575-591. http://dx.doi.org/10.1016/j.apgeochem.2003.07.002
https://doi.org/http://dx.doi.org/10.101...
) and Fernandes et al. (2016aFernandes A.M., Conceição F.T., Spatti Junior E.P., Sardinha D.S., Mortatti J. 2016a. Chemical weathering rates and atmospheric/soil CO2 consumption of igneous and metamorphic rocks under tropical climate in southeastern Brazil. Chemical Geology, 443:54-66. https://doi.org/10.1016/j.chemgeo.2016.09.008
https://doi.org/https://doi.org/10.1016/...
), the main minerals found in the igneous and metamorphic rocks of the Sorocaba River basin are biotite (K(Mg,Fe)3(Si3Al)O10(OH)2), muscovite (KAl2(Si3Al)O10(OH)2), sillimanite (Al2SiO5), quartz (SiO2), microcline (KAlSi3O8), oligoclase ((Na,Ca)(Si,Al)4O8), and hornblende (Ca2Na(Mg,Fe)4(Al,Fe,Ti)AlSi8AlO22(OH)2). For sedimentary rocks, quartz, albite (NaAlSi3O8), microcline, kaolinite (Al2Si2O5(OH)), and illite (K0.9Al2Si4O10(OH)2) were highlighted. Theoretically, the weathering reactions involving the mineral rock of the Sorocaba River basin indicate that the Na+ has its origin in the hydrolysis of albite, hornblende and plagioclase; K+ ions are derived from the hydrolysis of muscovite, microcline, biotite and illite; the Ca2+ can be attributed to the hydrolysis of hornblende and plagioclase; and Mg2+ can be released by the hydrolysis of hornblende and biotite. In addition, the Sorocaba River basin does not contain volumetrically significant Cl-, NO3 -, PO4 3- or SO4 2- bearing minerals. Therefore, only small inputs of these anions are expected in the rivers due to water-rock interactions. Quartz and kaolinite are not weathered and remain in the soil profile, as well as the supergene minerals, i.e., kaolinite, goethite (FeOOH), and rutile (TiO2).

The atmospheric/soil CO2 consumption during the chemical weathering processes in the Sorocaba River basin was obtained using Equation 3 and corresponded to 2.3 × 105 mol/km2/yr. This value was lower than that observed in the Tietê River basin (3.8 × 105 mol/km2/yr, Bortoletto Junior 2004Bortoletto Junior M.J. 2004. Características hidrogeoquímicas e processos erosivos mecânicos e químicos nas bacias de drenagem dos rios Tietê e Piracicaba. PhD Thesis, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 202 p.). However, it was higher than other Brazilian watersheds, such as the Amazonas Basin (0.3 × 105 mol/km2/yr, Mortatti and Probst 2003Mortatti J., Probst J.L. 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chemical Geology, 197(1-4):177-196. https://doi.org/10.1016/S0009-2541(02)00349-2
https://doi.org/https://doi.org/10.1016/...
) and Jamari and Jiparana basins (0.8 × 105 and 1.4 × 105 mol/km2/yr, respectively, Mortatti et al. 1992Mortatti J., Probst J.L., Ferreira J.R. 1992. Hydrological and geochemical characteristics of the Jamari and Jiparana river basin (Rondonia, Brazil). GeoJournal, 26:287-296. https://doi.org/10.1007/BF02629808
https://doi.org/https://doi.org/10.1007/...
) in northern region, or in the Paraná Basin (0.9 × 105 mol/km2/yr, Gaillardet et al. 1999Gaillardet J., Dupré B., Louvat P., Allègre C.J. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4):3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
https://doi.org/https://doi.org/10.1016/...
) and Piracicaba Basin (1.4 × 105 mol/km2/yr, Bortoletto Junior 2004Bortoletto Junior M.J. 2004. Características hidrogeoquímicas e processos erosivos mecânicos e químicos nas bacias de drenagem dos rios Tietê e Piracicaba. PhD Thesis, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 202 p.), both in the Southeastern Brazilian region.

Chemical weathering and soil removal rates

The IQ value in the Sorocaba River basin, obtained using Equation 4 and the data of Table 2, corresponded to a flux of 19.1 t/km2/yr, representing 31.4% of TDS flux at the river. The Amazonas and Tietê River basins showed higher fluxes (IQ) than that observed for the Sorocaba River basin, with 32.2 e 41.4 t/km2/yr, respectively (Mortatti and Probst 2003Mortatti J., Probst J.L. 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chemical Geology, 197(1-4):177-196. https://doi.org/10.1016/S0009-2541(02)00349-2
https://doi.org/https://doi.org/10.1016/...
, Bortoletto Junior 2004Bortoletto Junior M.J. 2004. Características hidrogeoquímicas e processos erosivos mecânicos e químicos nas bacias de drenagem dos rios Tietê e Piracicaba. PhD Thesis, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 202 p.). The chemical weathering rate (Wq) for the Sorocaba River basin was calculated using Equation 5 and the regional value of the mean density of rocks (2.65 g/cm3 - Brasil 1983Brasil. Ministério das Minas e Energia. 1983. Projeto RADAMBRASIL. Folhas 23/24, Rio de Janeiro. Levantamento de Recursos Naturais, 32:27-247.) and corresponded to 7.2 m/Myr. This rate was 22 and 54% higher than those obtained for the Tietê (5.9 m / Myr) and Piracicaba (4.7 m / Myr) river basins, respectively (Bortoletto Junior 2004Bortoletto Junior M.J. 2004. Características hidrogeoquímicas e processos erosivos mecânicos e químicos nas bacias de drenagem dos rios Tietê e Piracicaba. PhD Thesis, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 202 p.).

The soil removal rate in the Sorocaba River basin was 29.8 m/Myr, considering that the average soil density is 1.47 g/cm3 (Fernandes et al. 2012Fernandes A.M., Nolasco M.B., Hissler C., Mortatti J. 2012. Mechanical erosion in a tropical river basin in Southeastern Brazil: chemical characteristics and annual fluvial transport mechanisms. Journal of Geological Research, 8(1-2). http://dx.doi.org/10.1115/2012/127109
https://doi.org/http://dx.doi.org/10.111...
). This rate was lower than that observed in the Amazonas River basin (123 m/Myr, Mortatti and Probst 2003Mortatti J., Probst J.L. 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chemical Geology, 197(1-4):177-196. https://doi.org/10.1016/S0009-2541(02)00349-2
https://doi.org/https://doi.org/10.1016/...
) and higher than that in the Jamari and Jiparaná river basins (6.5 m/Myr in both basins, Mortatti et al. 1992Mortatti J., Probst J.L., Ferreira J.R. 1992. Hydrological and geochemical characteristics of the Jamari and Jiparana river basin (Rondonia, Brazil). GeoJournal, 26:287-296. https://doi.org/10.1007/BF02629808
https://doi.org/https://doi.org/10.1007/...
). The Tietê and Piracicaba river basins, located in the same geographical region as the Sorocaba River, presented higher rates when compared to those obtained in this study, i.e., 42.6 and 37.0 m/Myr, respectively (Bortoletto Junior 2004Bortoletto Junior M.J. 2004. Características hidrogeoquímicas e processos erosivos mecânicos e químicos nas bacias de drenagem dos rios Tietê e Piracicaba. PhD Thesis, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 202 p.). Considering the chemical weathering and soil removal rates in the Sorocaba River basin (7.2 and 29.8 m/Myr, respectively), in the present climatic setting, there is a soil thickness reduction.

The cooling/denudation crustal rates quantified using apatite fission track (AFT), apatite (U-Th)/He (AHe) and in situ cosmogenic 10Be could be used to compare the present soil removal rates obtained by a fluvial mass-balance with the Cenozoic soil removal rates. Values of past denudation obtained in southeast Brazil ranging from 8.8 to 15.7 m/Myr, using in situ cosmogenic 10Be (Cherem et al. 2012Cherem L.F.S., Varajão C.A.C., Salgado A.A.R., Varajão A.F.D.C., Braucher R., Bourlés D., Magalhães Júnior A.P., Nalini Júnior H.A. 2012. Denudação química e rebaixamento do relevo em bordas interplanálticas com substrato granítico: dois exemplos no SE de Minas Gerais. Revista Brasileira de Geomorfologia, 13:73-84. http://dx.doi.org/10.20502/rbg.v13i1.344
https://doi.org/http://dx.doi.org/10.205...
). Hackspacher et al. (2004Hackspacher P.C., Ribeiro L.F.B., Ribeiro M.C.S., Fetter A.H., Hadler Neto J.C., Tello C.E.S., Dantas E.L. 2004. Consolidation and break-up of the South American platform in southeastern Brazil: tectonothermal and denudation histories. Gondwana Research, 7(1):91-101. https://doi.org/10.1016/S1342-937X(05)70308-7
https://doi.org/https://doi.org/10.1016/...
) used AFT ages to indicate a cooling/denudation rate of 11 m/Myr at the boundary between the Paraná Sedimentary Basin and the basement rocks. The soil removal rate in the Sorocaba River basin (29.8 m/Myr) is almost 3-fold higher than the estimates of Cenozoic denudation reported Cherem et al. (2012Cherem L.F.S., Varajão C.A.C., Salgado A.A.R., Varajão A.F.D.C., Braucher R., Bourlés D., Magalhães Júnior A.P., Nalini Júnior H.A. 2012. Denudação química e rebaixamento do relevo em bordas interplanálticas com substrato granítico: dois exemplos no SE de Minas Gerais. Revista Brasileira de Geomorfologia, 13:73-84. http://dx.doi.org/10.20502/rbg.v13i1.344
https://doi.org/http://dx.doi.org/10.205...
) and Hackspacher et al. (2004Hackspacher P.C., Ribeiro L.F.B., Ribeiro M.C.S., Fetter A.H., Hadler Neto J.C., Tello C.E.S., Dantas E.L. 2004. Consolidation and break-up of the South American platform in southeastern Brazil: tectonothermal and denudation histories. Gondwana Research, 7(1):91-101. https://doi.org/10.1016/S1342-937X(05)70308-7
https://doi.org/https://doi.org/10.1016/...
). This difference can be explained by the present land use in the Sorocaba River basin, where the replacement of the original vegetation by agricultural and livestock activities increased the erosion processes and, consequently, the present denudation rates, even though the study region has remained roughly in the same latitude during the drift to west of South America, since the time of the separation of continents and the basalt eruptions of the Serra Geral Formation.

Couto Júnior et al. (2019Couto Júnior A.A., Conceição F.T., Fernandes A.M., Spatti Júnior E.P., Lupinacci C.M., Moruzzi R.B. 2019. Land use changes associated with the expansion of sugar cane crops and their influences on soil removal in a tropical watershed in São Paulo State (Brazil). Catena, 172:313-323. https://doi.org/10.1016/j.catena.2018.09.001
https://doi.org/https://doi.org/10.1016/...
) evaluated three different scenarios from land use changes and how they have affected soil loss in a watershed located in the PPD, using the USLE model. Similar to Sorocaba River basin, the main types of soils occurring in the studied area were Ultisol and Oxisol. The authors verified a similar soil removal rate, it was almost 3-fold higher than the long-term denudation rates suggested by the literature for the Peripheral Depression, and reinforced that the increase in the denudation rate is mainly related to land use/land cover changes than to the soil type present in the studied area.

CONCLUSION

This study aimed to evaluate the chemical weathering of rocks and soil removal processes that occur in the Sorocaba River basin and allowed a better understanding of the dynamics of fluvial transport of dissolved and suspended solids, of the chemical weathering processes and the atmospheric/soil CO2 consumption and of the relationship between chemical weathering and soil removal rates. The TSS concentration was directly related to the discharge and influenced by rainfall, with higher concentrations recorded after rainfall events. However, the TDS concentration showed dilution behavior in a wet period. The annual specific flux of TDS was 60.97 t/km2/yr, but after the atmospheric inputs and anthropogenic contributions (ca. 17 and 14%, respectively) this value was corrected to 41.85 t/km2/yr and represents the fluvial flux related to the chemical weathering of rocks. The total annual specific flux of TSS was 45.59 t/km2/yr, with a small portion derived from the anthropogenic contributions (ca. 4%). The chemical weathering process showed a tendency to monosiallitization (RE = 2.4), with an atmospheric/soil CO2 consumption rate of 2.3 × 105 mol/km2/yr. The chemical weathering and soil removal rates were 7.2 and 29.8 m/Myr, respectively, indicating a soil thickness reduction. The present soil removal rate in the Sorocaba River basin was almost 3-fold higher than the Cenozoic soil removal rates, reinforcing that the human-landscape systems are complex and affect the natural denudation rates, and, consequently, the present landscape evolution in the State of São Paulo.

ACKNOWLEDGMENTS

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Process No. 08/57104-4 and 08/09369-9) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process No. 134169/2009-3), for financial support. The authors would also like the Stable Isotope Laboratory of the Center for Nuclear Energy in Agriculture (LIE-CENA/USP), São Paulo, Brazil, for the research infrastructure. A. M. Fernandes is also grateful to the Graduate Program of the Faculty of Civil Engineering of UNESP Bauru, for the Postdoctoral grant. Specially, Dr. Claudio Riccomini (Editor-in-Chief) and two anonymous referees are thanked for their detailed and insightful review comments, which helped to improve the manuscript.

REFERENCES

  • American Public Health Association (APHA). 1999. Standard Methods for the Examination of Water and Wastewater 20. ed. Washington D.C., APHA.
  • Barth T.F.W. 1961. Abundance of the elements, areal averages and geochemical cycles. Geochimica et Cosmochimica Acta, 23(1-2):1-8. https://doi.org/10.1016/0016-7037(61)90086-2
    » https://doi.org/https://doi.org/10.1016/0016-7037(61)90086-2
  • Boeglin J.L., Mortatti J., Tardy Y. 1997. Érosion chimique et mécanique sur le basin amont du Niger (Guinée, Mali). Bilan géochimique de l’altération en milieu tropical. Comptes Rendus de l’Academie des Sciences, Series IIA, 325(3):185-191. https://doi.org/10.1016/S1251-8050(97)88287-0
    » https://doi.org/https://doi.org/10.1016/S1251-8050(97)88287-0
  • Boeglin J.I., Probst J.L. 1996. Transports fluviaux de matières dissoutes et particulaires sur un basin versant em région tropicale: le basin versant Du Niger au cours de la période 1990-1993. Science Géologique Bulletin, 49(1-4):25-45. https://doi.org/10.3406/sgeol.1996.1934
    » https://doi.org/https://doi.org/10.3406/sgeol.1996.1934
  • Boeglin J.I., Probst J.L. 1998. Physical and chemical weathering rates and CO2 consumption in a tropical lateritic environment: the upper Niger basin. Chemical Geology, 148(3-4):137-156. https://doi.org/10.1016/S0009-2541(98)00025-4
    » https://doi.org/https://doi.org/10.1016/S0009-2541(98)00025-4
  • Bonotto D.M., Fujimori K., Moreira-Nordemann L.M. 2007. Determination of weathering rate of the Morro do Ferro Th-REEs deposit, Brazil using U-isotope method. Applied Radiation and Isotopes, 65(5):474-481. http://dx.doi.org/10.1016/j.apradiso.2006.11.003
    » https://doi.org/http://dx.doi.org/10.1016/j.apradiso.2006.11.003
  • Bortoletto Junior M.J. 2004. Características hidrogeoquímicas e processos erosivos mecânicos e químicos nas bacias de drenagem dos rios Tietê e Piracicaba PhD Thesis, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 202 p.
  • Bortoletto Junior M.J., Mortatti J., Probst J.L. 2002. Erosão química na bacia hidrográfica do rio Corumbataí (SP). Geochimica Brasiliensis, 16(1):99-111. https://doi.org/10.21715/gb.v16i1.501
    » https://doi.org/https://doi.org/10.21715/gb.v16i1.501
  • Brasil. Ministério das Minas e Energia. 1983. Projeto RADAMBRASIL. Folhas 23/24, Rio de Janeiro Levantamento de Recursos Naturais, 32:27-247.
  • Chakrapani G.J. 2005. Factors controlling variations in river sediment loads. Current Science, 88(4):569-575.
  • Cherem L.F.S., Varajão C.A.C., Salgado A.A.R., Varajão A.F.D.C., Braucher R., Bourlés D., Magalhães Júnior A.P., Nalini Júnior H.A. 2012. Denudação química e rebaixamento do relevo em bordas interplanálticas com substrato granítico: dois exemplos no SE de Minas Gerais. Revista Brasileira de Geomorfologia, 13:73-84. http://dx.doi.org/10.20502/rbg.v13i1.344
    » https://doi.org/http://dx.doi.org/10.20502/rbg.v13i1.344
  • Conceição F.T., Antunes M.L.P., Angelucci V.A., Moruzzi R.B., Navarro G.R.B. 2013. Rainwater chemical composition and annual atmospheric deposition in Sorocaba, (São Paulo State), Brazil. Revista Brasileira de Geofísica, 31(1):5-15. http://dx.doi.org/10.22564/rbgf.v31i1.242
    » https://doi.org/http://dx.doi.org/10.22564/rbgf.v31i1.242
  • Conceição F.T., Bonotto D.M. 2003. Use of U-isotopes disequilibrium to evaluate the weathering rates and fertilizer derived uranium at São Paulo State, Brazil. Environmental Geology, 44:408-418. http://dx.doi.org/10.1007/s00254-003-0775-4
    » https://doi.org/http://dx.doi.org/10.1007/s00254-003-0775-4
  • Conceição F.T., Bonotto D.M. 2004. Weathering rates and anthropogenic influences in a sedimentary basin, São Paulo State, Brazil. Applied Geochemistry, 19(4):575-591. http://dx.doi.org/10.1016/j.apgeochem.2003.07.002
    » https://doi.org/http://dx.doi.org/10.1016/j.apgeochem.2003.07.002
  • Conceição F.T., Sardinha D.S., Godoy L.H., Fernandes A.M., Pedrazzi F.J.M. 2015. Influência sazonal no transporte específico de metais totais e dissolvidos nas águas fluviais da Bacia do Alto Sorocaba (SP). Geochimica Brasiliensis, 29(1):23-34. http://dx.doi.org/10.5327/Z0102-9800201500010003
    » https://doi.org/http://dx.doi.org/10.5327/Z0102-9800201500010003
  • Conceição F.T., Sardinha D.S., Navarro G.R.B., Antunes M.L.P., Agelucci V.A. 2011. Composição química das águas pluviais e deposição anual na bacia do Alto Sorocaba (SP). Química Nova, 34(4):610-616. http://dx.doi.org/10.1590/S0100-40422011000400011
    » https://doi.org/http://dx.doi.org/10.1590/S0100-40422011000400011
  • Conceição F.T., Sardinha D.S., Souza A.D.G., Navarro G.R.B. 2010. Anthropogenic influences on annual flux of cations and anions at Meio Stream Basin, São Paulo State, Brazil. Water Air and Soil Pollution, 205:79-91. https://doi.org/10.1007/s11270-009-0057-1
    » https://doi.org/https://doi.org/10.1007/s11270-009-0057-1
  • Couto Júnior A.A., Conceição F.T., Fernandes A.M., Spatti Júnior E.P., Lupinacci C.M., Moruzzi R.B. 2019. Land use changes associated with the expansion of sugar cane crops and their influences on soil removal in a tropical watershed in São Paulo State (Brazil). Catena, 172:313-323. https://doi.org/10.1016/j.catena.2018.09.001
    » https://doi.org/https://doi.org/10.1016/j.catena.2018.09.001
  • Departamento de Águas e Energia Elétrica (DAEE). 2010. Banco de dados hidrológicos Available at: <Available at: http://www.hidrologia.daee.sp.gov.br/ >. Accessed on: Jun 15, 2016.
    » http://www.hidrologia.daee.sp.gov.br/
  • Dionex Corporation. 2004. ICS-90 ion chromatography system operator’s manual California: Dionex Corporation. (Document n.031851, revision 4).
  • Edmond J.M. 1970. High precision determination of titration alkalinity and total carbon dioxide content of seawater by potentiometric titration. Deep-Sea Research Part I: Oceanographic Research Papers, 17(4):737-750. https://doi.org/10.1016/0011-7471(70)90038-0
    » https://doi.org/https://doi.org/10.1016/0011-7471(70)90038-0
  • Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). 2013. Sistema brasileiro de classificação de solos 3. ed. Brasília, EMBRAPA.
  • Fernandes A.M. 2012. Características hidrogeoquímicas da bacia de drenagem do rio Sorocaba, SP: processos erosivos mecânicos e químicos PhD Thesis, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 197 p.
  • Fernandes A.M., Conceição F.T., Spatti Junior E.P., Sardinha D.S., Mortatti J. 2016a. Chemical weathering rates and atmospheric/soil CO2 consumption of igneous and metamorphic rocks under tropical climate in southeastern Brazil. Chemical Geology, 443:54-66. https://doi.org/10.1016/j.chemgeo.2016.09.008
    » https://doi.org/https://doi.org/10.1016/j.chemgeo.2016.09.008
  • Fernandes A.M., Hissler C., Conceição F.T., Spatti Junior E.P., Mortatti J. 2016b. Combined analysis of trace elements and isotopic composition of particulate organic matter in suspended sediment to assess their origin and flux in a tropical disturbed watershed. Environmental Pollution, 218:844-854. http://dx.doi.org/10.1016/j.envpol.2016.08.008
    » https://doi.org/http://dx.doi.org/10.1016/j.envpol.2016.08.008
  • Fernandes A.M., Nolasco M.B., Hissler C., Mortatti J. 2012. Mechanical erosion in a tropical river basin in Southeastern Brazil: chemical characteristics and annual fluvial transport mechanisms. Journal of Geological Research, 8(1-2). http://dx.doi.org/10.1115/2012/127109
    » https://doi.org/http://dx.doi.org/10.1115/2012/127109
  • Gaillardet J., Dupre B., Allegre C.J., Négrel P. 1997. Chemical and physical denudation in the Amazon River Basin. Chemical Geology, 142(3-4):141-173. https://doi.org/10.1016/S0009-2541(97)00074-0
    » https://doi.org/https://doi.org/10.1016/S0009-2541(97)00074-0
  • Gaillardet J., Dupré B., Louvat P., Allègre C.J. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4):3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
    » https://doi.org/https://doi.org/10.1016/S0009-2541(99)00031-5
  • Gibbs R.J. 1970. Mechanisms controlling world river water chemistry. Science, 170(3962):1088-1090. https://doi.org/10.1126/science.170.3962.1088
    » https://doi.org/https://doi.org/10.1126/science.170.3962.1088
  • Godoy A.M., Hackspacher P.C., Oliveira M.A.F. 1996. Geologia da folha Sorocaba. Geociências, 15:89-110.
  • Gurumurthy G.P., Balakrishna K., Riotte J., Braun J.J., Audry S., Shankar H.N.U., Manjunatha B.R. 2012. Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300-301:61-69. https://doi.org/10.1016/j.chemgeo.2012.01.016
    » https://doi.org/https://doi.org/10.1016/j.chemgeo.2012.01.016
  • Hackspacher P.C., Ribeiro L.F.B., Ribeiro M.C.S., Fetter A.H., Hadler Neto J.C., Tello C.E.S., Dantas E.L. 2004. Consolidation and break-up of the South American platform in southeastern Brazil: tectonothermal and denudation histories. Gondwana Research, 7(1):91-101. https://doi.org/10.1016/S1342-937X(05)70308-7
    » https://doi.org/https://doi.org/10.1016/S1342-937X(05)70308-7
  • Hermes L.C., Silva A.S. 2004. Avaliação da qualidade das águas: manual prático. Brasília, Embrapa Informação Tecnológica, 55 p.
  • Hissler C., Hostache R., Iffly J.F., Pfister L., Stille P. 2015. Anthropogenic Rare Earth Element fluxes into floodplains: coupling between geochemical monitoring and hydrodynamic-sediment transport modelling. Comptes Rendus Geoscience, 347(5-6):294-303. https://doi.org/10.1016/j.crte.2015.01.003
    » https://doi.org/https://doi.org/10.1016/j.crte.2015.01.003
  • Hissler C., Stille P., Iffly J.F., Guignard C., Chabaux F., Pfister L. 2016. Origin and dynamics of Rare Earth Elements during flood events in contaminated river basins: Sr-Nd-Pb evidence. Environmental Science & Technology, 50(9):4624-4631. https://doi.org/10.1021/acs.est.5b03660
    » https://doi.org/https://doi.org/10.1021/acs.est.5b03660
  • Instituto Brasileiro de Geografia e Estatística (IBGE) . Dados do Censo 2010 Diário Oficial da União, Brasília, DF, 4 nov. 2010. Available at: <Available at: http://www.ibge.gov.br/censo2010/dados_divulgados/index.php?uf=35 >. Accessed on: Dec 3, 2010.
    » http://www.ibge.gov.br/censo2010/dados_divulgados/index.php?uf=35
  • Instituto de Pesquisas Tecnológicas (IPT). 2006. Relatório Zero da Bacia do Sorocaba e Médio Tietê - Atualização 2005 Relatório Técnico nº 80 401-205. São Paulo, IPT.
  • Johnson N.M., Likens G.E., Bormann F.H., Pierce P.S. 1968. Rate of chemical weathering of silicate minerals in New Hampshire. Geochimica et Cosmochimica Acta, 32(5):531-545. https://doi.org/10.1016/0016-7037(68)90044-6
    » https://doi.org/https://doi.org/10.1016/0016-7037(68)90044-6
  • Köppen W. 1948. Climatologia Mexico, Fondo de Cultura Econômica, 478 p.
  • Laraque A., Moquet J.S., Alkattan R., Steiger J., Mora A., Adèle G., Castellanos B., Lagane C., Lopez J.L., Perez J., Rodriguez M, Rosales J. 2013. Seasonal variability of total dissolved fluxes and origin of major dissolved elements within a large tropical river: The Orinoco, Venezuela. Journal of South American Earth Sciences, 44:4-17. http://dx.doi.org/10.1016/j.jsames.2012.12.011
    » https://doi.org/http://dx.doi.org/10.1016/j.jsames.2012.12.011
  • Lasaga A.C., Soler J.M., Ganor J., Burch T.E., Nagy K.L. 1994. Chemical weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta, 58(10):2361-2386. https://doi.org/10.1016/0016-7037(94)90016-7
    » https://doi.org/https://doi.org/10.1016/0016-7037(94)90016-7
  • Li S., Lu X.X., Bush R. 2014. Chemical weathering and CO2 consumption in the Lower Mekong River. Science of the Total Environment, 472:162-177. http://dx.doi.org/10.1016/j.scitotenv.2013.11.027
    » https://doi.org/http://dx.doi.org/10.1016/j.scitotenv.2013.11.027
  • Louvat P., Gislason S.R., Allègre C.J. 2008. Chemical and mechanical erosion rates in Iceland as deduced from river dissolved and solid material. American Journal of Science, 308(5):679-726. http://dx.doi.org/10.2475/05.2008.02
    » https://doi.org/http://dx.doi.org/10.2475/05.2008.02
  • Martin J.M., Meybeck M. 1979. Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7(3):173-206. https://doi.org/10.1016/0304-4203(79)90039-2
    » https://doi.org/https://doi.org/10.1016/0304-4203(79)90039-2
  • Meybeck M. 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287:401-428. https://doi.org/10.2475/ajs.287.5.401
    » https://doi.org/https://doi.org/10.2475/ajs.287.5.401
  • Meybeck M., Laroche L., Dürr H.H., Syvitski J.P.M. 2003. Global variability of daily total suspended solids and their fluxes in rivers. Global and Planetary Change, 39(1-2):65-93. https://doi.org/10.1016/S0921-8181(03)00018-3
    » https://doi.org/https://doi.org/10.1016/S0921-8181(03)00018-3
  • Millot R., Gaillardet J., Dupré B., Allègre C.J. 2002. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of Canadian Shield. Earth and Planetary Science Letters, 196(1-2):83-98. https://doi.org/10.1016/S0012-821X(01)00599-4
    » https://doi.org/https://doi.org/10.1016/S0012-821X(01)00599-4
  • Moreira-Nordemann L.M. 1980. Use of 234U/238U disequilibrium in measuring chemical weathering rate of rocks. Geochimica et Cosmochimica Acta, 44(1):103-108. https://doi.org/10.1016/0016-7037(80)90180-5
    » https://doi.org/https://doi.org/10.1016/0016-7037(80)90180-5
  • Moreira-Nordemann L.M. 1984. Salinity and weathering rate of rocks in a semi-arid region. Journal of Hydrology, 71(1-2):131-147. https://doi.org/10.1016/0022-1694(84)90074-X
    » https://doi.org/https://doi.org/10.1016/0022-1694(84)90074-X
  • Mortatti J., Probst J.L. 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chemical Geology, 197(1-4):177-196. https://doi.org/10.1016/S0009-2541(02)00349-2
    » https://doi.org/https://doi.org/10.1016/S0009-2541(02)00349-2
  • Mortatti J., Probst J.L., Fernandes A.M., Mortatti B.C., Oliveira H. 2008. Influence of discharge on silicate weathering dynamics of the Tiete river basin: major cations and dissolved silica approach. Geochimica Brasiliensis, 22(1):15-26. https://doi.org/10.21715/gb.v22i1.275
    » https://doi.org/https://doi.org/10.21715/gb.v22i1.275
  • Mortatti J., Probst J.L., Ferreira J.R. 1992. Hydrological and geochemical characteristics of the Jamari and Jiparana river basin (Rondonia, Brazil). GeoJournal, 26:287-296. https://doi.org/10.1007/BF02629808
    » https://doi.org/https://doi.org/10.1007/BF02629808
  • Mortatti J., Vendramini D., Oliveira H. 2012. Avaliação da poluição doméstica fluvial na zona urbana do município de Piracicaba, SP, Brasil. Ambiente e Água, 7(2):110-119. http://dx.doi.org/10.4136/ambi-agua.846
    » https://doi.org/http://dx.doi.org/10.4136/ambi-agua.846
  • Mortatti J., Victória R.L., Tardy Y. 1997. Balanço de alteração e erosão química na bacia amazônica. Geochimica Brasiliensis, 11(1):2-13. https://doi.org/10.21715/gb.v11i1.121
    » https://doi.org/https://doi.org/10.21715/gb.v11i1.121
  • Oliveira J.B., Camargo M.N., Rossi M., Calderano Filho B. 1999. Mapa pedológico do Estado de São Paulo: legenda expandida Campinas, Instituto Agronômico; Rio de Janeiro, Embrapa-Solos, 64 p.
  • Pedrazzi F.J.M., Conceição F.T., Sardinha D.S., Moschini-Carlos V., Pompêo M. 2013. Spatial and temporal quality of water in the Itupararanga Reservoir, Alto Sorocaba basin (SP), Brazil. Journal of Water Resources and Protection, 5(1):64-71. http://dx.doi.org/10.4236/jwarp.2013.51008
    » https://doi.org/http://dx.doi.org/10.4236/jwarp.2013.51008
  • Pedrazzi F.J.M., Conceição F.T., Sardinha D.S., Moschini-Carlos V., Pompêo M. 2014. Avaliação da qualidade de água do Reservatório de Itupararanga, bacia do Alto Sorocaba (SP). Geociências, 33(1):26-38.
  • Pedró G. 1966. Essais sur la caractérisation géochimique des différents processus zonaux résultant de l’altération de roches superficielles (cycle aluminosillicique). Comptes Rendus de l’Academie de Science de Paris, 262:1821-1831.
  • Perrota M.M., Salvador E.D., Lopes R.C., D’Agostinho L.Z., Peruffo N., Gomes S.D., Sachs L.L.B., Meira V.T., Garcia M.G.M., Lacerda Filho J.V. 2005. Mapa geológico do Estado de São Paulo, escala 1:750.000 São Paulo, Programa Geologia do Brasil - PGB, CPRM.
  • Probst J.L. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical e chemical erosion rates in a calcareous molasse basin. Journal des Sciences Hydrologiques, 31(1):61-79. https://doi.org/10.1080/02626668609491028
    » https://doi.org/https://doi.org/10.1080/02626668609491028
  • Probst J.L. 1992. Géochimie et Hydrologie de l’Érosion Continentale. Mécanisms Bilan Global Actuel et Fluctuations au Cours des 500 Derniers millions d’annés. Sciences Géologiques Bulletin, 94:1-161.
  • Probst J.L., Nkounkou R.R., Krempp G., Bricquet J.P., Thiébaux J.P., Olivry J.C. 1992. Dissolved major elements exported by the Congo and the Ubangui rivers during the period 1987-1989. Journal of Hydrology, 135(1-4):237-257. https://doi.org/10.1016/0022-1694(92)90090-I
    » https://doi.org/https://doi.org/10.1016/0022-1694(92)90090-I
  • Ribani M., Bottoli C.B.G., Collins C.H., Jardim I.C.S.F., Melo L.F.C. 2004. Validação em métodos cromatográficos e eletroforéticos. Química Nova, 27(5):771-780. http://dx.doi.org/10.1590/S0100-40422004000500017
    » https://doi.org/http://dx.doi.org/10.1590/S0100-40422004000500017
  • Riebe C.S., Kirchner J.W., Finkel R.C. 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters , 224(3-4):547-562. https://doi.org/10.1016/j.epsl.2004.05.019
    » https://doi.org/https://doi.org/10.1016/j.epsl.2004.05.019
  • Ross J.L.S. 1996. Geografia do Brasil São Paulo, EDUSP, 546 p. v. 3.
  • São Paulo. 1991. Lei nº 7.663/91 - Estabelece normas de orientação à Política Estadual de Recursos Hídricos bem como ao Sistema Integrado de Gerenciamento de Recursos Hídricos. Available at: <Available at: http://www.al.sp.gov.br/norma/?id=18836 >. Accessed on: Jun 22, 2016.
    » http://www.al.sp.gov.br/norma/?id=18836
  • Sardinha D.S., Bonotto D.M., Conceição F.T. 2010. Weathering rates at Alto Sorocaba basin, Brazil, using U-isotopes and major cations. Environmental Earth and Sciences, 61:1025-1036. http://dx.doi.org/10.1007/s12665-009-0424-7
    » https://doi.org/http://dx.doi.org/10.1007/s12665-009-0424-7
  • Semhi K., Amiotte-Suchet P., Clauer N., Probst J.L. 2000. Impact of nitrogen fertilizers on the natural weathering-erosion process and fluvial transport in the Garonne basin. Applied Geochemistry, 15(6):865-878. https://doi.org/10.1016/S0883-2927(99)00076-1
    » https://doi.org/https://doi.org/10.1016/S0883-2927(99)00076-1
  • Spatti Júnior E.P., Conceição F.T., Fernandes A.M., Sardinha D.S., Menegário A.A., Moruzzi R.B. 2019. Chemical weathering rates of clastic sedimentary rocks from the Paraná Basin in the Paulista Peripheral Depression, Brazil. Journal of South American Earth Science, 96:102369. http://dx.doi.org/10.1016/j.jsames.2019.102369
    » https://doi.org/http://dx.doi.org/10.1016/j.jsames.2019.102369
  • Stallard R.F., Edmond J.M. 1981. Geochemistry of the Amazon Basin. 1. Precipitation chemistry and marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research, 86(C10):9844-9858. https://doi.org/10.1029/JC086iC10p09844
    » https://doi.org/https://doi.org/10.1029/JC086iC10p09844
  • Stallard R.F., Edmond J.M. 1983. Geochemistry of the Amazon Basin. 2. The influence of the geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88(C14):9671-9688. https://doi.org/10.1029/JC088iC14p09671
    » https://doi.org/https://doi.org/10.1029/JC088iC14p09671
  • Stallard R.F., Edmond J.M. 1987. Geochemistry of the Amazon Basin. 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 92(C8):8293-8302. https://doi.org/10.1029/JC092iC08p08293
    » https://doi.org/https://doi.org/10.1029/JC092iC08p08293
  • Tardy Y. 1971. Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chemical Geology, 7(4):253-271. https://doi.org/10.1016/0009-2541(71)90011-8
    » https://doi.org/https://doi.org/10.1016/0009-2541(71)90011-8
  • Tchobanoglous G., Burton F.L. 1991. Wastewater engineering: treatment, disposal and reuse. 3. ed. New York, McGraw-Hill, 1334 p.
  • Teixeira W., Toledo M.C.M., Fairchild T.R., Taioli F. 2000. Decifrando a Terra São Paulo, Oficina de textos, 568 p.
  • United States Department of Agriculture (USDA). 1999. Soil Taxonomy - A basic system of soil classification for making and interpreting soils surveys. 2. ed. Washington, D.C., US Department of Agricultural Soil Conservation Service, 754 p.
  • Walling D.E., Fang D. 2003. Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 39(1-2):111-126. https://doi.org/10.1016/S0921-8181(03)00020-1
    » https://doi.org/https://doi.org/10.1016/S0921-8181(03)00020-1
  • Weijden H.V., Pacheco F.A.L. 2006. Hydrogeochemistry in the Vouga River basin (central Portugal): Pollution and chemical weathering. Applied Geochemistry, 21(4):580-613. https://doi.org/10.1016/j.apgeochem.2005.12.006
    » https://doi.org/https://doi.org/10.1016/j.apgeochem.2005.12.006
  • White A.F., Blum A.E. 1995. Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9):1729-1747. https://doi.org/10.1016/0016-7037(95)00078-E
    » https://doi.org/https://doi.org/10.1016/0016-7037(95)00078-E

ARTICLE INFORMATION

  • 1
    Manuscript ID: 20190030.

Publication Dates

  • Publication in this collection
    16 Mar 2020
  • Date of issue
    2020

History

  • Received
    30 Apr 2019
  • Accepted
    16 Dec 2019
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br