Acessibilidade / Reportar erro

Reconstruction of Precambrian terranes of Northeastern Brazil along Cambrian strike-slip faults: a new model of geodynamic evolution and gold metallogeny in the State of Bahia

Abstract

The Precambrian basement of Northeastern Brazil is the product of Rhyacian block convergence. The main deformation and intrusion of crustal granitoids occurred between 2.15 and 1.8 Ga ago. This large area has been subjected to long-lasting and rather uniform stresses during the Cambrian period. Gold provinces in Bahia represent metallogenetic products of distinct tectonothermal events. Gold mineralization took place during the Paleoproterozoic collision and the Cambrian convergence, respectively, accompanied by heat flow, crustal deformation, and granite intrusion. The tectonic framework of the region was reconstructed at ca. 700 Ma ago, considering the hypothesis of wrench-fault tectonics. The new hypothesis provides geological evidence and metallogenic constraints that make further investigation necessary, with reference to well-established São Francisco Craton concept and its peripheral fold belts.

KEYWORDS:
Terrane reconstruction; Rhyacian collision; Cambrian strike-slip faults; Gold metallogeny; Bahia; Brazil

INTRODUCTION

The main objective of this article is to discuss current information of the close connection between thermotectonic processes, which occurred from the Archean to the Paleozoic, and gold mineralization in the State of Bahia, Brazil. Support is obtained through the theories of plate tectonics and paleocontinent evolution.

The South American platform was defined as the stable continental portion of the South American plate, which was not affected by Phanerozoic orogenies. Its basement consists of Precambrian terranes, which were assembled and re-arranged during major orogenic events from the Paleoproterozoic to the Neoproterozoic (Almeida et al. 2000Almeida F.F.M, Brito Neves B.B., Carneiro C.D.R. 2000. The origin and evolution of the South American Platform. Earth-Science Reviews, 50(1-2):77-111. https://doi.org/10.1016/s0012-8252(99)00072-0
https://doi.org/10.1016/s0012-8252(99)00...
). Most of the crustal components of the South American platform, e.g. the Guyana, Central Amazonian, Ventuari-Tapajós, Rio Negro-Juruena, Rondônia-San Ignácio, Sunsás, Rio de la Plata and São Francisco blocks, were part of the Atlantica paleocontinent that grew at a faster rate during collision-related arc magmatism and subsequent mantle upwelling in the interval from 2.1 to 1.8 Ga ago (Teixeira et al. 2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
https://doi.org/10.1016/j.gr.2006.05.009...
).

The São Francisco Craton and Borborema Province are two large geotectonic units of the South American platform situated near the Atlantic coastline. Although the origins of these two continental landmasses have traditionally been interpreted as unrelated (e.g., Cordani et al. 2000Cordani U.G., Sato K., Teixeira W., Tassinari C.C.G., Basei M.A.S. 2000. Crustal evolution of the South American platform. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Eds.). Tectonic evolution of South America, Rio de Janeiro, Brazil, 31 st International Geological Congress, p. 19-40.), the pieces of evidence discussed herein lead to a new hypothesis for connected geotectonic and metallogenic evolution. (Fig. 1).

Figure 1.
Geological map of the Eastern sector of Brazil after Schobbenhaus et al. (2004Schobbenhaus C., Gonçalves J.H., Santos J.O.S., Abram M.B., Leão Neto R., Matos G.M.M., Vidotti R.M., Ramos M.A.B., Jesus J.D.A. 2004. Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas - SIG e 48 folhas na escala 1:1.000.000. Brasília, CPRM (41 CD-ROMs).). Contour of the São Francisco Craton after Almeida (1977Almeida F.F.M. 1977. O cráton do São Francisco. Revista Brasileira de Geociências, 7(4):349-364.), modified by Alkmim (2004Alkmim F.F. 2004. O que faz de um cráton um cráton? O Cráton do São Francisco e as revelações almeidianas ao delimitá-lo. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.), Geologia do Continente Sul-Americano, Evolução da Obra de Fernando Flávio Marques de Almeida. São Paulo, Beca, p. 17-35.). The numbered circles refer to the following lithotectonic units: (1) Middle Coreaú Domain; (2) Santa Quitéria Domain; (3) Northern Domain; (4) Transversal Domain; (5) Southern Domain; (6) Sergipano Fold Belt; (7) Formosa do Rio Preto Fold Belt; (8) Riacho do Pontal Fold Belt; (9) Uauá Block; (10) Serrinha Block; (11) Mairi Block; (12) Salvador-Curaçá Mobile Belt; (13) Guanambi-Correntina Block; (14) Paramirim Aulacogen; (15) Gavião Block; (16) Jequié Block; (17) Itabuna Mobile Belt; (18) Espinhaço Aulacogen; (19) Araçuaí Fold Belt; (20) Brasília Fold Belt; (21) Guanhães Complex; (22) Divinópolis Complex; (23) Juiz de Fora Complex; (24) Almas-Cavalcante Complex.

In order to develop and investigate the present hypothesis, a review of the Paleoproterozoic tectonic processes involved in the collision and amalgamation of South American terranes is taken into consideration, including (i) present-day distribution of iron deposits and occurrences that originally belonged to a single Archean basin; (ii) distribution of gold provinces, which represent the metallogenic products of distinct tectonothermal phases, and (iii) important crustal deformation produced by Cambrian strike-slip faults that affected the eastern margin of South America during the West Gondwana assembling. Thus, the paper reviews geotectonic models for the São Francisco Craton and Borborema Province and proposes a new geodynamic model.

CURRENT GEOTECTONIC MODEL

São Francisco Craton

The configuration of São Francisco Craton was established by Almeida (1977Almeida F.F.M. 1977. O cráton do São Francisco. Revista Brasileira de Geociências, 7(4):349-364.) and modified by Alkmim (2004Alkmim F.F. 2004. O que faz de um cráton um cráton? O Cráton do São Francisco e as revelações almeidianas ao delimitá-lo. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.), Geologia do Continente Sul-Americano, Evolução da Obra de Fernando Flávio Marques de Almeida. São Paulo, Beca, p. 17-35.). It includes the largest parts of Bahia and Minas Gerais states, which is limited by peripheral fold belts of Neoproterozoic age (Fig. 1). Ten Archean crustal blocks are identified in the cratonic basement, namely Gavião, Jequié, Serrinha, Uauá, Mairi, Guanambi-Correntina, Paramirim, Guanhães, Divinópolis, and Juiz de Fora blocks (Alkmim et al. 1993Alkmim F.F., Brito Neves B.B., Castro Alves J.A. 1993. Arcabouço tectônico do Cráton do São Francisco - uma revisão. In: Dominguez J.M.L., Misi A. (Eds.). O Cráton do São Francisco. Salvador: Reunião preparatória do II Simpósio sobre o Cráton do São Francisco, SBG/Núcleo BA-SE/SGM/CNPq, p.45-62., Barbosa & Sabaté 2004Barbosa J.S.F., Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133:1-27. http://doi.org/10.1016/j.precamres.2004.03.001
http://doi.org/10.1016/j.precamres.2004....
). The São Francisco Craton assemblage in Bahia is attributed to a major collision event involving Gavião, Jequié, and Serrinha blocks. Geochronological constraints indicate that the peak of regional metamorphism resulting from crustal thickening has been associated with a collision that took place in the Orosirian, ca. 2,000 Ma ago. Exhumed roots of this Paleoproterozoic orogenic system make up the granulite-granitoid Salvador-Curaçá and Itabuna belts (Barbosa & Sabaté 2004Barbosa J.S.F., Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133:1-27. http://doi.org/10.1016/j.precamres.2004.03.001
http://doi.org/10.1016/j.precamres.2004....
). Alternatively, the collision system at the Quadrilátero Ferrífero region, on the Southern tip of São Francisco Craton, is described as a Western-verging, thin-skinned foreland fold-thrust belt that was formed in the Rhyacian, shortly after 2,125 Ma (Alkmim & Marshak 1998).

During the Statherian period, the central sector of São Francisco Craton was rifted and experienced a widespread and intermittent magmatism. The extensional event is represented by the Espinhaço Basin deposition. The Lower Sequence of Espinhaço Supergroup consists of acid to intermediate volcanic rocks and fluvial sediments. The Middle Sequence is composed of quartzite with large-scale crossbedding, and the Upper Sequence consists of a layered sequence of quartzite and pelitic beds deposited in a shallow marine setting (Uhlein et al. 1998Uhlein A., Trompette R.R., Egydio-Silva M. 1998. Proterozoic rifting and closure, SE border of the São Francisco Craton, Brazil. Journal of South American Earth Sciences, 11(2):191-203. https://doi.org/10.1016/S0895-9811(98)00010-8
https://doi.org/10.1016/S0895-9811(98)00...
).

The Rio dos Remédios volcanism was developed in an extensional setting at central Bahia, following the initial deposition of clastic sediments from The Espinhaço Supergroup (Barbosa & Sabaté 2004Barbosa J.S.F., Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133:1-27. http://doi.org/10.1016/j.precamres.2004.03.001
http://doi.org/10.1016/j.precamres.2004....
). It includes several lithostratigraphic units made of conglomerate, sandstone, pelite, carbonate, and diamictite, deposited into continental, transitional and marine systems. The continental systems were described as alluvial fan, fluvial and desertic (Pedreira da Silva 1994Pedreira da Silva A.J.C.L. 1994. O Supergrupo Espinhaço na Chapada Diamantina centro-oriental, Bahia: Sedimentologia, estratigrafia e tectônica. Doctoral Thesis, Universidade de São Paulo, São Paulo, Brazil, 174p.).

The Paramirim Aulacogen was formed during successive rifting events between 1,750 and 670 Ma (Pedrosa-Soares & Alkmim 2011Pedrosa-Soares A., Alkmim F.F. 2011. How many rifting events preceded the development of the Araçuaí-West Congo Orogen? Geonomos, 19(2):244-251. https://doi.org/10.18285/geonomos.v19i2.56
https://doi.org/10.18285/geonomos.v19i2....
). The aulacogen substrate is composed of Archean granites, which were gneissfied and migmatized, in addition to Paleoproterozoic metavolcanosedimentary sequences and granitoids of Siderian, Rhyacian, and Orosirian ages (Santos-Pinto et al. 1998Santos-Pinto M.A., Peucat J.J., Martin H., Sabaté P. 1998. Recycling of the Archaean continental crust: The case study of the Gavião Block, Bahia, Brazil. Journal of South American Earth Sciences, 11(5):487-498. https://doi.org/10.1016/S0895-9811(98)00029-7
https://doi.org/10.1016/S0895-9811(98)00...
, Leal et al. 1998Leal L.R.B., Cunha J.C., Teixeira W., Macambira M.J.B. 1998. Archean tonalitic-trondhjemitic and granitic plutonism in the Gavião Block, São Francisco Craton, Bahia, Brazil: Geochemical and geochronology characteristics. Revista Brasileira de Geociências, 28(2):209-220., 2000Leal L.R.B., Teixeira W., Cunha J.C., Leal A.B.M., Macambira M.J.B., Rosa M.L.S. 2000. Isotopic signatures of paleoproterozoic granitoids of the Gavião block and implications for the evolution of the São Francisco craton, Bahia, Brazil. Revista Brasileira de Geociências, 30(1):66-69.). In the Ediacaran, the aulacogen underwent tectonic inversion (Danderfer Filho 2000Danderfer Filho A. 2000. Geologia sedimentar e evolução tectônica do Espinhaço Setentrional, Estado da Bahia. Doctoral Thesis, Universidade de Brasília, Brasília, 497p., Cruz & Alkmim 2006Cruz S.C.P., Alkmim F.F. 2006. The tectonic interaction between the Paramirim Aulacogen and the Araçuaí Belt, São Francisco Craton region, Easter Brazil. Anais da Academia Brasileira de Ciências, 78(1):151-173. http://dx.doi.org/10.1590/S0001-37652006000100014
http://dx.doi.org/10.1590/S0001-37652006...
, Guimarães et al. 2012Guimarães J.T., Alkmim F.F., Cruz S.C.P. 2012. Supergrupos Espinhaço e São Francisco. In: Barbosa J.S.F., Mascarenhas J.F.M., Correa-Gomes L.C.C., Domingues J.M.L. (Eds.) Geologia da Bahia. Pesquisa e Atualização de Dados. Salvador, CBPM, 2, p. 33-86.) that extended to the Cambrian. The units that fill the aulacogen belong to the Espinhaço and São Francisco supergroups (Arcanjo et al. 2005Arcanjo J.B.A., Martins A.M., Loureiro H.C., Delgado I.M., Souza J.D., Neves J.P., Oliveira J.E., Teixeira L.R., Varela P.H., Gomes R.D., Santos R.A., Melo R.C. 2005. Vale do Paramirim, Bahia. Série Arquivos Abertos, n. 22, CBPM, 70 p. (maps).). The former is represented by a sequence of siliciclastic metasedimentary rocks associated with felsic metavolcanic rocks, whose age of deposition varies between 1,750 and 900 Ma (Chemale Jr. et al. 2012Chemale Jr. F., Dussin I.A., Alkmim F.F., Martins M.S., Queiroga G., Armstrong R., Santos M.N. 2012. Unravelling a Proterozoic basin history through detrital zircon geochronology: The case of the Espinhaço Supergroup, Minas Gerais, Brazil. Gondwana Research, 22:200-206. http://dx.doi.org/10.1016/j.gr.2011.08.016
http://dx.doi.org/10.1016/j.gr.2011.08.0...
). São Francisco Supergroup comprises a sequence of terrigenous and carbonate rocks deposited in a marine environment with glaciogenic influence. In the Northern Espinhaço Range, the Espinhaço Supergroup is represented by the Santo Onofre Group (Schobbenhaus 1996Schobbenhaus C. 1996. As tafrogêneses superpostas Espinhaço e Santo Onofre, Estado da Bahia: Revisão e novas propostas. Revista Brasileira de Geociências, 26(4):265-276.), and in Chapada Diamantina, by the Una Group, subdivided into Bebedouro and Salitre formations (Inda & Barbosa 1978Inda H.A.V., Barbosa J.S.F. 1978. Texto explicativo para o Mapa Geológico do Estado da Bahia, escala 1:1.000.000. Salvador, Secretaria de Minas e Energia, 122p. (map).). The Santo Onofre Group has a maximum age of 900 Ma (Babinski et al. 2011Babinski M., Pedrosa-Soares A.C., Trindade R.I.F., Martins M.C.M., Noce L.D. 2011. Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: Age, provenance and correlations with the São Francisco craton and West Congo belt. Gondwana Research, 2:451-465. https://doi.org/10.1016/j.gr.2011.04.008
https://doi.org/10.1016/j.gr.2011.04.008...
) and is composed of feldspathic metarenite, meta-quartz sandstone, oligomictic metaconglomerate, phyllite, and metapelite rich in graphite, manganese and sericite (Guimarães et al. 2012Guimarães J.T., Alkmim F.F., Cruz S.C.P. 2012. Supergrupos Espinhaço e São Francisco. In: Barbosa J.S.F., Mascarenhas J.F.M., Correa-Gomes L.C.C., Domingues J.M.L. (Eds.) Geologia da Bahia. Pesquisa e Atualização de Dados. Salvador, CBPM, 2, p. 33-86.).

The Neoproterozoic sedimentary cover of the São Francisco Craton was deposited during extensive carbonate-pelitic marine sedimentation after a long-lasting glacial event, whose age is still a matter of debate (Misi et al. 2005Misi A., Iyer S.S., Coelho C.E.S., Tassinari C.C.G., Franca-Rocha W.J.S., Cunha I.A., Gomes A.S.R., Oliveira T.F., Teixeira J.B.G., Conceição Filho M. 2005. Sediment hosted lead-zinc deposits of the Neoproterozoic Bambuí group and correlative sequences, São Francisco Craton, Brazil: A review and a possible metellogenic evolution model. Ore Geology Reviews, 26:263-304. http://doi.org/10.1016/j.oregeorev.2004.12.004
http://doi.org/10.1016/j.oregeorev.2004....
, 2011Misi A., Kaufman A.J., Azmy K., Dardenne M.A., Sial A.N., Oliveira T.F. 2011. Neoproterozoic successions of the São Francisco Craton, Brazil: The Bambuí, Una, Vazante and Vaza Barris/Miaba groups and their glaciogenic deposits. In: Geological Society of London (Memoirs), 36, 509-522. London, Geological Society of London.). Sedimentary sequences were deposited in two geotectonic environments:

  • pelitic-carbonate sediments deposited on the cratonic area, with relatively little or no deformation (Bambuí, Una and equivalent groups);

  • siliciclastic and carbonate sediment deposited on the cratonic edges, represented in Bahia by Vaza Barris Group. Glacial diamictites occur at the bases of these sequences (Misi et al. 2007Misi A., Kaufman A.J., Veizer J., Powis K., Azmy K., Boggiani P.C., Gaucher C., Teixeira J.B.G., Sanches A.L., Iyer S.S.S. 2007. Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 237(1):143-167. http://dx.doi.org/10.1016/j.chemgeo.2006.06.019
    http://dx.doi.org/10.1016/j.chemgeo.2006...
    ).

The Phanerozoic cover evolved during the great extensional event associated with the Gondwana supercontinent fragmentation, whose peak occurred in the Early Cretaceous (Milani & Thomaz Filho 2000Milani E.J., Thomaz Filho A. 2000. Sedimentary Basins of South America. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America. 31 st International Geological Congress. Rio de Janeiro, p. 389-449.).

Borborema Province

The term Borborema Province was introduced by Almeida (1977Almeida F.F.M. 1977. O cráton do São Francisco. Revista Brasileira de Geociências, 7(4):349-364.) and referred to a polymetamorphic and multi-deformed association of tectonic units that were subjected to a significant orogenic event during the Neoproterozoic. The province is composed of a complex network of Neoarchean nuclei surrounded by Paleoproterozoic granitic gneisses, Meso-to Neoproterozoic supracrustal belts, and syn-to late-tectonic Neoproterozoic and Cambrian granites associated with large transcurrent shear zones (Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema Province, northeastern Brazil. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America. 31 st International Geological Congress. Rio de Janeiro, p. 151-182.).

It encompasses nearly the entire Northeastern region of Brazil, covering the states of Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Alagoas and Sergipe, besides the Northern part of Bahia (Fig. 1). The province is subdivided into tectonic blocks by branched anastomosing EW- and NE-trending shear zones, which form a mechanically coherent system over more than 200,000 km2 (Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema Province, northeastern Brazil. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America. 31 st International Geological Congress. Rio de Janeiro, p. 151-182.). The EW-trending Patos shear zone, in Paraíba and southern Ceará, divides the basement of the study area into two domains: Northern and Transversal Zone (Ferreira et al. 1998Ferreira J.M., Oliveira R., Takeya M.K., Assumpção M.A. 1998. Superposition of local and regional stresses in NE Brazil: Evidence from mechanisms around the Potiguar marginal basin. Geophysical Journal International, 134(2):341-355. https://doi.org/10.1046/j.1365-246x.1998.00563.x
https://doi.org/10.1046/j.1365-246x.1998...
).

The Transversal Zone Domain evolution involved two successive accretionary events, known respectively as Cariris Velhos (ca. 1.0 Ga) and Brasiliano (ca. 0.6 Ga) (Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema Province, northeastern Brazil. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America. 31 st International Geological Congress. Rio de Janeiro, p. 151-182.). This zone is mainly composed of the Brasiliano Cachoeirinha Belt together with a sequence of pre-Brasiliano terrains, described as Riacho Gravatá, Alto Pajeú, Alto Moxotó, and Rio Capibaribe (Santos et al. 2004Santos E.J., Nutman A.P., Brito Neves B.B. 2004. Idades SHRIMP U-Pb do Complexo Sertânia: Implicações sobre a evolução tectônica da Zona Transversal, Província Borborema. Geologia USP Série Científica, 4(1):1-12. https://doi.org/10.5327/S1519-874x2004000100001
https://doi.org/10.5327/S1519-874x200400...
). The Sm-Nd whole-rock and U-Pb zircon geochronological studies of basement gneisses from Ceará (Fetter et al. 2000Fetter A.H., Van Schmus W.R., Santos T.J.S., Nogueira Neto J.A., Arthaud M.H. 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: Implications for the existence of the Paleoproterozoic supercontinent “Atlantica”. Revista Brasileira de Geociências, 30(1):102-106.) allowed the identification of two major pulses of Paleoproterozoic crustal growth within Borborema Province. The first occurred between 2.35 and 2.3 Ga, which is characterized by juvenile growth and accretion, and the second is from 2.19 to 2.05 Ga, involving the amalgamation of new juvenile crustal material, reworked or enriched crust, and Archean crustal fragments. This network of crustal blocks was subsequently affected by an episode of intracratonic rifting at ca. 1.8 Ga (Fetter et al. 2000Fetter A.H., Van Schmus W.R., Santos T.J.S., Nogueira Neto J.A., Arthaud M.H. 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: Implications for the existence of the Paleoproterozoic supercontinent “Atlantica”. Revista Brasileira de Geociências, 30(1):102-106.).

The Neoproterozoic orogeny that affected the Borborema Province was interpreted as ensialic, because there is no evidence of contemporaneous oceanic crust remnants in the interior domains. An extension-compression stage may be properly applied to the province evolution. This is attributable to a compressive mechanism that later resulted in the extension in an intracontinental setting due to the convergence of São Francisco, Congo, Amazonian, and West African cratons (Neves et al. 2000Neves S.P., Vauchez A., Feraud G. 2000. Tectono-thermal evolution, magma emplacement, and shear zone development in the Caruaru area (Borborema Province, NE Brazil). Precambrian Research, 99(1):1-32. http://doi.org/10.1016/S0301-9268(99)00026-1
http://doi.org/10.1016/S0301-9268(99)000...
, Neves & Mariano 2004Neves S.P., Mariano G. 2004. Heat-producing elements-enriched continental mantle lithosphere and Proterozoic intracontinental orogens: Insight from Brasiliano/Pan-African Belts. Gondwana Research, 7(2):427-436. https://doi.org/10.1016/S1342-937X(05)70794-2
https://doi.org/10.1016/S1342-937X(05)70...
).

A comprehensive step heating 40Ar/39Ar investigation, performed on different minerals from igneous and metamorphic rocks, allowed the definition of a consistent, slow cooling history (3-4ºC/Ma) for Borborema Province. It indicated a rather slow uplift rate between 580 and 500 Ma, followed by fast cooling around 500 Ma (Corsini et al. 1998Corsini M., Figueiredo L.L., Caby R., Féraud G., Ruffet G., Vauchez A. 1998. Thermal history of the Pan-African/Brasiliano Borborema Province of northeast Brazil deduced from 40Ar/39Ar analysis. Tectonophysics, 285(1-2):103-117. https://doi.org/10.1016/S0040-1951(97)00192-3
https://doi.org/10.1016/S0040-1951(97)00...
). The last magmatic manifestation in Borborema Province occurred from the Cretaceous to the Tertiary. It produced many volcanic and hypabyssal rocks, which occur as dikes, sills, small flows, volcanic conduits and plugs (Sial 1976Sial A.N. 1976. The post-Paleozoic volcanism of north-east Brazil and its tectonic significance. Anais da Academia Brasileira de Ciências, 48(Suppl.):299-311., Almeida et al. 1988Almeida F.F.M., Carneiro C.D.R., Machado Jr. D.L., Dehira L.K. 1988. Magmatismo pós-Paleozóico no nordeste oriental do Brasil. Revista Brasileira de Geociências, 18(4):451-462.).

Based on an investigation of 40Ar/39Ar geochronology on tholeiitic diabase dikes, and calc-alkaline basalt, trachyte, rhyolite and ignimbrite, Souza et al. (2003Souza Z.S., Vasconcelos P.M.P., Nascimento M.A.L., Silveira F.V., Paiva H.S., Dias L.G.S., Thied D., Carmo I.O. 2003. 40Ar/39Ar geochronology of Mesozoic and Cenozoic magmatism in NE Brazil. IV South American Symposium on Isotope Geology, Salvador. Short Papers, p. 691-694.) identified four distinct magmatic events in the province, from 145 to 24 Ma. These have been interpreted to reflect the presence of mantle thermal anomalies associated with West Gondwana breakup and, possibly, migration of the South American platform above the Santa Helena plume (Cordani 1970Cordani U.G. 1970. Idade do vulcanismo do oceano Atlântico sul. Boletim do Instituto Astronômico e Geofísico, 1:9-75. https://doi.org/10.11606/issn.2316-9001.v1i0p09-75
https://doi.org/10.11606/issn.2316-9001....
, Chang et al. 1992Chang H.K., Kowsmann R.O., Figueiredo A.M.F., Bender A.A. 1992. Tectonics and stratigraphy of the east Brazil rift system: An overview. Tectonophysics, 213(1-2):97-138. https://doi.org/10.1016/0040-1951(92)90253-3
https://doi.org/10.1016/0040-1951(92)902...
).

Transbrasiliano Shear Zone

The Transbrasiliano Shear Zone (Fig. 1) is regarded as the megasuture that separates Archean and Paleoproterozoic rocks of South America into two major sectors:

  • a large Northwestern continental mass, including the Amazonian Craton and Guyana Shield;

  • a Southeastern mass, formed by a collage of cratonic fragments that took part in the West Gondwana amalgamation and that includes Borborema Province, São Francisco and Rio de la Plata cratons, as well as other cratonic fragments of southern South America (Schobbenhaus et al. 1984Schobbenhaus C., Campos D.A., Derze G.R., Asmus H.E. 1984. Mapa Geológico do Brasil e da área adjacente incluindo depósitos minerais, escala 1:2.500.000. Brasília, DNPM.).

In both crustal sectors, evolution took place between 3.0 and 1.7 Ga, therefore they were contiguous within a Paleoproterozoic landmass (Cordani & Sato 1999Cordani U.G., Sato K. 1999. Crustal evolution of the South American Platform based on Nd isotopic systematics on granitoid rocks. Episodes, 22(3):167-173.).

A NEW GEODYNAMIC MODEL PROPOSAL

This topic aims to construct a tectonic and temporal framework to characterize the synchronous growth and evolution of Borborema Province and São Francisco Craton. Almost all the cited references discuss the tectonic evolution and crustal structure of the involved terranes, based on isotopic geochronological evidence. The main assumption here is that interpretation of high-quality U-Pb, Pb-Pb and Ar-Ar analyses in carefully chosen samples should be used to constrain the absolute age and duration of common geodynamic processes, such as magmatism, anatexis, deformation, metamorphism, uplift, and post-metamorphic cooling.

Atlantica Paleocontinent

The major cratonic blocks of South America are Guyana Shield, Central Amazonian, Ventuari-Tapajós, Rio Negro-Juruena, Rondônia-San Ignacio, Sunsás, Rio de la Plata and São Francisco. They were accreted between 2.2 and 1.9 Ga ago and formed part of the Atlantica paleocontinent. A hypothesis for the evolution of Atlantica was a fully developed Wilson cycle, associated with a Paleoproterozoic superplume (Teixeira et al. 2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
https://doi.org/10.1016/j.gr.2006.05.009...
). The geological units used by these authors for correlation and reconstruction are:

  • obducted remnants of Paleoproterozoic ocean floor basalts;

  • large granulite-granitoid Paleoproterozoic orogenic belts;

  • thick beds of Archean banded iron formation and associated granite-greenstone belts.

The iron occurrences are present in the Hamersley Province of Western Australia, in the Imataca Block, Venezuela (Cerro Bolivar), São Francisco Craton (Quadrilátero Ferrífero and Guanhães complex), and Borborema Province. Iron formations have been interpreted as representing the remnants of more than 4,000 km long Archean basin, which was transported and overthrust during the Paleoproterozoic orogeny (Teixeira et al. 2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
https://doi.org/10.1016/j.gr.2006.05.009...
), as seen in Fig. 2.

Figure 2.
Reconstruction of the Atlantica Paleocontinent at ca. 700 Ma ago, modified from Teixeira et al. (2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
https://doi.org/10.1016/j.gr.2006.05.009...
). Source of geological data: Amazonian Craton (Tassinari et al. 2000Tassinari C.C.G., Bettencourt J.S., Geraldes M.C., Macambira M.J.B., Lafon J.M. 2000. The Amazonian Craton. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Eds.) Tectonic Evolution of South America, 31 st International Geological Congress, Rio de Janeiro, p. 41-95.); Guyana Shield (Voicu et al. 2001Voicu G., Bardoux M., Stevenson R. 2001. Lithostratigraphy and gold metallogeny in the northern Guyana Shield, South America: A review. Ore Geology Reviews, 18(3-4):211-236. http://dx.doi.org/10.1016/S0169-1368(01)00030-0
http://dx.doi.org/10.1016/S0169-1368(01)...
); São Francisco Craton (Barbosa & Sabaté 2004Barbosa J.S.F., Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133:1-27. http://doi.org/10.1016/j.precamres.2004.03.001
http://doi.org/10.1016/j.precamres.2004....
); West Africa (Markwitz et al. 2016Markwitz V., Hein K.A.A., Miller J. 2016. Compilation of West African mineral deposits: Spatial distribution and mineral endowment. Precambrian Research, 274:61-81. http://doi.org/10.1016/j.precamres.2015.05.028
http://doi.org/10.1016/j.precamres.2015....
, Milesi 1989Milesi J.P. (coord.). 1989. West African Gold Deposits in their Lower Proterozoic Lithostructural Setting. Éditions du BRGM. Chroniques de La Recherche Minière, 497, 98 p., map.); Borborema Province (Fetter et al. 2000Fetter A.H., Van Schmus W.R., Santos T.J.S., Nogueira Neto J.A., Arthaud M.H. 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: Implications for the existence of the Paleoproterozoic supercontinent “Atlantica”. Revista Brasileira de Geociências, 30(1):102-106.); and Western Australia (Portergeo 2019Portergeo. 2019. Australian Iron Ore Deposits - Overview. Available at: Available at: http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn087 . Accessed on: Dec. 12, 2018.
http://www.portergeo.com.au/database/min...
, Cawood & Tyler 2004Cawood P.A., Tyler J.M. 2004. Assembling and reactivating the Proterozoic Capricorn Orogen: Lithotectonic elements, orogenies, and significance. Precambrian Research, 128(3-4):201-218. http://dx.doi.org/10.1016/j.precamres.2003.09.001
http://dx.doi.org/10.1016/j.precamres.20...
).

Paleoarchean to Rhyacian: cratonic components

The Gavião Block is composed of granite, granodiorite, and migmatite. It includes remnants of 3.4 Ga-old tonalite-trondhjemite-granodiorite (TTG) suites and associated greenstone belts. The Jequié Block is characterized by Mesoarchean granulitic migmatites with supracrustal inclusions and several charnockitic intrusions (Barbosa & Sabaté 2004Barbosa J.S.F., Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133:1-27. http://doi.org/10.1016/j.precamres.2004.03.001
http://doi.org/10.1016/j.precamres.2004....
). The Serrinha Block is composed of orthogneiss and migmatite, which have been overthrust by Rhyacian greenstone belts (2.2-2.1 Ga), composed of earlier Fe-rich MORB-type tholeiite and later island arc andesite, which are associated with epiclastic and siliciclastic sediments (Silva et al. 2001Silva M.G., Coelho C.E.S., Teixeira J.B.G., Silva F.C.A., Silva R.A., Souza J.A.B. 2001. The Rio Itapicuru greenstone belt, Bahia, Brazil: Geologic evolution and review of gold mineralization. Mineralium Deposita, 36(3-4):345-357. https://doi.org/10.1007/s001260100173
https://doi.org/10.1007/s001260100173...
).

Neoarchean to Rhyacian: oceanic stage (2.6-2.15 Ga)

This oceanic stage included widespread basaltic magmatism, which was probably already active 2.6 Ga ago. Two subduction periods have been interpreted. The first occurred within the 2.7-2.5 Ga interval, as deduced from the ages of high-grade metamorphism and partial melting in Curaçá Valley, North of Bahia (Garcia et al. 2018Garcia P.M.P., Teixeira J.B.G., Misi A., Sá J.H.S., Silva M.G. 2018. Tectonic and metallogenic evolution of the Curaçá Valley Copper Province, Bahia, Brazil: A review based on new SHRIMP zircon U-Pb dating and sulfur isotope geochemistry. Ore Geology Reviews, 93:361-381. http://doi.org/10.1016/j.oregeorev.2018.01.007
http://doi.org/10.1016/j.oregeorev.2018....
, D’el-Rey Silva et al. 2007D’el-Rey Silva L.J.H., Dantas E.L., Teixeira J.B.G., Laux J.L., Silva M.G. 2007. U-Pb and Sm-Nd geochronology of amphibolites from the Curaçá Belt, São Francisco Craton, Brazil: Tectonic implications. Gondwana Research, 12:454-467.). The second started at about 2.17 Ga and gave rise to restricted calc-alkaline volcanic centers that were associated with massive tonalite plutons. Mafic and felsic volcanic rocks associated with clastic sediments and granitoid intrusions make up the Rhyacian greenstone belts from West Africa (Oberthür et al. 1994Oberthür T., Vetter U., Schmidt-Mumm A., Weizer T., Amanor J.A., Gyapong W.A., Kum R., Blenkinsop T.G. 1994. The Ashanti Gold Mine at Obuasi, Ghana: Mineralogical, geochemical, stable isotope and fluid inclusion studies on the metallogenesis of the deposit. In: Oberthür T. (Ed.). Metallogenesis of Selected Gold Deposits in Africa. Geologisches Jahrbuch, Reihe D, Heft, v. 100, p. 31-129. Hannover.), Guyana Shield (Voicu et al. 2001Voicu G., Bardoux M., Stevenson R. 2001. Lithostratigraphy and gold metallogeny in the northern Guyana Shield, South America: A review. Ore Geology Reviews, 18(3-4):211-236. http://dx.doi.org/10.1016/S0169-1368(01)00030-0
http://dx.doi.org/10.1016/S0169-1368(01)...
), and São Francisco Craton (Silva et al. 2001Sial A.N. 1976. The post-Paleozoic volcanism of north-east Brazil and its tectonic significance. Anais da Academia Brasileira de Ciências, 48(Suppl.):299-311.).

Rhyacian to Orosirian: continental convergence (2.15-1.9 Ga)

A 4,000 km long granitoid-granulite belt extends from Tandilia in Argentina towards Piedra Alta in Uruguay through Luiz Alves, Mantiqueira, Guanhães and Juiz de Fora regions in Southern and Southeastern Brazil; Jequié, Itabuna, Salvador-Curaçá, Borborema in Northeastern Brazil, Central Guyana; Imataca in Venezuela; and reaches Kenema-Man in Liberia and Ivory Coast (Teixeira et al. 2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
https://doi.org/10.1016/j.gr.2006.05.009...
). This belt is interpreted as part of the large root zone of a mountain chain created during the orogenic event, named Transamazonian in South America and Birimian in West Africa (Fig. 2). The Tapajós-Parima Orogen in Brazil, Venezuela, and Guyana (Santos et al. 2001Santos J.O.S., Groves D.I., Hartmann L.A., Moura M.A., McNaughton N.J. 2001. Gold deposits of the Tapajós and Alta Floresta domains, Tapajós-Parima orogenic belt, Amazon Craton, Brazil. Mineralium Deposita, 36(3-4):278-299.) and the Capricorn Orogen, together with the Gascoyne Province of Western Australia (Cawood & Tyler 2004Cawood P.A., Tyler J.M. 2004. Assembling and reactivating the Proterozoic Capricorn Orogen: Lithotectonic elements, orogenies, and significance. Precambrian Research, 128(3-4):201-218. http://dx.doi.org/10.1016/j.precamres.2003.09.001
http://dx.doi.org/10.1016/j.precamres.20...
), were believed to have related to this major high-grade belt (Teixeira et al. 2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
https://doi.org/10.1016/j.gr.2006.05.009...
). The whole collision process could be classified as a gigantic fold-and-thrust belt, in which the main deformation and intrusion of crustal granitoids occurred in the Orosirian, around 2.15 Ga ago.

Orosirian: mantle upwelling (1.9-1.8 Ga)

This stage started after the post-orogenic extensional collapse. A direct consequence was crustal melting together with intrusion of S-type granite plutons, and magma extraction from the upper mantle (Teixeira et al. 2001Teixeira J.B.G., Souza J.A.B., Silva M.G., Leite C.M.M., Barbosa J.S.F., Coelho C.E.S., Abram M.B., Conceição Filho C. E. S., Iyer S. S. S. 2001. Gold mineralization in the Serra de Jacobina region, Bahia, Brazil: Tectonic framework and metallogenesis. Mineralium Deposita, 36:332-344. https://doi.org/10.1007/s001260100174
https://doi.org/10.1007/s001260100174...
).

Orosirian to Statherian: rifting and continental breakup (1.88-1.76 Ga)

An important mantle activity took place in the Orosirian-Statherian transition and gave rise to widespread continental rifting and magmatism in Amazonian Craton, Borborema Province, and São Francisco Craton. This is attested by the:

  • Maloquinha, Iriri, Crepori and Teles Pires volcanism in Northern Brazil (Santos et al. 2001Santos J.O.S., Groves D.I., Hartmann L.A., Moura M.A., McNaughton N.J. 2001. Gold deposits of the Tapajós and Alta Floresta domains, Tapajós-Parima orogenic belt, Amazon Craton, Brazil. Mineralium Deposita, 36(3-4):278-299.);

  • Rio dos Remédios volcanism in Bahia;

  • Conceição do Mato Dentro felsic volcanic rocks, besides the later mafic dike swarms in Minas Gerais (Silva et al. 1995Silva A.M., Chemale Jr. F., Kuyumjian R.M., Haeman L. 1995. Mafic dike swarms of Quadrilátero Ferrífero and Southern Espinhaço, Minas Gerais, Brazil. Revista Brasileira de Geociências, 25(2):124-137.) and Bahia;

  • rift-related granites and felsic volcanic rocks in Goiás (Pimentel & Botelho 2001Pimentel M.M., Botelho N.F. 2001. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goiás tin province, Central Brazil. Anais da Academia Brasileira de Ciências, 73(2):263-276. http://dx.doi.org/10.1590/S0001-37652001000200010
    http://dx.doi.org/10.1590/S0001-37652001...
    ).

The deposition of intracratonic sediments within extensional basins was associated with these volcanic activities. The Gorotire and Beneficente groups in Northern Brazil, the Espinhaço Group in Bahia and Minas Gerais, Mideast Brazil, and the Araí Group in Central Brazil are products of these processes (Dardenne & Schobbenhaus 2000Dardenne M.A., Schobbenhaus C. 2000. The metallogenesis of the South American Platform. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America, Rio de Janeiro, 31st. International Geological Congress, p. 755-850., Pimentel & Botelho 2001Pimentel M.M., Botelho N.F. 2001. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goiás tin province, Central Brazil. Anais da Academia Brasileira de Ciências, 73(2):263-276. http://dx.doi.org/10.1590/S0001-37652001000200010
http://dx.doi.org/10.1590/S0001-37652001...
). In the ­1.88-1.76 Ga interval, a superplume event took place after collision tectonics following the episode of orogenic collapse and mantle upwelling. This event caused rifting, continental volcanism, and emplacement of A-type granites. The result of this episode was the Atlantica breakup, which was fragmented into three main portions: Western Australia, Rio de la Plata-São Francisco, and Amazon-(Guyana)-West Africa blocks (Teixeira et al. 2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
https://doi.org/10.1016/j.gr.2006.05.009...
).

Meso-to Neoproterozoic

Tectonic episodes related to the Grenville orogeny characterize the Mesoproterozoic interval (1,600-1,000 Ma). Until the writing of this paper, in South America, they were recorded only in the Amazonian Craton (Tassinari et al. 2000Tassinari C.C.G., Bettencourt J.S., Geraldes M.C., Macambira M.J.B., Lafon J.M. 2000. The Amazonian Craton. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Eds.) Tectonic Evolution of South America, 31 st International Geological Congress, Rio de Janeiro, p. 41-95., Cordani et al. 2003Cordani U.G., Brito-Neves B.B., D’Agrella-Filho M.S. 2003. From Rodinia to Gondwana: A review of the available evidence from South America. Gondwana Research, 6(2):275-283. https://doi.org/10.1016/S1342-937X(05)70976-X
https://doi.org/10.1016/S1342-937X(05)70...
) forming the Rondônia-San Ignacio belt (1,550-1,300 Ma) and magmatism related to Sunsás orogenic event (1,300-1,000 Ma). It is probable that the 1,000 Ma-old tholeiitic dike swarms in Bahia coastline (Correa-Gomes & Oliveira 2000Correa-Gomes L.C., Oliveira E.P. 2000. Radiating 1.0 Ga mafic dyke swarms of Eastern Brazil and Western Africa: Evidence of post-assembly extension in the Rodinia Supercontinent? Gondwana Research, 3(3):325-332. https://doi.org/10.1016/S1342-937X(05)70291-4
https://doi.org/10.1016/S1342-937X(05)70...
) were associated with the last stage of Rodinia assembly (Teixeira et al. 2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
https://doi.org/10.1016/j.gr.2006.05.009...
). The breakup of Rodinia (950-600 Ma, Condie 2002aCondie K.C. 2002a. Breakup of a Paleoproterozoic supercontinent. Gondwana Research, 5(1):41-43. https://doi.org/10.1016/S1342-937X(05)70886-8
https://doi.org/10.1016/S1342-937X(05)70...
) gave place to the development of Neoproterozoic basins, which are well represented in South America. During the same interval, the first components of the Gondwana supercontinent started to collide (Condie 2002bCondie K.C. 2002b. The supercontinent cycle: Are there two patterns of cyclicity? Journal of African Earth Sciences, 35:179-183.). It resulted in the development of Goiás Magmatic Arc in Central Brazil, which was formed by accretion of island-arc systems onto the western margin of São Francisco Craton (660-600 Ma, Pimentel & Fuck 1992Pimentel M.M., Fuck R.A. 1992. Neoproterozoic crustal accretion in Central Brazil. Geology, 20(4):375-379. https://doi.org/10.1130/0091-7613(1992)020%3C0375:NCAICB%3E2.3.CO;2
https://doi.org/10.1130/0091-7613(1992)0...
). The last magmatic events from 670 to 590 Ma are represented by large granite plutons and small layered mafic-ultramafic complexes (Teixeira et al. 2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
https://doi.org/10.1016/j.gr.2006.05.009...
). The most important records of Rodinia breakup are found in the widespread epicontinental and passive-margin basins of the Neoproterozoic (Misi et al. 2007Misi A., Kaufman A.J., Veizer J., Powis K., Azmy K., Boggiani P.C., Gaucher C., Teixeira J.B.G., Sanches A.L., Iyer S.S.S. 2007. Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 237(1):143-167. http://dx.doi.org/10.1016/j.chemgeo.2006.06.019
http://dx.doi.org/10.1016/j.chemgeo.2006...
). Stratigraphic successions in these basins are represented by glaciogenic, carbonate, and molasse megasequences separated by first-order unconformities (Misi 2001Misi A. 2001. Estratigrafia isotópica das seqüências do Supergrupo São Francisco, coberturas neoproterozóicas do cráton do São Francisco. Idade e correlações. In: Pinto C.P., Martins-Neto M.A. (Eds.). Bacia do São Francisco. Geologia e Recursos Naturais, p. 67-92. Minas Gerais, Sociedade Brasileira de Geologia, Núcleo de Minas Gerais., Misi et al. 2007Misi A., Kaufman A.J., Veizer J., Powis K., Azmy K., Boggiani P.C., Gaucher C., Teixeira J.B.G., Sanches A.L., Iyer S.S.S. 2007. Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 237(1):143-167. http://dx.doi.org/10.1016/j.chemgeo.2006.06.019
http://dx.doi.org/10.1016/j.chemgeo.2006...
).

Absolute age constraints are scarce, due to the absence of volcanic horizons within most of these basins. U-Pb SHRIMP analyses of authigenic zircons, from the volcano-plutonic magmatic event within the Dom Feliciano belt (South of Brazil and Uruguay), provided precise ages of 594 ± 5 Ma (Remus et al. 2000Remus M.V., Hartmann L.A., McNaughton N.J., Groves D.I., Reischl J.L. 2000. Distal magmatic-hydrothermal origin for the Camaquã Cu (Au-Ag) and Santa Maria Pb, Zn, (Cu-Ag) deposits, Southern Brazil. Gondwana Research, 3(2):155-174. https://doi.org/10.1016/S1342-937X(05)70094-0
https://doi.org/10.1016/S1342-937X(05)70...
). On the other hand, ages on detrital zircons from diamictites at the base of Araçuaí fold-belt, SW of São Francisco Craton, provided a maximum age of 950 Ma for these units. A depositional age of 740 ± 22 Ma was obtained from an 11-point isochron for well-preserved samples of post-glacial successions from Sete Lagoas Formation (Bambuí Group, Minas Gerais, Brazil) (Babinski et al. 2007Babinski M., Vieira L.C., Trindade R.I.F. 2007. Direct dating of the Sete Lagoas cap carbonate (Bambuí Group), Brazil and implications for the Neoproterozoic glacial events. Terra Nova, 19(6):401-406. https://doi.org/10.1111/j.1365-3121.2007.00764.x
https://doi.org/10.1111/j.1365-3121.2007...
). Due to the scarcity of other reliable absolute ages, correlations between different successions of Neoproterozoic basins were made by means of high-resolution chemostratigraphic studies (Misi et al. 2007Misi A., Kaufman A.J., Veizer J., Powis K., Azmy K., Boggiani P.C., Gaucher C., Teixeira J.B.G., Sanches A.L., Iyer S.S.S. 2007. Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 237(1):143-167. http://dx.doi.org/10.1016/j.chemgeo.2006.06.019
http://dx.doi.org/10.1016/j.chemgeo.2006...
).

Neoproterozoic to Paleozoic

The Neoproterozoic Adamastor-Brazilide ocean was created during the breakup of Rodinia, which began ca. 900 Ma ago. The paleo-ocean started to close at ca. 700 Ma ago, as deduced by isotopic data interpretation of magmatic arc granites that occur along the Brazilian shoreline. The final assembling of continental blocks was associated with post-collisional granitoid intrusions during a strike-slip deformation phase between 535 and 500 Ma (Wiedemann 1993Wiedemann C.M. 1993. The evolution of the early Paleozoic, late- to post-collisional magmatic arc of the Coastal mobile belt, in the State of Espírito Santos, eastern Brazil. Anais da Academia Brasileira de Ciências, 65:163-181., Campos-Neto & Figueiredo 1995Campos-Neto M.C., Figueiredo M.C.H. 1995. The Rio-Doce orogeny, southeastern Brazil. Journal of South American Earth Sciences, 8(2):143-162. https://doi.org/10.1016/0895-9811(95)00002-W
https://doi.org/10.1016/0895-9811(95)000...
, Sanchez-Bettucci et al. 2003Sanchez-Bettucci L., Preciozzi F., Basei M.A.S. 2003. The Neoproterozoic Lavalleja Group in Uruguay: Geology and Base Metal Deposits. In: Cailteux J.L.H. (ed.). IUGS-UNESCO International Geological Correlation Programme IGCP 450 - Conference and Field Workshop, Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana. Lubumbashi, Democratic Republic of Congo, p. 184-187., Pedrosa-Soares et al. 2008Pedrosa-Soares A.C., Alkmim F.F., Tack L., Noce C.M., Babinski M., Silva L.C., Martins-Neto M.A. 2008. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuai-West Congo orogen. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region , v. 294, p. 153-172. Geological Society of London, Special Publication., Heilbron et al. 2008Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J., Tupinambá Siga Jr. M.O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: Comparative tectonic evolution and open questions. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region . Geological Society of London, Special Publication, 294:211-237., Van Schmus et al. 2008Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu S.F., Penaye J.I.P., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African fold belt. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region . London, Geological Society of London, Special Publication, 294:69-99.). The sequence of geodynamic and tectonothermal events related to the opening and closure of Adamastor-Brazilide ocean is broadly referred to as the Brasiliano Cycle (700-450 Ma) in South America, and the Pan-African Cycle in the adjoining Gondwana terranes (Fig. 3).

Figure 3.
The major orogenic belts of West Gondwana ca. 650 Ma ago. Source of geological data: Brasiliano Orogeny (Heilbron et al. 2008Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J., Tupinambá Siga Jr. M.O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: Comparative tectonic evolution and open questions. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region . Geological Society of London, Special Publication, 294:211-237., Alkmim et al. 2001Alkmim F.F., Marshak S., Fonseca M.A. 2001. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco Craton region, Brazil. Geology, 29(4):319-322. https://doi.org/10.1130/0091-7613(2001)029%3C0319:AWGITN%3E2.0.CO;2
https://doi.org/10.1130/0091-7613(2001)0...
, Alvarenga et al. 2000Alvarenga C.J.S., Moura C.A.V., Gorayeb P.S.S., Abreu F.A.M. 2000. Paraguay and Araguaia belts. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America. 31 st International Geological Congress. Rio de Janeiro, p. 183-229., Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema Province, northeastern Brazil. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America. 31 st International Geological Congress. Rio de Janeiro, p. 151-182.); East African-Antarctic Orogeny (Jacobs & Thomas 2004Jacobs J., Thomas R.J. 2004. Himalayan-type indenter-escape tectonics model for the southern part of the Late Neoproterozoic-Early Paleozoic East African-Antarctic orogen. Geology, 32(8):721-724. http://doi.org/10.1130/G20516.1
http://doi.org/10.1130/G20516.1...
); Terra Australis Orogeny (Cawood 2005Cawood P.A. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69(3):249-279. http://dx.doi.org/10.1016/j.earscirev.2004.09.001
http://dx.doi.org/10.1016/j.earscirev.20...
). The numbered circles refer to the following lithotectonic units: (1) Borborema Province; (2) São Francisco Craton; (3) Paraguay Belt; (4) Ribeira Belt; (5) Dom Feliciano Belt; (6) Kaoko Belt; (7) Damara Belt; (8) Pampean Belt. The black star marks the position of Irecê Basin.

Brasiliano Orogeny

In a detailed review of the Brasiliano orogenic evolution along the coastline of Brasil (Fig. 3), Alkmim et al. (2001Alkmim F.F., Marshak S., Fonseca M.A. 2001. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco Craton region, Brazil. Geology, 29(4):319-322. https://doi.org/10.1130/0091-7613(2001)029%3C0319:AWGITN%3E2.0.CO;2
https://doi.org/10.1130/0091-7613(2001)0...
) have proposed a sequence of six major stages, based on the nature and approximate duration of each proposed stage:

  • the early collision at ca. 750 Ma ago, involving the Southern São Francisco and Rio de Plata-Paraná cratons;

  • the advanced collision during the 640-620 Ma interval, including the cratonic blocks of Amazonia, São Luís-West Africa, Parnaíba, São Francisco-Borborema, Central Goiás-Tocantins, Congo-Angola, Rio de la Plata, Kalahari, Pampia, and Arequipa (Schobbenhaus & Brito Neves 2003Schobbenhaus C., Brito Neves B.B. 2003. A geologia do Brasil no contexto da Plataforma Sul-Americana. In: Bizzi L.A., Schobbenhaus C., Vidotti R.M., Gonçalves R.H. (Eds.). Geologia, Tectônica e Recursos Minerais do Brasil. Brasília, CPRM, p. 5-54.), whose convergence generated the east-verging nappes in the Southern arm of Brasília fold belt;

  • the collision completion of the Amazonian Craton with the Parnaíba block, which gave rise to the Northern arm of the Brasília fold belt.

Important contributions were made by other groups:

  • creation of Ribeira dextral-transpressional zone between 790 and 610 Ma, and incorporation of exotic terranes of Southeastern Brazil during the Cambrian between 535 and 500 Ma (Heilbron et al. 2008Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J., Tupinambá Siga Jr. M.O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: Comparative tectonic evolution and open questions. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region . Geological Society of London, Special Publication, 294:211-237.);

  • convergence between Rio de la Plata-Paraná and Amazonian cratons, which gave rise to the Paraguay orogenic belt between 540 and 510 Ma (Alvarenga et al. 2000Alvarenga C.J.S., Moura C.A.V., Gorayeb P.S.S., Abreu F.A.M. 2000. Paraguay and Araguaia belts. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America. 31 st International Geological Congress. Rio de Janeiro, p. 183-229.);

  • Northward progression of the Brazilide ocean closure, which produced the dextral extrusion of Borborema Province in the Cambrian between 540 and 500 Ma (Brito Neves et al. 2000Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema Province, northeastern Brazil. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America. 31 st International Geological Congress. Rio de Janeiro, p. 151-182.), along with thrusting over the Northern margin of São Francisco Craton. Southward propagation of thrusting caused rock deformation of Paramirim valley and Chapada Diamantina (Alkmim et al. 2001Alkmim F.F., Marshak S., Fonseca M.A. 2001. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco Craton region, Brazil. Geology, 29(4):319-322. https://doi.org/10.1130/0091-7613(2001)029%3C0319:AWGITN%3E2.0.CO;2
    https://doi.org/10.1130/0091-7613(2001)0...
    ).

East African-Antarctic Orogeny

The East African-Antarctic orogen resulted from a collision of various blocks of proto-East and West Gondwana between 650 and 500 Ma (Fig. 3). This ~8,000 km long, Northeast-southwest-trending collisional belt encompassed several microplates that were amalgamated and dislocated along strike-slip faults (Jacobs et al. 1998Jacobs J., Fanning C.M., Henjes-Kunst E., Olesch M., Paech H.J. 1998. Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. The Journal of Geology, 106(4):385-406. http://doi.org/10.1086/516031
http://doi.org/10.1086/516031...
). At some stage, during the orogeny, these faults provided a means of tectonic transport from the collision zone toward the subduction zone of Terra Australis orogen (Cawood 2005Cawood P.A. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69(3):249-279. http://dx.doi.org/10.1016/j.earscirev.2004.09.001
http://dx.doi.org/10.1016/j.earscirev.20...
), which is located to the South (Fig. 3). This event was the generator of lateral-escape tectonics in the Southern part of East African-Antarctic orogen (Jacobs & Thomas 2004Jacobs J., Thomas R.J. 2004. Himalayan-type indenter-escape tectonics model for the southern part of the Late Neoproterozoic-Early Paleozoic East African-Antarctic orogen. Geology, 32(8):721-724. http://doi.org/10.1130/G20516.1
http://doi.org/10.1130/G20516.1...
).

According to Doblas et al. (2002Doblas M., López-Ruiz J., Cebriá J.-M., Youbi N., Degroote E. 2002. Mantle insulation beneath the West African Craton during the Precambrian-Cambrian transition. Geology, 30(9):839-842. https://doi.org/10.1130/0091-7613(2002)030%3C0839:MIBTWA%3E2.0.CO;2
https://doi.org/10.1130/0091-7613(2002)0...
), a Cambrian tectonothermal event immediately followed the peak of Pan-African-Brasiliano compression. Overriding thermal insulation was caused by the thick lithosphere of West African Craton, leading to progressive temperature increase in the sub-continental lithospheric mantle. The subcratonic heat accumulation phenomenon was followed by thermal activity, which was the main cause for the circum-West African Craton delamination and sinking of the thickened roots of Pan-African-Brasiliano mountain chain. This important tectonothermal event was propagated along the border of proto-West Gondwana (Fig. 3) between 530 and 510 Ma (Heilbron et al. 2008Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J., Tupinambá Siga Jr. M.O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: Comparative tectonic evolution and open questions. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region . Geological Society of London, Special Publication, 294:211-237.). The best examples are described in Búzios orogeny of Ribeira Belt (Schmitt et al. 2004Schmitt R.S., Trouw R.A.J., Van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of Western Gondwana: New geochronological data and the characterization of a Cambrian collision orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, 133(1):29-61. http://dx.doi.org/10.1016/j.precamres.2004.03.010
http://dx.doi.org/10.1016/j.precamres.20...
), in the Kaoko and Damara belts (Goscombe & Gray 2007Goscombe B., Gray D. 2007. The Coastal terrane of the Kaoko belt, Namibia: Outboard arc-terrane and tectonic significance. Precambrian Research, 155(1-2):139-158. https://doi.org/10.1016/j.precamres.2007.01.008
https://doi.org/10.1016/j.precamres.2007...
), and also in Paraguay-Araguaia (Alvarenga et al. 2000Alvarenga C.J.S., Moura C.A.V., Gorayeb P.S.S., Abreu F.A.M. 2000. Paraguay and Araguaia belts. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America. 31 st International Geological Congress. Rio de Janeiro, p. 183-229.), Dom Feliciano (Bossi & Gaucher 2004Bossi J., Gaucher C. 2004. The Cuchilla Dionisio terrane, Uruguay: An allochthonous block accreted in the Cambrian to SW-Gondwana. Gondwana Research, 7(3):661-674. https://doi.org/10.1016/S1342-937X(05)71054-6
https://doi.org/10.1016/S1342-937X(05)71...
), and Pampean orogenic belts (Rapela 2000Rapela C.W. 2000. The Sierras Pampeanas of Argentina: Paleozoic building of the southern proto-Andes. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America, 31 st International Geolocigal Congress, Rio de Janeiro, Brazil, p. 381-387.).

Cambrian wrench-faults in Eastern Brazil

A large-scale wrench-fault system produced the dominant style of breakdown and dislocations in the Borborema-São Francisco block during the Cambrian (Fig. 3). The reasoning is as follows:

  • Evolution of East African-Antarctic Orogeny was almost parallel to, and coeval with that of the Brasiliano orogeny (Fig. 3) between 570 and 520 Ma (Cawood & Buchan 2007Cawood P.A., Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews, 82(3-4):217-256. http://dx.doi.org/10.1016/j.earscirev.2007.03.003
    http://dx.doi.org/10.1016/j.earscirev.20...
    ). An escape tectonics system has been correctly proposed for the Southern tip of East African-Antarctic orogen (Jacobs & Thomas 2004Jacobs J., Thomas R.J. 2004. Himalayan-type indenter-escape tectonics model for the southern part of the Late Neoproterozoic-Early Paleozoic East African-Antarctic orogen. Geology, 32(8):721-724. http://doi.org/10.1130/G20516.1
    http://doi.org/10.1130/G20516.1...
    ). The same regime is likely to have occurred in Borborema-São Francisco terrane, in order to accommodate the dislocated crustal fragments (Fig. 3);

  • The Transbrasiliano Shear Zone (Fig. 3) was interpreted as the Kandi-4º50 lineament prolongation in the Hoggar, a Pan-African suture at the margin of West Congo Craton (Caby 2003Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: A synthesis. Journal of African Earth Sciences, 37(3-4):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
    https://doi.org/10.1016/j.jafrearsci.200...
    , Arthaud et al. 2008Arthaud M.H., Caby R., Fuck R.A., Dantas E.L., Parente C.V. 2008. Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society of London, Special Publication, 294, p. 49-67.);

  • Although an outstanding set of transcurrent, ductile shear zones have been described in Borborema Province (e.g. Santos & Brito Neves 1984Santos E.J., Brito Neves B.B. 1984. Província Borborema. In: Almeida F.F.M, Hasui Y. (Eds.). O Pre-Cambriano do Brasil. São Paulo, Edgard Blücher, p. 123-186., Jardim de Sá et al. 1992Jardim de Sá E.F., Macedo M.H.E., Fuck R.A., Kawashita K. 1992. Terrenos proterozóicos na Província Borborema e a margem norte do Cráton do São Francisco. Revista Brasileira de Geociências, 22(4):472-480., Vauchez et al. 1995Vauchez A., Neves S., Caby R., Corsini M., Egydio-Silva M., Arthaud M., Amaro V. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
    https://doi.org/10.1016/0895-9811(95)000...
    , Arthaud et al. 2008Arthaud M.H., Caby R., Fuck R.A., Dantas E.L., Parente C.V. 2008. Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society of London, Special Publication, 294, p. 49-67.), only a few large-offset strike-slip faults have been recognized in São Francisco Craton (e.g., Schobbenhaus et al. 2004Schobbenhaus C., Gonçalves J.H., Santos J.O.S., Abram M.B., Leão Neto R., Matos G.M.M., Vidotti R.M., Ramos M.A.B., Jesus J.D.A. 2004. Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas - SIG e 48 folhas na escala 1:1.000.000. Brasília, CPRM (41 CD-ROMs). - see Fig. 1) until the writing of this text.

A new deformation pattern is proposed here, with paleostress field and observable and hidden ruptures affecting the post-Brasiliano Borborema-São Francisco terrane shown in Figure 4.

Figure 4.
Wrench-fault model applied to the Cambrian deformation of São Francisco Craton along Borborema Province. Some of the Northwest-southeast trending fault zones in São Francisco Craton form an en echelon pattern and indicate large dextral dislocations, which overall appear to be as great as 300 km. The main reference parameters for estimating displacement are the relative dislocations of Archean and Proterozoic units along the rows of previously aligned Archean iron occurrences. The diagram for the shear stress directions is an approximation for a theoretical stress ellipsoid in homogeneous media. Most faults must have resulted from horizontal stresses, due to lateral compression. Geological units are after Schobbenhaus et al. (2004Schobbenhaus C., Gonçalves J.H., Santos J.O.S., Abram M.B., Leão Neto R., Matos G.M.M., Vidotti R.M., Ramos M.A.B., Jesus J.D.A. 2004. Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas - SIG e 48 folhas na escala 1:1.000.000. Brasília, CPRM (41 CD-ROMs).).

Based on their geometry and regional distribution, these regional structures are here interpreted as right-lateral and left-lateral strike-slip faults. They are related to the incidence of escape tectonics and formation of en echelon compressional structures in the Northern sector of Brasiliano Orogen. This can be described as a process of wrench-fault tectonics that produced the last stage of crustal deformation, uplift, and erosion in the Cambrian Period. The majority of these concealed fault zones have been recognized in the interpretation of Bouguer gravity anomaly map from Bahia State (Gomes et al. 1996Gomes R.A.A.D., Gomes P.J., Silveira Filho N.C. 1996. Mapa Bouguer do Estado da Bahia, escala 1:1.000.000. Salvador, Companhia de Pesquisa de Recursos Minerais (CPRM).).

TECTONIC FRAMEWORK OF BAHIA

The published geological maps of Bahia State do not refer to post-Neoproterozoic tectonic or plume activities. The following section describes for the first time the effects of a massive thermotectonic process that took place in the 540-500 Ma interval in Bahia State, and which caused a large brittle-ductile deformation of Archean and Proterozoic terranes, accompanied by pervasive heat flux, hydrothermal activity, and crustal melting. This deformation is classified as a wrench-fault system, composed of strike-slip faults that caused terrane displacements in excess of 300 km (Fig. 5).

Figure 5.
Tectonic framework of Bahia State as proposed in the present study. Circled numbers stand for key locations referred to in the text: (1) Irecê Basin; (2) Curaçá Valley; (3) Jacurici Cr-District; (4) Rio Jacaré layered sill, and (5) siliciclastic, Jacobina-type metasedimentary rocks. Source of Archean and Proterozoic units along with their structural trends: modified from Misi et al. (2012Misi A., Teixeira J.B.G., Sá J.H.S. (orgs.). 2012. Mapa Metalogenético Digital do Estado da Bahia e Principais Províncias Minerais. Série Publicações Especiais, 11, Texto Explicativo. Brasil, Companhia Baiana de Pesquisa Mineral - CBPM, 237 p. (CD-ROM).).

The observed effects of this thermotectonic process in the Northern and Mid-eastern sectors of Bahia are listed as follows:

  • In the Irecê Basin, North of Chapada Diamantina, a set of thin-skinned folds affected the carbonatic sequences of the Salitre Formation. These structures exhibit surface features oriented around the E-W direction, with general vergence towards the South (Kuchenbecker et al. 2011Kuchenbecker M., Reis H.L.S., Fragoso D.G.C. 2011. Caracterização estrutural e considerações sobre a evolução tectônica da Formação Salitre na porção central da Bacia de Irecê, norte do Cráton do São Francisco (BA). Geonomos, 19:42-49. http://doi.org/10.18285/geonomos.v19i2.40
    http://doi.org/10.18285/geonomos.v19i2.4...
    );

  • Samples of Cryogenian carbonates of Irecê Basin have similar Pb-Pb isochron ages and paleomagnetic poles. These fall close to the ~520 Ma segment of Gondwana supercontinent apparent polar wander path, after rotation of South America to Africa. This indicates that the resetting of the isotopic and magnetic systems occurred at that Cambrian moment (Trindade et al. 2004Trindade R.I.F., D’Agrella-Filho M., Babinski M., Brito Neves B.B. 2004. Paleomagnetism and geochronology of the Bebedouro cap carbonate: Evidence for continental-scale Cambrian remagnetization in the São Francisco Craton, Brazil. Precambrian Research, 128(1-2):83-103. http://dx.doi.org/10.1016/j.precamres.2003.08.010
    http://dx.doi.org/10.1016/j.precamres.20...
    ). Data from alternating field demagnetization and thermal treatments indicated monoclinic pyrrhotite, magnetite, and hematite as the carriers of more stable magnetic components in the carbonatic rocks. This Cambrian remagnetization was attributed to a regional-scale fluid migration event and mineralization in the aftermath of Brasiliano collision (Trindade et al. 2004Trindade R.I.F., D’Agrella-Filho M., Babinski M., Brito Neves B.B. 2004. Paleomagnetism and geochronology of the Bebedouro cap carbonate: Evidence for continental-scale Cambrian remagnetization in the São Francisco Craton, Brazil. Precambrian Research, 128(1-2):83-103. http://dx.doi.org/10.1016/j.precamres.2003.08.010
    http://dx.doi.org/10.1016/j.precamres.20...
    );

  • In the Northern sector of Curaçá Valley, more precisely in the region of Curaçá town. The carbonate sequence of Estância Domain (Neoproterozoic of the Sergipano Fold Belt) is clearly pushed to the South and thrust onto the basement (Oliveira 2012Oliveira E.P. 2012. Faixa de Dobramento Sergipana. In: Barbosa J.S.F., Mascarenhas J.F., Corrêa-Gomes L.C.C., Domingues J.M.L, Oliveira J.S.S. (Eds.). Geologia da Bahia. Pesquisa e Atualização de Dados. Salvador, CBPM. p. 179-188. 2 v.);

  • In the Jacurici Chromite District, where a brittle regime responsible for the formation of oblique fractures and faults with dextral and sinistral directional components closes the cycle of structural evolution of the area;

  • In the layered Rio Jacaré sill, which was intruded at around 2,700 Ma at the West edge of Jequié Block, where NNW-oriented strike-slip faults cut all pre-existing structures (Brito 2000Brito R.S.C. 2000. Geologia e petrologia do sill máfico ultramáfico do Rio Jacaré - Bahia e estudo das mineralizações de Fe-Ti-V e platinóides associados. Doctoral Thesis, Universidade de Brasília, Brasília, 325p.);

  • Finally, the regional distribution of Archean siliciclastic, Serra de Jacobina-type (quartzite, conglomerate, phyllite and schist) metasedimentary rocks. These extend from North to South in the territory of Bahia and continue Southward in the State of Minas Gerais, but strongly displaced from their initial position by the effect of Cambrian wrench-fault system (Fig. 5).

RECONSTRUCTION HYPOTHESIS

An attempt to reconstruct the São Francisco-Borborema block after the Rhyacian continental collision is discussed here. The most significant issues to be taken into consideration in this large-scale reconstruction are:

  • counter-clockwise rotation of Borborema Province due to relative displacements along transcurrent shear zones;

  • displacement of Archean and Proterozoic terranes of central Bahia in the Northwest direction, along en echelon compressional faults in the Northern sector of Brasiliano Orogen.

The interpreted displacements can reach distances up to 300 km. This is called the “minimum fault offset model”, because it does not include any paleomagnetically based displacement data. In conformity with the present hypothesis, the chronostratigraphic units of São Francisco Craton are characterized by several dextral and sinistral strike-slip fault zones. Much of this displacement took place during the Cambrian and provoked generalized breakdown and uplift of Archean and Proterozoic massifs within the Paleoproterozoic orogenic belt.

The reconstruction procedure of São Francisco-Borborema block consisted of the restoration of some NW-SE trending strike-slip fault zones, which indicate horizontal dislocations of ca.100 to 300 km. This is deduced from the large-scale tectonic breaks and displacements of individual components of Archean basement, Proterozoic basins, and formerly aligned iron occurrences.

The Borborema shear zone system is one of the largest lithospheric transcurrent shear zone systems in the world. Nevertheless, the amount of displacement accommodated by shear zones remains uncertain, because suitable markers are missing, which preclude any direct estimate (Vauchez et al. 1995Vauchez A., Neves S., Caby R., Corsini M., Egydio-Silva M., Arthaud M., Amaro V. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
https://doi.org/10.1016/0895-9811(95)000...
). Regardless of the amount and sense of displacement along discrete shear zones, the present reconstruction simply outlines the counterclockwise rotation of Borborema Province in relation to the São Francisco Craton. This leads to the alignment of three different Archean sequences and Proterozoic basins, as well as overthrust Archean iron deposits (Fig. 6).

Figure 6.
Reconstruction of São Francisco-Borborema block in the interval between the Rhyacian continental collision and Cambrian tectonothermal event, involving rotation of Borborema Province and restoration of São Francisco Craton along dextral, strike-slip faults.

Hydrothermal gold deposits in Bahia

Primary gold mineralization in Bahia State is associated with deformed and metamorphosed rocks of Mesoarchean, Neoarchean, Paleoproterozoic, and Neoproterozoic ages. Gold essentially occurs in quartz veins and hydrothermal altered zones, generated during two main tectonothermal events, i.e. Paleoproterozoic and Cambrian, respectively.

Considering the current production data, allied to knowledge of geology and metallogenesis of operating mines, deposits, occurrences and prospects or garimpos (artisanal diggings), three hydrothermal gold provinces are discerned:

  • Middle Rio Itapicuru;

  • Serra de Jacobina;

  • Western Chapada Diamantina.

In all these provinces, gold occurs in hydrothermal veins, which are usually associated with quartz and iron sulfide minerals.

Locations of three main auriferous provinces of Bahia together with other deposits and gold occurrences are shown in Figure 7.

Figure 7.
Location of hydrothermal gold mineralizations in Bahia State. Geological units after Schobbenhaus et al. (2004Schobbenhaus C., Gonçalves J.H., Santos J.O.S., Abram M.B., Leão Neto R., Matos G.M.M., Vidotti R.M., Ramos M.A.B., Jesus J.D.A. 2004. Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas - SIG e 48 folhas na escala 1:1.000.000. Brasília, CPRM (41 CD-ROMs).). Source for the structural framework: present work. Source for location of gold deposits and occurrences: Misi et al. (2012Misi A., Teixeira J.B.G., Sá J.H.S. (orgs.). 2012. Mapa Metalogenético Digital do Estado da Bahia e Principais Províncias Minerais. Série Publicações Especiais, 11, Texto Explicativo. Brasil, Companhia Baiana de Pesquisa Mineral - CBPM, 237 p. (CD-ROM).).

Middle Rio Itapicuru Gold Province

The Rio Itapicuru greenstone belt is a metavolcanosedimentary association of Paleoproterozoic age, which is formed by mafic metavolcanic rocks at the base, felsic metavolcanic rocks in the intermediate part, and metasedimentary rocks in the upper part. About 180 km in the approximately N-S direction, this province contains two mines in operation: Fazenda Brasileiro (Teixeira et al. 1990Teixeira J.B.G., Kishida A., Marimon M.P.C., Xavier R.P., McReath I. 1990. The Fazenda Brasileiro gold deposit, Bahia: Geology, hydrothermal alteration, and fluid inclusion studies. Economic Geology, 85(5):990-1009. https://doi.org/10.2113/gsecongeo.85.5.990
https://doi.org/10.2113/gsecongeo.85.5.9...
) and C1 (Teixeira & Coelho 2014Teixeira J.B.G., Coelho C.E.S. 2014. Depósito de Ouro C1-Santa Luz, Bahia, Brasil. Série Arquivos Abertos, n. 40. Salvador, CBPM, ,62 p., Assis & Luvizotto 2018Assis J.A.C., Luvizotto G.L. 2018. Gold deposits in poly-deformed metasedimentary rocks: A case study of the C1-Santaluz gold deposit, Itapicuru Greenstone Belt, Northeast of Brazil. Brazilian Journal of Geology, 48(4):651-670. http://dx.doi.org/10.1590/2317-4889201820170124
http://dx.doi.org/10.1590/2317-488920182...
), one gold deposit (Deixaí), and a few dozen occurrences and small prospects, located mainly at North of Itapicuru River (Fig. 8).

Figure 8.
Geological map of Rio Itapicuru greenstone belt showing location of mines, deposits and gold occurrences, along with the location of diamond deposits. Source for geological units and mineral occurrences: Misi et al. (2012Misi A., Teixeira J.B.G., Sá J.H.S. (orgs.). 2012. Mapa Metalogenético Digital do Estado da Bahia e Principais Províncias Minerais. Série Publicações Especiais, 11, Texto Explicativo. Brasil, Companhia Baiana de Pesquisa Mineral - CBPM, 237 p. (CD-ROM).).

Gold mineralization in Rio Itapicuru greenstone belt was generated in an orogenic environment, resulting from the collision of a volcanic island arc system, associated with ocean-floor basalts of Paleoproterozoic age, with an Archean continental margin. This collision resulted in metamorphic-deformational processes under a compression-to-transpressional regime, which produced a significant increase in temperature and pressure gradients on a regional scale (Silva et al. 2001Silva M.G., Coelho C.E.S., Teixeira J.B.G., Silva F.C.A., Silva R.A., Souza J.A.B. 2001. The Rio Itapicuru greenstone belt, Bahia, Brazil: Geologic evolution and review of gold mineralization. Mineralium Deposita, 36(3-4):345-357. https://doi.org/10.1007/s001260100173
https://doi.org/10.1007/s001260100173...
). The first 40Ar/39Ar dating of sericite in hydrothermal haloes around gold-bearing quartz veins of Fazenda Brasileiro produced minimum cooling ages, around 2,031 and 2,083 Ma (Vasconcelos & Becker 1992Vasconcelos P., Becker T. 1992. A idade da mineralização aurífera no depósito da Fazenda Brasileiro, Bahia, Brasil. In: Proceedings Workshop em Metalogênese: Pesquisas Atuais e Novas Tendências. Boletim de Resumos. São Paulo, Unicamp.). These figures were refined by Mello (2000Mello E.F. 2000. Estudos isotópicos do greenstone belt do Rio Itapicuru, BA: Evolução crustal e metalogenia do ouro. Doctoral Thesis, Universidade de Campinas, São Paulo, 200p.), who produced ages of 2,050 ± 4 Ma and 2,054 ± 2 Ma for the same type of sericite cooling. These ages are roughly coeval with crystallization of the surrounding syntectonic granitoids (Alves da Silva et al. 1993Alves da Silva F.C., Chauvet A., Faure M. 1993. Early Proterozoic orogeny (Transamazonian) and syntectonic granite emplacement in the Rio Itapicuru greenstone belt, Bahia, Brazil. Comptes rendus de l’Académie des Sciences Paris II, 316:1139-1146.) and indicate that Fazenda Brasileiro mineralization was contemporaneous with the Rhyacian collision (syn collisional mineralization).

Serra de Jacobina Gold Province

Gold deposits in the Serra de Jacobina region in Bahia occur in a belt of siliciclastic metasedimentary rocks intercalated with mafic and ultramafic rocks and underlain by a TTG basement (Fig. 9).

Figure 9.
Geological map of Serra de Jacobina region. Widespread Phanerozoic sedimentary cover has been omitted for clarity purposes.

The siliciclastic sequence probably represents remnants of an Archean sedimentary basin (Teles et al. 2015Teles G., Chemale Jr. F., Oliveira C.G. 2015. Paleoarchean record of the detrital pyrite-bearing, Jacobina Au-U deposits, Bahia, Brazil. Precambrian Research, 256:289-313. https://doi.org/10.1016/j.precamres.2014.11.004
https://doi.org/10.1016/j.precamres.2014...
), which was subsequently subjected to a complex history of deformation, metamorphism, granite intrusion, and hydrothermal activity, as a result of oblique collisional events in the Neoarchean and Paleoproterozoic (Teixeira et al. 2001Teixeira J.B.G., Souza J.A.B., Silva M.G., Leite C.M.M., Barbosa J.S.F., Coelho C.E.S., Abram M.B., Conceição Filho C. E. S., Iyer S. S. S. 2001. Gold mineralization in the Serra de Jacobina region, Bahia, Brazil: Tectonic framework and metallogenesis. Mineralium Deposita, 36:332-344. https://doi.org/10.1007/s001260100174
https://doi.org/10.1007/s001260100174...
), as seen in Figure 10.

Figure 10.
Geological map of the central part of Serra de Jacobina region. Source for gold occurrences: Misi et al. (2012Misi A., Teixeira J.B.G., Sá J.H.S. (orgs.). 2012. Mapa Metalogenético Digital do Estado da Bahia e Principais Províncias Minerais. Série Publicações Especiais, 11, Texto Explicativo. Brasil, Companhia Baiana de Pesquisa Mineral - CBPM, 237 p. (CD-ROM).).

Gold in Jacobina occurs in quartz veins and veinlets. They fill tension gashes and open fractures related to semi-concordant shear zones hosted by quartzites and andalusite-graphite-quartz schist, and also local metaconglomerates of Rio do Ouro Fm. Regardless of the host rock composition, mineralized bodies present hydrothermal alteration associations containing pyrite, pyrrhotite, quartz, sericite, fuchsite, and tourmaline (Teixeira et al. 2001Teixeira J.B.G., Souza J.A.B., Silva M.G., Leite C.M.M., Barbosa J.S.F., Coelho C.E.S., Abram M.B., Conceição Filho C. E. S., Iyer S. S. S. 2001. Gold mineralization in the Serra de Jacobina region, Bahia, Brazil: Tectonic framework and metallogenesis. Mineralium Deposita, 36:332-344. https://doi.org/10.1007/s001260100174
https://doi.org/10.1007/s001260100174...
).

The earlier syngenetic hypothesis, in which gold was deposited together with clastic grains in Serra do Córrego basal conglomerate reefs (e.g., Davidson 1957Davidson C.F. 1957. On the occurrence of uranium in ancient conglomerates. Economic Geology, 52(6):668-693., Bateman 1958Bateman J.D. 1958. Uranium-bearing auriferous reefs at Jacobina, Brazil. Economic Geology, 53(4):417-425. https://doi.org/10.2113/gsecongeo.53.4.417
https://doi.org/10.2113/gsecongeo.53.4.4...
, Sims 1977Sims J.F.M. 1977. A geologia da série Jacobina aurífera nas vizinhanças de Jacobina, Bahia, Brasil. XVII Semana de Estudos SIGEQ, Ouro Preto. Boletim 17, p. 223-282.) is questionable, because the mineralized zone thickness is excessive. Gold occurs throughout the lower and upper metaconglomerate intervals, whose total thickness reaches approximately 290 m (Teixeira et al. 2001Teixeira J.B.G., Souza J.A.B., Silva M.G., Leite C.M.M., Barbosa J.S.F., Coelho C.E.S., Abram M.B., Conceição Filho C. E. S., Iyer S. S. S. 2001. Gold mineralization in the Serra de Jacobina region, Bahia, Brazil: Tectonic framework and metallogenesis. Mineralium Deposita, 36:332-344. https://doi.org/10.1007/s001260100174
https://doi.org/10.1007/s001260100174...
). Alternatively, the Serra do Córrego mineralization may be considered as orogenic, generated in an accretionary environment, during the melting of crustal rocks, shortly after the Rhyacian continental collision. The argon thermochronology carried out by Ledru et al. (1997Ledru P., Milési J.P., Johan V., Sabaté P., Maluski H. 1997. Foreland basins and gold-bearing conglomerates: A new model for the Jacobina Basin (São Francisco Province, Brazil). Precambrian Research, 86:155-176.) restricts hydrothermal alteration processes to the period from 1,943 to 1,912 Ma, which is undoubtedly contemporaneous with the emplacement period of peraluminous granites in the region, from 1,970 to 1,800 Ma. Serra de Jacobina gold mineralization is therefore interpreted as an integral part of the late (~1.9 Ga) tectonothermal evolution of the region. It was roughly coeval with the emplacement of large volumes of post-collisional, peraluminous granitic magmas, during a regional strike-slip regime (Teixeira et al. 2001Teixeira J.B.G., Souza J.A.B., Silva M.G., Leite C.M.M., Barbosa J.S.F., Coelho C.E.S., Abram M.B., Conceição Filho C. E. S., Iyer S. S. S. 2001. Gold mineralization in the Serra de Jacobina region, Bahia, Brazil: Tectonic framework and metallogenesis. Mineralium Deposita, 36:332-344. https://doi.org/10.1007/s001260100174
https://doi.org/10.1007/s001260100174...
).

Western Chapada Diamantina Gold Province

Gold deposits in Western Chapada Diamantina are grouped into six different districts, respecting their spatial distribution, with structural sub-divisions in Gentio do Ouro, Ibitiara, Baixa Funda, Catolés, Paramirim, and Rio de Contas. Production in Chapada Diamantina Province comes from garimpos, generally with very low mechanization (Fig. 11).

Figure 11.
Geological outline showing the location of Western Chapada Diamantina Gold Province. Source for geological units: Schobbenhaus et al. (2004Schobbenhaus C., Gonçalves J.H., Santos J.O.S., Abram M.B., Leão Neto R., Matos G.M.M., Vidotti R.M., Ramos M.A.B., Jesus J.D.A. 2004. Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas - SIG e 48 folhas na escala 1:1.000.000. Brasília, CPRM (41 CD-ROMs).). Source for location of gold deposits and occurrences: Misi et al. (2012Misi A., Teixeira J.B.G., Sá J.H.S. (orgs.). 2012. Mapa Metalogenético Digital do Estado da Bahia e Principais Províncias Minerais. Série Publicações Especiais, 11, Texto Explicativo. Brasil, Companhia Baiana de Pesquisa Mineral - CBPM, 237 p. (CD-ROM).).

The main gold mineralization in Gentio do Ouro District is associated with quartz veins hosted in hydrothermally altered, schistfied, and/or mylonitized basic sills. The latter are sub-concordant to the stratification of metasedimentary rocks of Espinhaço Supergroup. The main mineralized areas are located on the flanks of Ipupiara Anticline, associated with shear bedding-parallel laminated veins, as well as with oblique or en echelon extension veins (Loureiro et al. 2008Loureiro H.S.C., Lima E.S., Macedo E.P., Silveira F.V., Bahiense I.C., Arcanjo J.B.A., Moraes Filho J.C., Neves J.P., Guimarães J.T., Teixeira L.R., Abram M.B., Santos R.A., Melo R.C. (eds.). 2008. Projeto Barra-Oliveira dos Brejinhos: Estado da Bahia. Convênio CBPM - Companhia Baiana de Pesquisa Mineral/CPRM - Serviço Geológico do Brasil. Salvador, Programa Recursos Minerais do Brasil, 156p. (2 maps).).

Gold and barite mineralization from Ibitiara to Rio de Contas region occurs in:

  • boudined veins controlled by NNW-SSE shear zones developed in sedimentary rocks of Espinhaço Supergroup;

  • in volcanic, subvolcanic and sedimentary rocks of Rio do Remédios Group;

  • in sedimentary rocks of Paraguaçu Group. The immediate host rocks of gold veins are usually mylonitized and hydrothermally altered, with development of sericite, hematite, and carbonate.

Gold grades are erratic and vary from 2 to 3 g Au/t. Hydrothermal breccias usually mark the contact of veins with host rocks (Silva et al. 2006Silva M.G., Guimarães J.T., Teixeira L.R., Martins A.M., Andrade Filho E.L., Loureiro H., Arcanjo J.B., Neves J.P., Mascarenhas J.F., Melo R.C., Bento R.V. 2006. Evidências estruturais, metalogenéticas e geocronológicas da inversão neoproterozóica do rifte Espinhaço. XLIII Congresso Brasileiro de Geologia, 2006, Aracaju. Anais, p. 177., Guimarães et al. 2008Guimarães J.T., Santos R.A., Melo R.C. 2008. Geologia da Chapada Diamantina Ocidental (Projeto Ibitiara-Rio de Contas). Série Arquivos Abertos, n. 31. Salvador, CBPM, 68 p. (map).). The 40Ar/39Ar data of sericite from samples collected from shear zones immediately adjacent to the veins revealed Cambrian cooling ages, in the range of 500 to 497 Ma (Silva et al. 2006Silva M.G., Guimarães J.T., Teixeira L.R., Martins A.M., Andrade Filho E.L., Loureiro H., Arcanjo J.B., Neves J.P., Mascarenhas J.F., Melo R.C., Bento R.V. 2006. Evidências estruturais, metalogenéticas e geocronológicas da inversão neoproterozóica do rifte Espinhaço. XLIII Congresso Brasileiro de Geologia, 2006, Aracaju. Anais, p. 177.). Gold mineralization in Western Chapada Diamantina was generated in a post-orogenic environment, resulting from the collision of South American and African terranes, during the amalgamation of West Gondwana paleocontinent.

The Lavra Velha gold and copper deposit, in Ibitiara District, is the first in this province that underwent rational exploration in modern times. The deposit is characterized by an association of hydrothermal breccias hosted in altered granite and acid-to intermediate subvolcanic rocks. These are cut by a system of veins and veinlets, consisting predominantly of an association of hematite, tourmaline, quartz, and sericite. The breccias and veins have irregular branched structures of unknown extension, with a general N30°-50°E orientation. The Lavra Velha mineralization is hosted by sulfide breccias. The gold content ranges from 5 to 50 ppm, while the copper content varies from 0.2% in areas with disseminated chalcopyrite to 8% in zones richer in bornite (Campos 2013Campos L.D. 2013. O depósito de Au-Cu Lavra Velha, Chapada Diamantina Ocidental: Um exemplo de depósito da classe IOCG associado aos terrenos paleoproterozoicos do Bloco Gavião. MSc Dissertation, Instituto de Geociências, Universidade de Brasília, Brasília, 113 p.).

Published reports from Yamana Gold, related to their early gold-copper exploration project, suggest that the Lavra Velha project represents a regional mineralization believed to be an IOCG system characterized by sub-horizontal mineralized levels. According to this mining company, mineralization control suggests close affinity to the volcanic-plutonic contact that likely acted as a structural/chemical boundary. The inferred mineral resource was calculated at 3.9 million tonnes at 4.29 g/t containing 543,000 ounces of gold” (Yamana Gold, Mid-Year 2018 Exploration Update). There are no published data regarding copper reserves in Lavra Velha deposit.

DISCUSSION

This paper reviewed the existing concepts regarding the geotectonic evolution of Bahia, in the framework of the Northeastern region of Brazil. Most of these concepts have remained relatively simple for decades (e.g.Almeida 1977Almeida F.F.M. 1977. O cráton do São Francisco. Revista Brasileira de Geociências, 7(4):349-364., Barbosa & Sabaté 2004Barbosa J.S.F., Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133:1-27. http://doi.org/10.1016/j.precamres.2004.03.001
http://doi.org/10.1016/j.precamres.2004....
) and do not accommodate the requirements necessary to explain the crustal evolution and associated metallogenic processes that occurred in the region. A regional metallogenic analysis was undertaken to better understand the origin and geodynamic setting of each gold province in Bahia. The main assumption is that a primary ore deposit stands as the product of specific geodynamic systems, and consequently, ore provinces are real markers of multiple thermotectonic events.

The basement of crystalline rocks of the São Francisco-Borborema block consists of large Archaean continental terranes, formed between 3,500 and 2,500 million years ago, in different regions of the planet. These terranes were accreted during plate convergence about 2 billion years ago, in the context of Atlantica paleocontinent. The continental accretion occurred in a thrust belt system, which caused crustal thickening, and created a 500 km wide mountain chain.

A superplume event occurred after collision tectonics and following the episode of orogenic collapse and mantle uplift. This event caused rifting, generalized volcanism, and placement of anorogenic granites, in the interval between 1,880 and 1,760 Ma. The result was a rupture of the Atlantica paleocontinent. Following the superplume event, a new agglutination of continents took place, witnessed by the presence of rocks from the Grenville Orogeny, which resulted in the Rodinia paleocontinent construction.

The Rodinia paleocontinent fragmentation extended from 900 to 600 Ma. Generalized geological features that mark this in South America as well as in Africa are the epicontinental Neoproterozoic basins. In Brazil, the carbonate-siliciclastic sedimentary rocks of Bambuí Group, distributed in Minas Gerais (São Francisco Basin) and Bahia (Irecê, Una-Utinga and Campinas), represent these basins. Some fragments of Rodinia moved around the planet, amalgamated and formed the Gondwana paleocontinent. The main accretion event, namely Brasiliano/Pan-African, started about 770 Ma and continued until about 480 million years ago, in the Ordovician Period.

During the Neoproterozoic-Cambrian transition, the region corresponding to the Northeastern sector of Brazil experienced extreme brittle-ductile deformation, caused by oblique convergence and collision of the West African Craton (then attached to the Guyana Shield). This resulted in the establishment of large strike-slip fault systems, distributed according to a major, coupled NW-SE and NE-SW directed pair. The overriding heat flux and fluid movement during this process, in the 520 to 515 Ma interval, caused resetting of isotopic and magnetic systems in the carbonate rocks of São Francisco and Irecê basins. The final tectonic event related to amalgamation of West Gondwana in South America was the extensional collapse of the thickened orogenic crust. The expressive pressure relief attributed to this process led to the production of voluminous postcollisional granitic and syenitic bodies.

São Francisco-Borborema block is suggested to have been reconstructed at ca. 700 Ma in this paper. The best-explored correlation elements have been the:

  • Archean and Proterozoic lithotectonic units and their Paleo-, Meso- and Neo- respective subdivisions;

  • Birimian and Transamazonian (> 2,200-2,100 Ma) tholeiitic magmatism, which represents the oceanic phase of a Rhyacian Wilson cycle;

  • granulite-granitoid remnants of large orogenic belts, which represent the collision phase of the same Wilson cycle;

  • iron provinces, which have been interpreted as belonging to the same Neoarchean basin (Teixeira et al. 2007Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
    https://doi.org/10.1016/j.gr.2006.05.009...
    ).

The proposed new wrench-fault model is related to the Cambrian to Early Ordovician shortening event of the Eastern part of South America. This tectonic model resulted from empirical observations and serves mostly to:

  • reconcile the unlikely discrepancy between the geotectonic evolution and deformation styles currently described for the Borborema Province and the São Francisco Craton;

  • present an explanation for the segmentation and relative displacements registered by the discontinuity of early deposited geological units and mineral provinces;

  • provide a series of geological constraints that require further investigation of the well established concept of São Francisco Craton and its peripheral fold belts.

CONCLUSIONS

Two major phases of crustal shortening have been described in the São Francisco - Borborema continental area. The former produced a thrust-belt convergence, with the main tectonic events occurring between 2.2 and 1.9 Ga. During this phase, gold mineralization in the Middle Rio Itapicuru Gold Province, was formed. Mantle upwelling following the post-orogenic extensional collapse caused crustal melting, accompanied by intrusion of S-type granitic plutons, and magma extraction from the upper mantle. The gold mineralization origin in Serra de Jacobina is related to this event. The second phase was characterized by ubiquitous collisional tectonics related to the assembly of West Gondwana. Following this phase, a superplume activity occurred, which is responsible for hydrothermal gold deposits in the Western Chapada Diamantina. The metallogenetic analysis of this region allows to conjecture that metallotects operated with great intensity during the Proterozoic and they were recycled during the Cambrian thermotectonic event, with enough mineralizing potential to form IOCG deposits. Some of these deposits may contain large volumes of mineralized rocks of Olympic Dam type (Cu-U-Au-REE systems), which were protected from erosion by the younger sedimentary cover.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Richard Goldfarb, Prof. Léo Hartmann, Prof. Ian McReath, and an anonymous reviewer for their helpful advice on various technical issues examined in this paper.

REFERENCES

  • Alkmim F.F. 2004. O que faz de um cráton um cráton? O Cráton do São Francisco e as revelações almeidianas ao delimitá-lo. In: Mantesso-Neto V., Bartorelli A., Carneiro C.D.R., Brito Neves B.B. (Eds.), Geologia do Continente Sul-Americano, Evolução da Obra de Fernando Flávio Marques de Almeida São Paulo, Beca, p. 17-35.
  • Alkmim F.F., Brito Neves B.B., Castro Alves J.A. 1993. Arcabouço tectônico do Cráton do São Francisco - uma revisão. In: Dominguez J.M.L., Misi A. (Eds.). O Cráton do São Francisco Salvador: Reunião preparatória do II Simpósio sobre o Cráton do São Francisco, SBG/Núcleo BA-SE/SGM/CNPq, p.45-62.
  • Alkmim F.F., Marshak S., Fonseca M.A. 2001. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco Craton region, Brazil. Geology, 29(4):319-322. https://doi.org/10.1130/0091-7613(2001)029%3C0319:AWGITN%3E2.0.CO;2
    » https://doi.org/10.1130/0091-7613(2001)029%3C0319:AWGITN%3E2.0.CO;2
  • Almeida F.F.M. 1977. O cráton do São Francisco. Revista Brasileira de Geociências, 7(4):349-364.
  • Almeida F.F.M, Brito Neves B.B., Carneiro C.D.R. 2000. The origin and evolution of the South American Platform. Earth-Science Reviews, 50(1-2):77-111. https://doi.org/10.1016/s0012-8252(99)00072-0
    » https://doi.org/10.1016/s0012-8252(99)00072-0
  • Almeida F.F.M., Carneiro C.D.R., Machado Jr. D.L., Dehira L.K. 1988. Magmatismo pós-Paleozóico no nordeste oriental do Brasil. Revista Brasileira de Geociências, 18(4):451-462.
  • Alvarenga C.J.S., Moura C.A.V., Gorayeb P.S.S., Abreu F.A.M. 2000. Paraguay and Araguaia belts. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America 31 st International Geological Congress. Rio de Janeiro, p. 183-229.
  • Alves da Silva F.C., Chauvet A., Faure M. 1993. Early Proterozoic orogeny (Transamazonian) and syntectonic granite emplacement in the Rio Itapicuru greenstone belt, Bahia, Brazil. Comptes rendus de l’Académie des Sciences Paris II, 316:1139-1146.
  • Arcanjo J.B.A., Martins A.M., Loureiro H.C., Delgado I.M., Souza J.D., Neves J.P., Oliveira J.E., Teixeira L.R., Varela P.H., Gomes R.D., Santos R.A., Melo R.C. 2005. Vale do Paramirim, Bahia Série Arquivos Abertos, n. 22, CBPM, 70 p. (maps).
  • Arthaud M.H., Caby R., Fuck R.A., Dantas E.L., Parente C.V. 2008. Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., de Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society of London, Special Publication, 294, p. 49-67.
  • Assis J.A.C., Luvizotto G.L. 2018. Gold deposits in poly-deformed metasedimentary rocks: A case study of the C1-Santaluz gold deposit, Itapicuru Greenstone Belt, Northeast of Brazil. Brazilian Journal of Geology, 48(4):651-670. http://dx.doi.org/10.1590/2317-4889201820170124
    » http://dx.doi.org/10.1590/2317-4889201820170124
  • Babinski M., Pedrosa-Soares A.C., Trindade R.I.F., Martins M.C.M., Noce L.D. 2011. Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: Age, provenance and correlations with the São Francisco craton and West Congo belt. Gondwana Research, 2:451-465. https://doi.org/10.1016/j.gr.2011.04.008
    » https://doi.org/10.1016/j.gr.2011.04.008
  • Babinski M., Vieira L.C., Trindade R.I.F. 2007. Direct dating of the Sete Lagoas cap carbonate (Bambuí Group), Brazil and implications for the Neoproterozoic glacial events. Terra Nova, 19(6):401-406. https://doi.org/10.1111/j.1365-3121.2007.00764.x
    » https://doi.org/10.1111/j.1365-3121.2007.00764.x
  • Barbosa J.S.F., Sabaté P. 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: Geodynamic features. Precambrian Research, 133:1-27. http://doi.org/10.1016/j.precamres.2004.03.001
    » http://doi.org/10.1016/j.precamres.2004.03.001
  • Bateman J.D. 1958. Uranium-bearing auriferous reefs at Jacobina, Brazil. Economic Geology, 53(4):417-425. https://doi.org/10.2113/gsecongeo.53.4.417
    » https://doi.org/10.2113/gsecongeo.53.4.417
  • Bossi J., Gaucher C. 2004. The Cuchilla Dionisio terrane, Uruguay: An allochthonous block accreted in the Cambrian to SW-Gondwana. Gondwana Research, 7(3):661-674. https://doi.org/10.1016/S1342-937X(05)71054-6
    » https://doi.org/10.1016/S1342-937X(05)71054-6
  • Brito R.S.C. 2000. Geologia e petrologia do sill máfico ultramáfico do Rio Jacaré - Bahia e estudo das mineralizações de Fe-Ti-V e platinóides associados Doctoral Thesis, Universidade de Brasília, Brasília, 325p.
  • Brito Neves B.B., Santos E.J., Van Schmus W.R. 2000. Tectonic history of the Borborema Province, northeastern Brazil. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America 31 st International Geological Congress. Rio de Janeiro, p. 151-182.
  • Caby R. 2003. Terrane assembly and geodynamic evolution of central-western Hoggar: A synthesis. Journal of African Earth Sciences, 37(3-4):133-159. https://doi.org/10.1016/j.jafrearsci.2003.05.003
    » https://doi.org/10.1016/j.jafrearsci.2003.05.003
  • Campos L.D. 2013. O depósito de Au-Cu Lavra Velha, Chapada Diamantina Ocidental: Um exemplo de depósito da classe IOCG associado aos terrenos paleoproterozoicos do Bloco Gavião MSc Dissertation, Instituto de Geociências, Universidade de Brasília, Brasília, 113 p.
  • Campos-Neto M.C., Figueiredo M.C.H. 1995. The Rio-Doce orogeny, southeastern Brazil. Journal of South American Earth Sciences, 8(2):143-162. https://doi.org/10.1016/0895-9811(95)00002-W
    » https://doi.org/10.1016/0895-9811(95)00002-W
  • Cawood P.A. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69(3):249-279. http://dx.doi.org/10.1016/j.earscirev.2004.09.001
    » http://dx.doi.org/10.1016/j.earscirev.2004.09.001
  • Cawood P.A., Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews, 82(3-4):217-256. http://dx.doi.org/10.1016/j.earscirev.2007.03.003
    » http://dx.doi.org/10.1016/j.earscirev.2007.03.003
  • Cawood P.A., Tyler J.M. 2004. Assembling and reactivating the Proterozoic Capricorn Orogen: Lithotectonic elements, orogenies, and significance. Precambrian Research, 128(3-4):201-218. http://dx.doi.org/10.1016/j.precamres.2003.09.001
    » http://dx.doi.org/10.1016/j.precamres.2003.09.001
  • Chang H.K., Kowsmann R.O., Figueiredo A.M.F., Bender A.A. 1992. Tectonics and stratigraphy of the east Brazil rift system: An overview. Tectonophysics, 213(1-2):97-138. https://doi.org/10.1016/0040-1951(92)90253-3
    » https://doi.org/10.1016/0040-1951(92)90253-3
  • Chemale Jr. F., Dussin I.A., Alkmim F.F., Martins M.S., Queiroga G., Armstrong R., Santos M.N. 2012. Unravelling a Proterozoic basin history through detrital zircon geochronology: The case of the Espinhaço Supergroup, Minas Gerais, Brazil. Gondwana Research, 22:200-206. http://dx.doi.org/10.1016/j.gr.2011.08.016
    » http://dx.doi.org/10.1016/j.gr.2011.08.016
  • Condie K.C. 2002a. Breakup of a Paleoproterozoic supercontinent. Gondwana Research, 5(1):41-43. https://doi.org/10.1016/S1342-937X(05)70886-8
    » https://doi.org/10.1016/S1342-937X(05)70886-8
  • Condie K.C. 2002b. The supercontinent cycle: Are there two patterns of cyclicity? Journal of African Earth Sciences, 35:179-183.
  • Cordani U.G. 1970. Idade do vulcanismo do oceano Atlântico sul. Boletim do Instituto Astronômico e Geofísico, 1:9-75. https://doi.org/10.11606/issn.2316-9001.v1i0p09-75
    » https://doi.org/10.11606/issn.2316-9001.v1i0p09-75
  • Cordani U.G., Brito-Neves B.B., D’Agrella-Filho M.S. 2003. From Rodinia to Gondwana: A review of the available evidence from South America. Gondwana Research, 6(2):275-283. https://doi.org/10.1016/S1342-937X(05)70976-X
    » https://doi.org/10.1016/S1342-937X(05)70976-X
  • Cordani U.G., Sato K. 1999. Crustal evolution of the South American Platform based on Nd isotopic systematics on granitoid rocks. Episodes, 22(3):167-173.
  • Cordani U.G., Sato K., Teixeira W., Tassinari C.C.G., Basei M.A.S. 2000. Crustal evolution of the South American platform. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Eds.). Tectonic evolution of South America, Rio de Janeiro, Brazil, 31 st International Geological Congress, p. 19-40.
  • Correa-Gomes L.C., Oliveira E.P. 2000. Radiating 1.0 Ga mafic dyke swarms of Eastern Brazil and Western Africa: Evidence of post-assembly extension in the Rodinia Supercontinent? Gondwana Research, 3(3):325-332. https://doi.org/10.1016/S1342-937X(05)70291-4
    » https://doi.org/10.1016/S1342-937X(05)70291-4
  • Corsini M., Figueiredo L.L., Caby R., Féraud G., Ruffet G., Vauchez A. 1998. Thermal history of the Pan-African/Brasiliano Borborema Province of northeast Brazil deduced from 40Ar/39Ar analysis. Tectonophysics, 285(1-2):103-117. https://doi.org/10.1016/S0040-1951(97)00192-3
    » https://doi.org/10.1016/S0040-1951(97)00192-3
  • Couto P.A., Sampaio A.R., Gil C.A.A., Loureiro H.C., Arcanjo J.B., Fernandes Filho J., Guimarães J.T., Campelo R., Bruni D.C., Toledo L.A.A. 1978. Projeto Serra da Jacobina: Geologia e Prospecção Geoquímica, Relatório Final Salvador, Companhia de Pesquisa de Recursos Minerais - CPRM. v. 1.
  • Cruz S.C.P., Alkmim F.F. 2006. The tectonic interaction between the Paramirim Aulacogen and the Araçuaí Belt, São Francisco Craton region, Easter Brazil. Anais da Academia Brasileira de Ciências, 78(1):151-173. http://dx.doi.org/10.1590/S0001-37652006000100014
    » http://dx.doi.org/10.1590/S0001-37652006000100014
  • Danderfer Filho A. 2000. Geologia sedimentar e evolução tectônica do Espinhaço Setentrional, Estado da Bahia Doctoral Thesis, Universidade de Brasília, Brasília, 497p.
  • Dardenne M.A., Schobbenhaus C. 2000. The metallogenesis of the South American Platform. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America, Rio de Janeiro, 31st. International Geological Congress, p. 755-850.
  • Davidson C.F. 1957. On the occurrence of uranium in ancient conglomerates. Economic Geology, 52(6):668-693.
  • D’el-Rey Silva L.J.H., Dantas E.L., Teixeira J.B.G., Laux J.L., Silva M.G. 2007. U-Pb and Sm-Nd geochronology of amphibolites from the Curaçá Belt, São Francisco Craton, Brazil: Tectonic implications. Gondwana Research, 12:454-467.
  • Doblas M., López-Ruiz J., Cebriá J.-M., Youbi N., Degroote E. 2002. Mantle insulation beneath the West African Craton during the Precambrian-Cambrian transition. Geology, 30(9):839-842. https://doi.org/10.1130/0091-7613(2002)030%3C0839:MIBTWA%3E2.0.CO;2
    » https://doi.org/10.1130/0091-7613(2002)030%3C0839:MIBTWA%3E2.0.CO;2
  • Ferreira J.M., Oliveira R., Takeya M.K., Assumpção M.A. 1998. Superposition of local and regional stresses in NE Brazil: Evidence from mechanisms around the Potiguar marginal basin. Geophysical Journal International, 134(2):341-355. https://doi.org/10.1046/j.1365-246x.1998.00563.x
    » https://doi.org/10.1046/j.1365-246x.1998.00563.x
  • Fetter A.H., Van Schmus W.R., Santos T.J.S., Nogueira Neto J.A., Arthaud M.H. 2000. U-Pb and Sm-Nd geochronological constraints on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: Implications for the existence of the Paleoproterozoic supercontinent “Atlantica”. Revista Brasileira de Geociências, 30(1):102-106.
  • Garcia P.M.P., Teixeira J.B.G., Misi A., Sá J.H.S., Silva M.G. 2018. Tectonic and metallogenic evolution of the Curaçá Valley Copper Province, Bahia, Brazil: A review based on new SHRIMP zircon U-Pb dating and sulfur isotope geochemistry. Ore Geology Reviews, 93:361-381. http://doi.org/10.1016/j.oregeorev.2018.01.007
    » http://doi.org/10.1016/j.oregeorev.2018.01.007
  • Gomes R.A.A.D., Gomes P.J., Silveira Filho N.C. 1996. Mapa Bouguer do Estado da Bahia, escala 1:1.000.000 Salvador, Companhia de Pesquisa de Recursos Minerais (CPRM).
  • Goscombe B., Gray D. 2007. The Coastal terrane of the Kaoko belt, Namibia: Outboard arc-terrane and tectonic significance. Precambrian Research, 155(1-2):139-158. https://doi.org/10.1016/j.precamres.2007.01.008
    » https://doi.org/10.1016/j.precamres.2007.01.008
  • Guimarães J.T., Alkmim F.F., Cruz S.C.P. 2012. Supergrupos Espinhaço e São Francisco. In: Barbosa J.S.F., Mascarenhas J.F.M., Correa-Gomes L.C.C., Domingues J.M.L. (Eds.) Geologia da Bahia Pesquisa e Atualização de Dados. Salvador, CBPM, 2, p. 33-86.
  • Guimarães J.T., Santos R.A., Melo R.C. 2008. Geologia da Chapada Diamantina Ocidental (Projeto Ibitiara-Rio de Contas) Série Arquivos Abertos, n. 31. Salvador, CBPM, 68 p. (map).
  • Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J., Tupinambá Siga Jr. M.O., Trouw R. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: Comparative tectonic evolution and open questions. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region . Geological Society of London, Special Publication, 294:211-237.
  • Inda H.A.V., Barbosa J.S.F. 1978. Texto explicativo para o Mapa Geológico do Estado da Bahia, escala 1:1.000.000 Salvador, Secretaria de Minas e Energia, 122p. (map).
  • Jacobs J., Fanning C.M., Henjes-Kunst E., Olesch M., Paech H.J. 1998. Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. The Journal of Geology, 106(4):385-406. http://doi.org/10.1086/516031
    » http://doi.org/10.1086/516031
  • Jacobs J., Thomas R.J. 2004. Himalayan-type indenter-escape tectonics model for the southern part of the Late Neoproterozoic-Early Paleozoic East African-Antarctic orogen. Geology, 32(8):721-724. http://doi.org/10.1130/G20516.1
    » http://doi.org/10.1130/G20516.1
  • Jardim de Sá E.F., Macedo M.H.E., Fuck R.A., Kawashita K. 1992. Terrenos proterozóicos na Província Borborema e a margem norte do Cráton do São Francisco. Revista Brasileira de Geociências, 22(4):472-480.
  • Kuchenbecker M., Reis H.L.S., Fragoso D.G.C. 2011. Caracterização estrutural e considerações sobre a evolução tectônica da Formação Salitre na porção central da Bacia de Irecê, norte do Cráton do São Francisco (BA). Geonomos, 19:42-49. http://doi.org/10.18285/geonomos.v19i2.40
    » http://doi.org/10.18285/geonomos.v19i2.40
  • Leal L.R.B., Cunha J.C., Teixeira W., Macambira M.J.B. 1998. Archean tonalitic-trondhjemitic and granitic plutonism in the Gavião Block, São Francisco Craton, Bahia, Brazil: Geochemical and geochronology characteristics. Revista Brasileira de Geociências, 28(2):209-220.
  • Leal L.R.B., Teixeira W., Cunha J.C., Leal A.B.M., Macambira M.J.B., Rosa M.L.S. 2000. Isotopic signatures of paleoproterozoic granitoids of the Gavião block and implications for the evolution of the São Francisco craton, Bahia, Brazil. Revista Brasileira de Geociências, 30(1):66-69.
  • Ledru P., Milési J.P., Johan V., Sabaté P., Maluski H. 1997. Foreland basins and gold-bearing conglomerates: A new model for the Jacobina Basin (São Francisco Province, Brazil). Precambrian Research, 86:155-176.
  • Loureiro H.S.C., Lima E.S., Macedo E.P., Silveira F.V., Bahiense I.C., Arcanjo J.B.A., Moraes Filho J.C., Neves J.P., Guimarães J.T., Teixeira L.R., Abram M.B., Santos R.A., Melo R.C. (eds.). 2008. Projeto Barra-Oliveira dos Brejinhos: Estado da Bahia Convênio CBPM - Companhia Baiana de Pesquisa Mineral/CPRM - Serviço Geológico do Brasil. Salvador, Programa Recursos Minerais do Brasil, 156p. (2 maps).
  • Markwitz V., Hein K.A.A., Miller J. 2016. Compilation of West African mineral deposits: Spatial distribution and mineral endowment. Precambrian Research, 274:61-81. http://doi.org/10.1016/j.precamres.2015.05.028
    » http://doi.org/10.1016/j.precamres.2015.05.028
  • Mascarenhas J.F., Ledru P., Souza S.L., Conceição Filho V.M., Melo L.F.A., Lorenzo C.L., Milesi J.P. 1998. Geologia e recursos minerais do Grupo Jacobina e da parte sul do greenstone belt de Mundo Novo Série Arquivos Abertos, n. 13. CBPM, 58p. (map).
  • Mello E.F. 2000. Estudos isotópicos do greenstone belt do Rio Itapicuru, BA: Evolução crustal e metalogenia do ouro Doctoral Thesis, Universidade de Campinas, São Paulo, 200p.
  • Milani E.J., Thomaz Filho A. 2000. Sedimentary Basins of South America. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America 31 st International Geological Congress. Rio de Janeiro, p. 389-449.
  • Milesi J.P. (coord.). 1989. West African Gold Deposits in their Lower Proterozoic Lithostructural Setting. Éditions du BRGM. Chroniques de La Recherche Minière, 497, 98 p., map.
  • Misi A. 2001. Estratigrafia isotópica das seqüências do Supergrupo São Francisco, coberturas neoproterozóicas do cráton do São Francisco. Idade e correlações. In: Pinto C.P., Martins-Neto M.A. (Eds.). Bacia do São Francisco. Geologia e Recursos Naturais, p. 67-92. Minas Gerais, Sociedade Brasileira de Geologia, Núcleo de Minas Gerais.
  • Misi A., Kaufman A.J., Azmy K., Dardenne M.A., Sial A.N., Oliveira T.F. 2011. Neoproterozoic successions of the São Francisco Craton, Brazil: The Bambuí, Una, Vazante and Vaza Barris/Miaba groups and their glaciogenic deposits. In: Geological Society of London (Memoirs), 36, 509-522. London, Geological Society of London.
  • Misi A., Kaufman A.J., Veizer J., Powis K., Azmy K., Boggiani P.C., Gaucher C., Teixeira J.B.G., Sanches A.L., Iyer S.S.S. 2007. Chemostratigraphic correlation of Neoproterozoic successions in South America. Chemical Geology, 237(1):143-167. http://dx.doi.org/10.1016/j.chemgeo.2006.06.019
    » http://dx.doi.org/10.1016/j.chemgeo.2006.06.019
  • Misi A., Teixeira J.B.G., Sá J.H.S. (orgs.). 2012. Mapa Metalogenético Digital do Estado da Bahia e Principais Províncias Minerais Série Publicações Especiais, 11, Texto Explicativo. Brasil, Companhia Baiana de Pesquisa Mineral - CBPM, 237 p. (CD-ROM).
  • Misi A., Iyer S.S., Coelho C.E.S., Tassinari C.C.G., Franca-Rocha W.J.S., Cunha I.A., Gomes A.S.R., Oliveira T.F., Teixeira J.B.G., Conceição Filho M. 2005. Sediment hosted lead-zinc deposits of the Neoproterozoic Bambuí group and correlative sequences, São Francisco Craton, Brazil: A review and a possible metellogenic evolution model. Ore Geology Reviews, 26:263-304. http://doi.org/10.1016/j.oregeorev.2004.12.004
    » http://doi.org/10.1016/j.oregeorev.2004.12.004
  • Neves S.P., Mariano G. 2004. Heat-producing elements-enriched continental mantle lithosphere and Proterozoic intracontinental orogens: Insight from Brasiliano/Pan-African Belts. Gondwana Research, 7(2):427-436. https://doi.org/10.1016/S1342-937X(05)70794-2
    » https://doi.org/10.1016/S1342-937X(05)70794-2
  • Neves S.P., Vauchez A., Feraud G. 2000. Tectono-thermal evolution, magma emplacement, and shear zone development in the Caruaru area (Borborema Province, NE Brazil). Precambrian Research, 99(1):1-32. http://doi.org/10.1016/S0301-9268(99)00026-1
    » http://doi.org/10.1016/S0301-9268(99)00026-1
  • Oberthür T., Vetter U., Schmidt-Mumm A., Weizer T., Amanor J.A., Gyapong W.A., Kum R., Blenkinsop T.G. 1994. The Ashanti Gold Mine at Obuasi, Ghana: Mineralogical, geochemical, stable isotope and fluid inclusion studies on the metallogenesis of the deposit. In: Oberthür T. (Ed.). Metallogenesis of Selected Gold Deposits in Africa. Geologisches Jahrbuch, Reihe D, Heft, v. 100, p. 31-129. Hannover.
  • Oliveira E.P. 2012. Faixa de Dobramento Sergipana. In: Barbosa J.S.F., Mascarenhas J.F., Corrêa-Gomes L.C.C., Domingues J.M.L, Oliveira J.S.S. (Eds.). Geologia da Bahia Pesquisa e Atualização de Dados. Salvador, CBPM. p. 179-188. 2 v.
  • Pedreira da Silva A.J.C.L. 1994. O Supergrupo Espinhaço na Chapada Diamantina centro-oriental, Bahia: Sedimentologia, estratigrafia e tectônica Doctoral Thesis, Universidade de São Paulo, São Paulo, Brazil, 174p.
  • Pedrosa-Soares A., Alkmim F.F. 2011. How many rifting events preceded the development of the Araçuaí-West Congo Orogen? Geonomos, 19(2):244-251. https://doi.org/10.18285/geonomos.v19i2.56
    » https://doi.org/10.18285/geonomos.v19i2.56
  • Pedrosa-Soares A.C., Alkmim F.F., Tack L., Noce C.M., Babinski M., Silva L.C., Martins-Neto M.A. 2008. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuai-West Congo orogen. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region , v. 294, p. 153-172. Geological Society of London, Special Publication.
  • Pimentel M.M., Botelho N.F. 2001. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goiás tin province, Central Brazil. Anais da Academia Brasileira de Ciências, 73(2):263-276. http://dx.doi.org/10.1590/S0001-37652001000200010
    » http://dx.doi.org/10.1590/S0001-37652001000200010
  • Pimentel M.M., Fuck R.A. 1992. Neoproterozoic crustal accretion in Central Brazil. Geology, 20(4):375-379. https://doi.org/10.1130/0091-7613(1992)020%3C0375:NCAICB%3E2.3.CO;2
    » https://doi.org/10.1130/0091-7613(1992)020%3C0375:NCAICB%3E2.3.CO;2
  • Portergeo. 2019. Australian Iron Ore Deposits - Overview. Available at: Available at: http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn087 Accessed on: Dec. 12, 2018.
    » http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn087
  • Rapela C.W. 2000. The Sierras Pampeanas of Argentina: Paleozoic building of the southern proto-Andes. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (Eds.). Tectonic Evolution of South America, 31 st International Geolocigal Congress, Rio de Janeiro, Brazil, p. 381-387.
  • Remus M.V., Hartmann L.A., McNaughton N.J., Groves D.I., Reischl J.L. 2000. Distal magmatic-hydrothermal origin for the Camaquã Cu (Au-Ag) and Santa Maria Pb, Zn, (Cu-Ag) deposits, Southern Brazil. Gondwana Research, 3(2):155-174. https://doi.org/10.1016/S1342-937X(05)70094-0
    » https://doi.org/10.1016/S1342-937X(05)70094-0
  • Sanchez-Bettucci L., Preciozzi F., Basei M.A.S. 2003. The Neoproterozoic Lavalleja Group in Uruguay: Geology and Base Metal Deposits. In: Cailteux J.L.H. (ed.). IUGS-UNESCO International Geological Correlation Programme IGCP 450 - Conference and Field Workshop, Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana Lubumbashi, Democratic Republic of Congo, p. 184-187.
  • Santos E.J., Brito Neves B.B. 1984. Província Borborema. In: Almeida F.F.M, Hasui Y. (Eds.). O Pre-Cambriano do Brasil São Paulo, Edgard Blücher, p. 123-186.
  • Santos E.J., Nutman A.P., Brito Neves B.B. 2004. Idades SHRIMP U-Pb do Complexo Sertânia: Implicações sobre a evolução tectônica da Zona Transversal, Província Borborema. Geologia USP Série Científica, 4(1):1-12. https://doi.org/10.5327/S1519-874x2004000100001
    » https://doi.org/10.5327/S1519-874x2004000100001
  • Santos J.O.S., Groves D.I., Hartmann L.A., Moura M.A., McNaughton N.J. 2001. Gold deposits of the Tapajós and Alta Floresta domains, Tapajós-Parima orogenic belt, Amazon Craton, Brazil. Mineralium Deposita, 36(3-4):278-299.
  • Santos-Pinto M.A., Peucat J.J., Martin H., Sabaté P. 1998. Recycling of the Archaean continental crust: The case study of the Gavião Block, Bahia, Brazil. Journal of South American Earth Sciences, 11(5):487-498. https://doi.org/10.1016/S0895-9811(98)00029-7
    » https://doi.org/10.1016/S0895-9811(98)00029-7
  • Schmitt R.S., Trouw R.A.J., Van Schmus W.R., Pimentel M.M. 2004. Late amalgamation in the central part of Western Gondwana: New geochronological data and the characterization of a Cambrian collision orogeny in the Ribeira Belt (SE Brazil). Precambrian Research, 133(1):29-61. http://dx.doi.org/10.1016/j.precamres.2004.03.010
    » http://dx.doi.org/10.1016/j.precamres.2004.03.010
  • Schobbenhaus C. 1996. As tafrogêneses superpostas Espinhaço e Santo Onofre, Estado da Bahia: Revisão e novas propostas. Revista Brasileira de Geociências, 26(4):265-276.
  • Schobbenhaus C., Brito Neves B.B. 2003. A geologia do Brasil no contexto da Plataforma Sul-Americana. In: Bizzi L.A., Schobbenhaus C., Vidotti R.M., Gonçalves R.H. (Eds.). Geologia, Tectônica e Recursos Minerais do Brasil Brasília, CPRM, p. 5-54.
  • Schobbenhaus C., Campos D.A., Derze G.R., Asmus H.E. 1984. Mapa Geológico do Brasil e da área adjacente incluindo depósitos minerais, escala 1:2.500.000. Brasília, DNPM.
  • Schobbenhaus C., Gonçalves J.H., Santos J.O.S., Abram M.B., Leão Neto R., Matos G.M.M., Vidotti R.M., Ramos M.A.B., Jesus J.D.A. 2004. Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas - SIG e 48 folhas na escala 1:1.000.000. Brasília, CPRM (41 CD-ROMs).
  • Sial A.N. 1976. The post-Paleozoic volcanism of north-east Brazil and its tectonic significance. Anais da Academia Brasileira de Ciências, 48(Suppl.):299-311.
  • Silva A.M., Chemale Jr. F., Kuyumjian R.M., Haeman L. 1995. Mafic dike swarms of Quadrilátero Ferrífero and Southern Espinhaço, Minas Gerais, Brazil. Revista Brasileira de Geociências, 25(2):124-137.
  • Silva M.G., Coelho C.E.S., Teixeira J.B.G., Silva F.C.A., Silva R.A., Souza J.A.B. 2001. The Rio Itapicuru greenstone belt, Bahia, Brazil: Geologic evolution and review of gold mineralization. Mineralium Deposita, 36(3-4):345-357. https://doi.org/10.1007/s001260100173
    » https://doi.org/10.1007/s001260100173
  • Silva M.G., Guimarães J.T., Teixeira L.R., Martins A.M., Andrade Filho E.L., Loureiro H., Arcanjo J.B., Neves J.P., Mascarenhas J.F., Melo R.C., Bento R.V. 2006. Evidências estruturais, metalogenéticas e geocronológicas da inversão neoproterozóica do rifte Espinhaço. XLIII Congresso Brasileiro de Geologia, 2006, Aracaju. Anais, p. 177.
  • Sims J.F.M. 1977. A geologia da série Jacobina aurífera nas vizinhanças de Jacobina, Bahia, Brasil. XVII Semana de Estudos SIGEQ, Ouro Preto. Boletim 17, p. 223-282.
  • Souza Z.S., Vasconcelos P.M.P., Nascimento M.A.L., Silveira F.V., Paiva H.S., Dias L.G.S., Thied D., Carmo I.O. 2003. 40Ar/39Ar geochronology of Mesozoic and Cenozoic magmatism in NE Brazil. IV South American Symposium on Isotope Geology, Salvador. Short Papers, p. 691-694.
  • Tassinari C.C.G., Bettencourt J.S., Geraldes M.C., Macambira M.J.B., Lafon J.M. 2000. The Amazonian Craton. In: Cordani U.G., Milani E.J., Thomaz Filho A., Campos D.A. (Eds.) Tectonic Evolution of South America, 31 st International Geological Congress, Rio de Janeiro, p. 41-95.
  • Teixeira J.B.G., Coelho C.E.S. 2014. Depósito de Ouro C1-Santa Luz, Bahia, Brasil Série Arquivos Abertos, n. 40. Salvador, CBPM, ,62 p.
  • Teixeira J.B.G., Kishida A., Marimon M.P.C., Xavier R.P., McReath I. 1990. The Fazenda Brasileiro gold deposit, Bahia: Geology, hydrothermal alteration, and fluid inclusion studies. Economic Geology, 85(5):990-1009. https://doi.org/10.2113/gsecongeo.85.5.990
    » https://doi.org/10.2113/gsecongeo.85.5.990
  • Teixeira J.B.G., Misi A., Silva M.G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11(3):346-361. https://doi.org/10.1016/j.gr.2006.05.009
    » https://doi.org/10.1016/j.gr.2006.05.009
  • Teixeira J.B.G., Silva M.G., Misi A., Cruz S.C.P., Sá J.H.S. 2010. Geotectonic setting and metallogeny of the northern São Francisco craton, Bahia, Brazil. Journal of South American Earth Sciences, 30:71-83.
  • Teixeira J.B.G., Souza J.A.B., Silva M.G., Leite C.M.M., Barbosa J.S.F., Coelho C.E.S., Abram M.B., Conceição Filho C. E. S., Iyer S. S. S. 2001. Gold mineralization in the Serra de Jacobina region, Bahia, Brazil: Tectonic framework and metallogenesis. Mineralium Deposita, 36:332-344. https://doi.org/10.1007/s001260100174
    » https://doi.org/10.1007/s001260100174
  • Teles G., Chemale Jr. F., Oliveira C.G. 2015. Paleoarchean record of the detrital pyrite-bearing, Jacobina Au-U deposits, Bahia, Brazil. Precambrian Research, 256:289-313. https://doi.org/10.1016/j.precamres.2014.11.004
    » https://doi.org/10.1016/j.precamres.2014.11.004
  • Trindade R.I.F., D’Agrella-Filho M., Babinski M., Brito Neves B.B. 2004. Paleomagnetism and geochronology of the Bebedouro cap carbonate: Evidence for continental-scale Cambrian remagnetization in the São Francisco Craton, Brazil. Precambrian Research, 128(1-2):83-103. http://dx.doi.org/10.1016/j.precamres.2003.08.010
    » http://dx.doi.org/10.1016/j.precamres.2003.08.010
  • Uhlein A., Trompette R.R., Egydio-Silva M. 1998. Proterozoic rifting and closure, SE border of the São Francisco Craton, Brazil. Journal of South American Earth Sciences, 11(2):191-203. https://doi.org/10.1016/S0895-9811(98)00010-8
    » https://doi.org/10.1016/S0895-9811(98)00010-8
  • Van Schmus W.R., Oliveira E.P., Silva Filho A.F., Toteu S.F., Penaye J.I.P., Guimarães I.P. 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African fold belt. In: Pankhurst R.J., Trouw R.A.J., Brito Neves B.B., De Wit M.J. (Eds.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region . London, Geological Society of London, Special Publication, 294:69-99.
  • Vasconcelos P., Becker T. 1992. A idade da mineralização aurífera no depósito da Fazenda Brasileiro, Bahia, Brasil. In: Proceedings Workshop em Metalogênese: Pesquisas Atuais e Novas Tendências. Boletim de Resumos. São Paulo, Unicamp.
  • Vauchez A., Neves S., Caby R., Corsini M., Egydio-Silva M., Arthaud M., Amaro V. 1995. The Borborema shear zone system, NE Brazil. Journal of South American Earth Sciences, 8(3-4):247-266. https://doi.org/10.1016/0895-9811(95)00012-5
    » https://doi.org/10.1016/0895-9811(95)00012-5
  • Voicu G., Bardoux M., Stevenson R. 2001. Lithostratigraphy and gold metallogeny in the northern Guyana Shield, South America: A review. Ore Geology Reviews, 18(3-4):211-236. http://dx.doi.org/10.1016/S0169-1368(01)00030-0
    » http://dx.doi.org/10.1016/S0169-1368(01)00030-0
  • Wiedemann C.M. 1993. The evolution of the early Paleozoic, late- to post-collisional magmatic arc of the Coastal mobile belt, in the State of Espírito Santos, eastern Brazil. Anais da Academia Brasileira de Ciências, 65:163-181.

ARTICLE INFORMATION

  • 2
    Manuscript ID: 20190009.

Publication Dates

  • Publication in this collection
    21 Oct 2019
  • Date of issue
    2019

History

  • Received
    19 Feb 2019
  • Accepted
    31 July 2019
Sociedade Brasileira de Geologia R. do Lago, 562 - Cidade Universitária, 05466-040 São Paulo SP Brasil, Tel.: (55 11) 3459-5940 - São Paulo - SP - Brazil
E-mail: sbgeol@uol.com.br