
Abstract
The Pedra Branca suite (2.75 Ga) is located in the Canãa dos Carajás domain in the southeastern Amazonia Craton. It diverges from typical 
TTG in mineralogical and geochemical terms, by the presence of hornblende and clinopyroxene and because it has a high content of HFSE 
(Zr, Y, Ti, and Nb). It belongs to the low-K subalkaline series, which varies from metaluminous to peraluminous, and are mostly calc and 
ferroan granitoids. Amphibole is calcic and classified as ferroan-edenite, and hastingsite. Plagioclase is mainly oligoclase. The Fe/(Fe + Mg) 
ratios found in the amphiboles indicate that these granitoids were formed under high to moderate fO2 conditions. Geobarometric  calcu-
lations suggest pressures between 9.3 and 71 Kbar for the origin and 4.8-53.4 Kbar for the emplacement. Geothermometric calculations 
suggest initial crystallization temperatures between 945 and 862°C, and the water content in the magma is estimated to be higher than 4 wt%. 
The magma source was defined as tholeiitic continental gabbro melted in an extensional setting (Carajás Rift) with geochemical features simi-
lar to diabase from Nova Canadá (PA). The Pedra Branca magma was originated by partial melting (~28%), leaving a residue with plagioclase 
(An40), hornblende, clinopyroxene, and may or may not have magnetite.
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INTRODUCTION
Archean cratons are commonly composed of greenstone belts 

and granitoids, among which tonalite-trondhjemite-granodiorite 
associations stand out (TTG; Windley 1996). Studies about these 
rocks are essential to understand the dynamics during Archean 
on Earth (Condie 1994). TTG are the most abundant rock types 
of the early Archean, found in many cratonic terrains (Smithies 
2000, Martin et al. 2005, Moyen 2011). They are intermediate 

to felsic (most > 65 SiO2 wt%), with high Na2O/K2O ratios 
(> 1.5), low to moderate large-ion litophile elements (LILE), 
and no potassium enrichment with increased differentiation 
(Champion and Smithies 2003). These rock associations are 
derived from rocks with low K and basaltic composition (gar-
net eclogite), generated by partial melting of subduction slabs 
(Condie 2005, Martin et al. 2005, Martin 1986, Moyen and 
Martin 2012, Barker and Arth 1976, Barker 1979).

Typical Archean TTG have well-defined and consecrated 
petrogenetic models geochemical characteristics (Martin 
1994). In the Carajás Province (CP), TTG suites have been 
extensively studied and characterized (Leite et al. 2004, 
Guimarães et al. 2010, Almeida et al. 2011, 2017, Feio et al. 
2013, Santos et al. 2013b, Silva et al. 2014). The Pedra Branca 
Suite (PBS; Gomes and Dall’agnol 2007, Feio et al. 2013) out-
crops in Canaã dos Carajás region, southeastern Pará State, 
Brazil. This tonalite-trondhjemite suite shows both similari-
ties and differences with typical Archean TTG. It is similar to 
TTG suites in classificatory terms such as low Sr, K content 
and low K/Na ratios, however, diverge from TTG since it has 
distinct geochemical features such as high HFSE content (Ti, 
Zr, Y, and Nb), low transitional elements (Cr and Ni). Another 
characteristic comparing to other TTG rocks from Rio Maria 
Domains in the CP is the presence of amphibole and relicts 
of clinopyroxene (Sardinha et al. 2004, Gomes and Dall’agnol 
2007, Feio et al. 2013, Sousa 2015). 
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In this sense, this paper had integrated field data; petrogra-
phy, mineral chemistry, geochemistry, and geochemical mod-
eling to elaborate a petrogenetic model to Pedra Branca Suite 
and, thus, unravel the role of these rocks in the evolution of 
Canaã dos Carajás Domain.

GEOLOGICAL SETTING
The Carajás Province (Fig. 1) is located in the southeast-

ern portion of the Amazonian Craton, in the geologic context 
of the Amazonia Central Province (Tassinari and Macambira 
2004) or the Carajás Province (Santos et al. 2006). The CP rep-
resents the oldest portion of the Amazonian Craton (Tassinari 
and Macambira 2004, Santos et al. 2006). The Carajás 

Province is divided into four tectonic domains according 
to Dall’Agnol et al. (2013): Rio Maria Domain (RMD), 
Sapucaia Domain (SD), Canaã dos Carajás Domain (CCD), 
and Carajás Basin (CB). 

The Rio Maria Domain was formed between 3.0 and 2.86 
Ga (Machado et al. 1991, Macambira and Lafon 1995, Almeida 
et al. 2011). The domain is composed of greenstone belts, TTG 
assemblages, leucogranodiorites, high-Mg granitoids, and potas-
sic granites (Althoff et al. 2000, Souza et al. 2001, Dall’Agnol 
et al. 2006, Oliveira et al. 2010a, Almeida et al. 2011, 2013).

The main units of the Sapucaia domain (2.95–2.73 Ga; 
Oliveira et al. 2010b, Dall’Agnol et al. 2013, Gabriel and Oliveira 
2014, Santos et al. 2013b, Silva et al. 2014, Santos and 
Oliveira 2014, Rodrigues et al. 2014) are similar in lithologic 

Figure 1. (A) Amazonian Craton provinces map (Santos et al. 2006); (B) Pará state map highlighting Carajás Province; (C) simplified map showing 
the Carajás Province compartmentation; (D) lithological map from Carajás Province. Altered from Teixeira (2017) and references therein. 
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terms to the dominant rocks in the Rio Maria domain, but the 
former was strongly affected by Neoarchean tectonic events 
and intruded by plutons of the Vila Jussara Suite.

The Canaã dos Carajás domain differs from SD and RMD 
in terms of lithologic associations, deformation and Nd iso-
topic signatures (Dall’agnol et al. 2013, Feio et al. 2013). 
Previous studies performed at the CCD indicate that this 
domain underwent a more complex evolution and various 
magmatic events have been distinguished (Feio et al. 2013): 

 • at ~3 Ga, the formation of the Bacaba Tonalite (Moreto 
et al. 2011); 

 • at 2.96–2.93 Ga, emplacement of the Canaã dos Carajás 
Granite and the Rio Verde Trondhjemite; 

 • at 2.87–2.83 Ga, crystallization of the Campina Verde 
Tonalitic Complex, Rio Verde Trondhjemite and Cruzadão, 
Bom Jesus and Serra Dourada granites; 

 • finally, during the Neoarchean, at 2.75–2.72 Ga, the Planalto 
Suite, the Pedra Branca Suite, and the charnockitic assem-
blages (Pium Complex) were formed (Feio et al. 2012, 
2013; Santos et al. 2013a).

The main assemblages of the Carajás Basin are of 
Neoarchean age (~2.76 Ga; Gibbs et al. 1986, Machado 
et al. 1991). They are composed predominantly of mafic to 
intermediate metavolcanic rocks and banded iron forma-
tions, both included in the Itacaiúnas Supergroup. The lat-
ter is intruded by the Neoarchean (~2.75–2.73 Ga) Estrela, 
Igarapé Gelado, and Serra do Rabo granites.  

RESULTS

Field Aspects and Petrography
Previous geological mapping performed in the Canaã dos 

Carajás region (Feio et al. 2013, Gomes 2003, Gomes and 
Dall’Agnol 2007, Sardinha et al. 2004) were able to recognize 
and individualize several geologic units previously encompassed 
in the Xingu Complex, among which the Pedra Branca suite.

The rocks from PBS occupy a restricted area and are repre-
sented by two bodies (Fig. 2). This suite is formed by tonalites 
and trondhjemites. In the “south body”, the rocks are very 
deformed, showing magmatic banding striking near E-W with 
alternation between tonalitic and trondhjemitic bands and 
sub-vertical foliation striking E-W. In the “north body”, rocks 
are mainly isotropic, showing tonalitic and trondhjemitic 
domains. The PBS is admittedly intrusive in the Planalto suite 
and Itacaiunas Supergroup, although field relations are not 
entirely conclusive (Gomes and Dall’Agnol 2007). 

The petrographic studies were performed on 13 thin sections 
at the petrography laboratory of the Instituto de Geociências 
e Engenharias from Universidade do Sul e Sudeste do Pará 
(Unifesspa). The mineral abbreviation followed the rules suggested 
by Whitney and Evans (2010). The rocks from PBS are tonalites 
and trondhjemites (Fig. 3) and have a fine-grained, equigranu-
lar allotriomorphic texture (Figs. 4A and 4D) with variation to 
medium-grained. They show intense deformational textures such 
as mylonitic texture and polygonal grain-boundary (Figs. 4B and 
4E). Tonalites are mesocratic and trondhjemites hololeucocratic 

Figure 2. Geologic map showing the occurrence of the tonalites and trondhjemites from Pedra Branca suite, Canaã dos Carajás county
Source: Feio et al. (2013).
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(Fig. 4C). The main mineralogy in tonalites and trondhjemites is 
represented by plagioclase (An16-An23) and quartz, alkali-feldspar 
crystals are rare. Hornblende is the main mafic mineral in tonalites, 
and biotite in trondhjemites. In some places clinopyroxene rem-
nants can occur in tonalites. Accessory minerals in tonalites and 
trondhjemites include titanite (Fig. 4F), zircon, apatite, and mus-
covite; secondary minerals are tourmaline, scapolite, epidote, and 
sericite (Gomes and Dall’agnol 2007). Opaque minerals in both 
tonalites and trondhjemites are ilmenite (Fig. 4F) and magnetite.

Geochemistry
The chemical analyses for major and trace elements, includ-

ing rare earth elements (REE), was performed by Inductively 
Coupled  Plasma Emission Spectrometer (ICP-ES) and 
Inductively Coupled Plasma Mass Spectrometry (ICP-MS), respec-
tively, at the Acme Analytical Laboratories Ltda. in Canada. The rep-
resentative chemical compositions of the Pedra Branca Suite are 
given in Table 1 and illustrated in Harker diagrams (Figs. 5 and 6). 

Silica contents range from 55.74 to 79.52 wt%; these rocks 
show high TiO2 content and low Al2O3. They can be classified as 
low aluminium (Al) TTG (15% ≥), except for sample AER-70 
(Barker and Arth 1976). The rocks from the Pedra Branca suite 
show negative correlation trends of silica with the major oxides 
TiO2, Al2O3, FeO, MnO, MgO, CaO, and P2O5; they also show 
a slight increase in K2O with silica content, and there is no clear 
correlation between silica and Na2O. The rocks from this suite 
are impoverished in K2O (0.49–0.93 wt%); they show low K2O/
Na2O ratios (0.09–0.19). 

In terms of trace elements, this Suite shows low content of 
Ba, Rb, and Sr. Tonalites varieties in PBS displays greater values 
of Sr and #Mg if compared to trondhjemites. All samples are 
enriched in high field-strength elements (HFSE) [Zr (168–
667.10 ppm), Y (1.60–50.30 ppm)] and relatively enriched in 
Nb (2.90–25.00 ppm). Rb display a positive correlation with 
silica content; on the order hand, Sr, Y, Ni, V, and #Mg show 
a negative correlation with silica. There is no clear correlation 
between Cr and silica; all rocks have similar Cr values. 

Normalized REE patterns are given in Figure 7. The PBS 
is enriched in light rare earth elements (LREE) and slightly 
depleted in heavy rare earth elements (HREE). Tonalites are 

more enriched in REE than trondhjemites, they show discrete 
Eu anomalies (positive and negative), except for sample AMR-
121C; on the order hand, trondhjemites show high positive Eu 
anomalies. All samples have low (La/Yb)n ratios (0.73–1.33). 

The classifications based on major elements are given in Fig. 8. 
PBS rocks vary from tonalites to trondhjemites according to Ab-An-Or 
(Fig. 8A, O’Connor 1965); on SiO2 vs. K2O diagram (Fig. 8C, fields 
of Le Maitre et al. 2002) all samples plot in the low-K field. Tonalites 
are metaluminous, and trondhjemites vary between metaluminous 
and peraluminous (Fig. 8D, Shand 1943). In Frost et al. (2001), 
diagrams FeOt/(FeOt + MgO) vs. SiO2 and K2O + Na2O-CaO 
vs. SiO2 plot mostly in calcic (Fig. 8E) and ferroan (Fig. 8F) fields, 
respectively. They have moderate to high ferromagnesian, with 
FeOt+MgO values ranging between 4.41 and 14.48 wt%.

Mineralogy
Representative samples of the Pedra Branca suite were 

selected for mineral chemical analyses. The analyzed minerals 
were amphibole, plagioclase, titanite, and iron-titanium oxides. 
Polished thin sections of the selected samples were initially sub-
mitted to semiquantitative chemical analysis by energy dispersive 
spectroscopy (EDS) in the LEO 1430 SEM of the Laboratório 
de Microanálises da Universidade Federal do Pará, which were 
performed at an accelerating voltage of 20 kV. The samples were 
also submitted to wavelength dispersive spectroscopy (WDS) 
quantitative analyses at the Laboratório de Microssonda da 
Universidade de Brasília, using a JEOL JXA-8230 electron 
probe microanalyzer (EPMA), which were performed under 
the following operating conditions: column accelerating voltage 
of 15 kV; current of 10 nA; analysis time of 10 s  for peak and 
background radiation. The matrix effects were correct within 
the EPMA software by the ZAF method. The standards used 
for instrument calibration were andradite (Ca and Fe), micro-
cline (Si, Al, and K), olivine (Mg), albite (Na), pyrophanite (Ti 
and Mn), vanadinite (V and Cl), nickel oxide (Ni), chromium 
trioxide (Cr), and Celestine (Sr). All thin sections selected for 
electron microprobe analyses were previously carbon-coated.

Amphibole
Amphibole analyses (Suppl. Tabs. 1 and 2) were performed 

using free-H2O content, and the structural formula was calculated 
based on 23 oxygen atoms, according to the method of Leake et al. 
(1997). For structural formula calculation, the cations were col-
lected into a set of 13 cations minus Ca, Na, and K. Amphiboles were 
classified (Fig. 9) according to the criteria of Leake et al. (1997).

The Pedra Branca suite has a calcium amphibole classified 
as hastingsite and ferroan-edenite [(Ca + Na)B ≥ 1.00 and 
NaB < 0.50] according to Leake et al. (1997). Still accord-
ing to these authors, the amphiboles from PBS fit in the first 
parameter [CaB ≥ 1.50; (Na + K)A ≥ 0.50]. The Si content in 
the amphiboles vary between 6.14 and 6.59. Mg/(Mg + Fe) 
ratio varies between 0.38 and 0.49. Fe/(Fe + Mg) ratio between 
0.51 and 0.59. Altotal between 1.63 and 2.50.

Epidote
Representative chemical analyses of epidote from the 

Pedra Branca suite are presented in Supplementary Table 3.
Figure 3. QAP (Le Maitre 2002) classification of the granitoids 
from PBS (Gomes and Dall’Agnol 2007).
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The criteria indicated by Tulloch (1979) was used to evaluate the 
magmatic vs. subsolidus origin of the studied epidote crystals, based 
on the ‘pistacite’ component (Ps = molar [Fe3+/Fe3+ + Al] / 100).

The ‘pistacite’ component varies between 17 and 23 
(Fig. 10), considered by Tulloch (1979) as typical of subsol-
idus alteration of plagioclase.

Plagioclase
Representative chemical analyses of plagioclase from the 

Pedra Branca suite are presented in Supplementary Table 4. 
The plagioclase shows an average composition of An18 (An20 - 
An16) classifying oligoclase.

Titanite
Titanite has no significant compositional difference (Suppl. 

Tabs. 5 and 6). It shows a Fe/Al ratio varying between 0.43 and 
0.84. Titanite plot mostly near the field of metamorphic titanite 
and subordinately near the igneous titanite (Fig. 11). Therefore, 
the titanite was initially formed in a magmatic state and posteri-
orly underwent a compositional rebalance due to a deformational 
or a superimposed metamorphic event.

Iron-titanium oxide minerals
Preliminary chemical compositions were obtained by 

EDS (Suppl. Tab. 7). Ilmenite is the main iron-titanium oxide. 

Figure 4. Petrographic aspects of the tonalites and trondhjemites from PBS: (A) granular allotriomorphic texture in tonalite (AMR-124A); 
(B) Mmlonitic tonalite (AER-68); (C) granular hypidiomorphic serial texture in trondhjemite (AMR-124B); (D) granular hypidiomorphic 
serial texture in tonalite (AMR-121E); (E) polygonal contact between amphibole crystals (Amp) (AMR-123); ilmenite crystals (Ilm) with 
titanite (ttn) corona (AER-71C).
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It was deduced that ilmenite crystals are primary and orig-
inated during Pedra Branca crystallization, based on petro-
graphic observations. The magnetite was re-equilibrated 
during the suite evolution, and its composition is similar to 
that of pure magnetite.

Geochemical modeling
Major and trace element modeling was performed to assess 

the origin of the Pedra Branca suite, using the Genesis 4.0 soft-
ware (Teixeira 2005). The mineral/liquid partition coefficients 
(KD) used in the modeling are given in the Supplementary 

Table 1. Chemical composition of the granitoids of the Pedra Branca Suite in wt% 

Samples
Tonalite Trondhjemite

AMR-
124A

AMR-
122C

AMR-
121D

AMR-
123

AMR-
121A

AER-
68

AER-
71C

AER-
70

AMR-
124B

AMR-
121E

AMR-
191A

AER-
69B

AMR-
126A

SiO2 55.74 62.67 64.03 65.36 66.50 71.38 72.68 73.70 74.85 75.42 77.26 77.60 79.52

TiO2 1.77 1.28 1.39 1.27 1.32 0.84 0.34 0.55 0.51 0.46 0.34 0.59 0.19

Al2O3 13.25 14.07 14.29 14.21 14.98 13.62 13.21 15.14 14.11 14.03 13.25 12.61 11.42

FeO 10.42 7.83 5.33 5.70 2.83 2.75 2.38 0.22 1.16 0.92 0.25 0.39 1.12

Fe2O3 11.58 8.70 5.92 6.34 3.14 3.06 2.65 0.25 1.29 1.02 0.28 0.43 1.24

MnO 0.13 0.06 0.07 0.07 0.07 0.02 0.02 < 0.01 0.02 0.01 < 0.01 < 0.01 < 0.01

MgO 4.16 1.30 1.58 1.46 1.87 0.55 0.91 0.02 0.03 0.03 0.01 0.05 0.11

CaO 8.01 4.88 6.22 4.84 5.95 3.83 3.57 2.47 2.03 2.26 2.39 2.21 0.93

Na2O 3.81 5.12 4.92 4.97 4.91 5.19 4.73 6.14 5.28 5.24 5.19 5.17 4.81

K2O 0.62 0.68 0.53 0.63 0.50 0.62 0.55 0.62 0.75 0.71 0.57 0.57 0.93

P2O5 0.43 0.30 0.40 0.06 < 0.01 0.15 0.07 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01

LOI 0.30 0.80 0.50 0.60 0.60 0.60 1.10 0.90 1.00 0.70 0.60 0.60 0.70

Ba 198.00 207.00 193.00 310.00 204.00 137.00 65.00 157.00 277.00 234.00 102.00 157.00 303.00

Rb 8.60 12.10 6.20 8.20 13.90 12.10 20.70 15.80 19.30 17.50 10.80 13.60 29.90

Sr 241.30 279.40 299.00 288.30 316.00 207.30 184.70 219.60 230.40 237.30 193.00 185.00 132.10

Zr 168.10 415.00 335.80 476.30 416.50 667.10 388.80 528.70 299.50 245.80 429.70 602.60 239.20

Nb 6.80 20.70 25.00 24.60 21.10 11.80 7.30 10.30 4.60 2.90 8.20 8.80 10.20

Y 16.40 30.00 34.60 29.10 13.10 50.30 30.20 12.40 1.60 1.30 11.10 7.70 3.70

Th 4.30 18.10 15.10 19.70 25.60 8.00 20.20 1.70 21.10 32.10 8.80 5.10 16.00

Ni 7.70 < 20 3.60 < 20 < 20 5.10 9.90 2.20 < 20 1.00 < 20 < 20 1.60

Co 40.10 32.70 33.50 30.50 36.40 8.80 108.20 94.30 28.40 43.60 1.30 70.50 57.90

Zn 8.00 9.00 7.00 5.00 5.00 5.00 10.00 6.00 4.00 4.00 4.00 7.00 4.00

La 11.00 8.30 9.60 4.80 5.00 15.40 5.90 14.40 2.00 1.90 7.90 12.10 6.00

Ce 34.40 20.20 24.50 8.60 5.90 33.90 10.80 13.30 3.00 2.70 16.80 12.00 10.50

Pr 5.35 3.40 3.61 2.02 1.42 6.21 1.72 3.24 0.26 0.24 2.45 2.71 1.16

Nd 24.90 17.50 17.30 9.60 5.60 33.60 8.50 12.70 1.00 0.90 10.10 9.60 4.50

Sm 4.55 4.52 4.14 3.05 1.47 8.06 2.64 2.13 0.16 0.13 1.69 1.57 0.84

Eu 1.57 1.11 1.21 1.67 1.37 2.34 0.88 1.14 0.90 0.83 0.98 1.16 1.04

Gd 3.72 4.76 4.72 4.00 1.53 8.92 3.78 2.06 0.08 0.13 1.53 1.38 0.78

Tb 0.54 0.77 0.65 0.83 0.30 1.41 0.72 0.32 0.02 0.02 0.27 0.24 0.10

Dy 3.07 4.34 4.26 5.38 2.17 8.25 4.52 1.93 0.19 0.15 1.59 1.43 0.59

Ho 0.60 0.91 0.92 1.19 0.43 1.67 1.02 0.39 0.05 0.04 0.33 0.30 0.13

Er 1.78 2.63 2.69 3.86 1.47 4.95 3.32 1.17 0.20 0.18 1.12 0.91 0.37

Tm 0.25 0.41 0.42 0.66 0.25 0.70 0.59 0.18 0.05 0.03 0.19 0.16 0.05

Yb 1.85 2.71 2.84 4.69 1.92 4.40 3.87 1.39 0.41 0.35 1.28 1.10 0.38

Lu 0.31 0.44 0.47 0.75 0.32 0.70 0.69 0.25 0.08 0.06 0.21 0.18 0.07

V 306.00 104.00 65.00 57.00 39.00 41.00 35.00 < 8 < 8 < 8 8.00 < 8 13.00

Cr - 99.85 - 99.83 99.84 - - - 99.89 - 99.90 99.86 -

K2O/Na2O 0.16 0.13 0.11 0.13 0.10 0.12 0.12 0.10 0.14 0.14 0.11 0.11 0.19

*Mg 0.42 0.23 0.35 0.31 0.54 0.26 0.40 0.14 0.04 0.06 0.07 0.19 0.15

FeO/
(FeO+MgO) 0.71 0.86 0.77 0.80 0.60 0.83 0.72 0.92 0.97 0.97 0.96 0.89 0.15

Eu/Eu* 1.13 0.73 0.83 1.46 2.77 0.84 0.85 1.64 21.63 19.31 1.83 2.35 3.86
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Table 8; most of them are from the software (Genesis 4.0) and 
Rollison (1993) and references therein. 

Geochemical modeling was focused on hornblende 
tonalite (AMR-124A). This rock was interpreted to rep-
resent the parental magma because it has the lowest sil-
ica and highest ferromagnesian contents. Two hypoth-
eses were considered to explain the origin of the Pedra 
Branca magma: 

 • partial melting of a mafic source; 
 • contamination of a mafic magma by the less evolved facies 

from Planalto A-type granite (Feio et al. 2012). 

Therefore, some possible magma sources were selected: 
 • High Ti Basalt from Paraná (Wilson 1989);
 • Archean Basalts (Condie 1993);
 • Diopside-Norite Pium (Feio et al. 2013, Santos et al. 2013a);
 • Diabase from Nova Canadá-PA (Marangoanha and 

Oliveira 2014). 

Furthermore, geochemical data from mafic rocks (Condie 
1993, Kepezhinskas et al. 1995, Santos et al. 2013a, Souza 
et al. 2001, Takahashi 1986) were contaminated from 2 to 
30% using simple mixture models provided by the Genesis 
4.0 software (Teixeira 2005), by the least evolved facies from 
Planalto Granite (Feio et al. 2012). Source 4 (Hornblende 
Gabbronorite, ADK-43, Marangoanha and Oliveira 2014) 
exhibited satisfactory results to major elements modeling 
(partial melting or crystal fractionation). The other sources 
exhibited unsatisfactory results.

Moreover, modeling using the least evolved (AMR-124A) 
and the most evolved (AMR-126A) samples from this suite were 
performed using mineral chemistry data, showing unsatisfac-
tory results. Therefore, the modeling discussed throughout this 
work is valid to explain only the origin of tonalites from PBS. 

For major elements, six models were obtained with distinct 
mineralogical residual assemblage; in two models, results for 
major and trace elements were satisfactory. In the first model, 

Figure 5. Harker diagrams (Silica vs. major elements). Symbology according to Figure 3.
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Figure 6. Harker diagrams (Silica vs. trace elements). Symbology according to Figure 3.

the residual assemblage was composed of clinopyroxene, horn-
blende, and plagioclase (An40). The second model was composed 
of clinopyroxene, hornblende, plagioclase (An40), and magnetite. 
The results of both modelings are exposed in Table 2 (Fig. 12).

DISCUSSION

Geochemistry as petrogenetic indicator
The rocks from PBS belong to the Low-Al TTG group (Barker 

and Arth 1976), they have a lower content of Sr and Eu, less 

fractionated REE, and low Sr/Y ratios compared to High-Al TTG. 
Moreover, these suits show low values of (La/Yb)N. These char-
acteristics imply a petrogenesis outside the garnet stability field 
and were controlled by plagioclase, either by being a main resid-
ual phase or by its fractionation during magmatic differentiation 
(Almeida et al. 2011, Moyen and Stevens 2006).

The mineralogical assemblage of the liquid that generated 
the PBS reflects directly in the geochemical features of the rocks. 
As exposed in the Harker diagrams (Fig. 5), CaO, MnO, MgO, TiO2, 
and Y show a negative relation with the silica content, as opposed to 
K2O, Rb, and Ba, which show a positive one. These trends tend to 

Figure 7. Chondrite normalized REE patterns (Nakamura 1974); (A) tonalites showing discrete Eu anomalies (positive and negative) except 
in one sample; (B) trondhjemites showing high positive Eu anomalies. Symbology according to Figure 3.
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Figure 8. (A) Ab-An-Or diagram; (B) AFM diagram; (C) SiO2 vs. K2O diagram; (D) A/NK vs. A/CNK diagram; (E) FeOt/(FeOt + MgO) 
vs. SiO2 diagram; (F) Na2O + K2O-CaO vs. SiO2 diagram. Symbology according to Figure 3.

occur when the fractionation is dominated by ferromagnesian phases 
such as amphibole and calcic plagioclase (Janousěk et al. 2000).

Tonalite REE enrichment compared to trondhjemites 
implies the fractionation of mineral phases with higher KD, 
like amphibole, or due to amphibole accumulation during 
magmatic flow (Suppl. Tab. 8; Janousěk et al. 2000).

Parental magma
The most primitive rock from the PBS is the hornblende 

tonalite (AMR-124A) with 55.74 wt% SiO2. This rock has the 
highest compatible element content (i.e., Ca, Mg, Fe, Ti, P, 
and V) and the lowest incompatible element content (i.e., K, 
Th, and U). Therefore, the AMR-124A is assumed to represent 
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Figure 9. Classification diagram (Leake et al. 1997) for the amphibole of the Pedra Branca suite.

Figure 10. Histogram of mole percent (mol.%) ‘pistacite’ 
component (Ps) epidotes from different rocks of the Pedra Branca 
Suite. The compositional ranges of epidote from the alteration of 
plagioclase and biotite are from Tulloch (1979).

Figure 11. Fe vs. Al diagram Aleinikoff et  al. (2002) 
compositional fields of magmatic and metamorphic titanite 
Kowallis et al. (1997).

the parental magma of PBS, whose composition is much less 
siliceous than the average Archean low-Al TTG suite (~71 
wt% SiO2, Almeida et al. 2011, Zhang et al. 2012). The REE  
pattern of the assumed parental magma of the Pedra Branca 
suite can be reproduced using a tholeiitic source with flat REE 
pattern (ADK43, Marangoanha and Oliveira 2014), moderate 
degrees of partial melting (~ 28%) and a residue with 21.39% 
Cpx + 70.74 % Hbl + 7.86 % Pl (An40) 7.86 % or 16.23% Cpx 
+ 53.59% Hbl +27.35% Pl (An40) + 2.84% Mt.

Magmatic differentiation
Several diagrams were constructed to unravel the processes 

responsible for differentiation in tonalites from PBS.
Crystallization in plutonic rocks of hornblende, plagioclase, 

and accessory Fe-Ti oxides, zircon, and apatite are indicated 

by the negative correlation of silica with Ca, Fe, Mg, and Ti, 
as well as by trace elements such as V, Sr, and Y (Seixas et al. 
2012). According to Martin (1987), crystal fractionation and 
partial melting can be evaluated by plots of the granitoids 
samples in logarithmic graphs of compatible elements versus 
incompatible elements in the suite, in this case, were elab-
orated graphs of V (compatible) versus Rb and Th (incom-
patible) (Fig. 13). It is also important to notice that magmas 
originated by fractionation crystallization or partial melting, 
assuming identical bulk distribution coefficient, show distinc-
tive trends (Cocherie 1986).

The magmatic differentiation process can also be analyzed 
by covariant diagrams of K2O, Sr, Y, and Zr as a function of 
the CaO content and Mg# (Fig. 14), once that both CaO and 
Mg# are affected by hornblende and plagioclase and both are 
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Table 2. Geochemical modeling data for the Pedra Branca suite (values in wt%).

Partial melting formula:
Cl/Co = 1/D (1-F)(1/D-1) (Wilson 1989)
Cl – liquid composition
Co – original solid composition
D – distribuition coefficient
(1-F) – crystal fraction rate
F- melting rate
r² sum of residue

Sample ADK 43 AMR-124A
Cs1 Cs2

Lithology Horblende Gabbronorite Hornblende Tonalite

SiO2 51.05 56.02 48.69 48.66

TiO2 0.86 1.78 1.11 0.93

Al2O3 13.88 13.32 13.85 13.79

Fe2O3 13.49 11.64 13.75 13.88

MnO 0.21 0.13 0.06 0.03

MgO 10.83 8.05 8.67 11.85

CaO 1.98 3.83 11.34 2.19

Na2O 0.45 0.62 1.99 0.42

K2O 0 0.43 0.55 0

Ni 28 7.70 6.64 7.66

Rb 15.7 8.60 23.40 19.23

Ba 122 198.00 194.00 188.00

Sr 92.8 241.30 125.00 120.00

Nb 3.4 6.80 4.70 5.06

Zr 68.4 168.10 109.00 104.00

Y 23 16.40 17.06 19.81

La 7.5 11.00 11.48 11.61

Ce 14.3 34.40 21.87 22.24

Nd 7.5 24.90 11.86 11.43

Sm 2.32 4.55 2.66 2.98

Eu 0.79 1.57 0.68 0.74

Gd 3.01 3.72 2.48 2.94

Tb 0.59 0.54 0.45 0.54

Dy 4.11 3.07 3.13 3.75

Er 2.5 1.78 1.98 2.37

Yb 2.39 1.85 2.06 2.44

Lu 0.28 0.31 0.24 0.29

Residue composition (%)

Plagioclase An 40 7.86% 27.35%

Clinopyroxen 21.39% 16.23%

Hornblende 70.74% 53.59%

Magnetite 2.84%

F 27% 28%

Σr² 0.944 0.809

present in PBS tonalites. Geochemical variations against these 
proxies can be used to examine the influence of amphibole 
and plagioclase fractionation on tonalitic suites (Arth et al. 
1978, Kalsbeek 2001). 

Therefore, the PBS tonalitic rocks range from 55.74 to 72.68 
wt% SiO2, showing scattered inter-element correlation in the 
Harker diagrams between the low and high silica members. 

The other evaluated diagrams (Figs. 13 and 14) also show a 
scattered pattern and do not reproduce the hypothetical liquid 
line starting from the proposed parental magma. These features 
do not suggest that crystal fractionation nor partial melting 
were the mechanisms to explain the magmatic differentiation 
of the suite, so we suggest that the main process was the crys-
tal accumulation during the magmatic flow.
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Figure 12. Partial melting modeling of the Horblend Gabbronorite 
(ADK-43, Marangoanha and Oliveira 2014) as a source of the Pedra 
Branca magma (AMR-124A, hornblende tonalite). (A) Major 
element modeling. (B) LILE and HFSE trace element modeling. 
(C) REE modeling.

Crystallization parameters

Temperature
Ridolfi et al. (2010) and Ridolfi and Rezulli (2012) reviewed 

thermobarometric equations in the literature and have shown 
calibration models to estimate temperature using the content of 
the main oxides in the amphibole. Those equations are recom-
mended to amphiboles crystallized in rich to poor H2O magma 
and in moderately oxidized to moderately reduced calc-alkaline 
to alkaline magmas (Erdmann et al. 2014). However, it was con-
sidered by Erdmann et al. (2014) that the following equation, 
proposed by Ridolfi et al. (2010), would be most suitable to 
calculate temperature: 

T (°C) = - 151.487Si* + 2041; Si*
= Si + (AlIV / 15) – (2TiIV) – (AlVI / 2) – (TiVI / 1.8)
+ (Fe3+ / 9) + (Fe2+ / 3.3) + (Mg / 26) + (CaB / 5)
+ (NaB / 1.3) – (NaA / 15) + (KA / 2.3)

The Ridolfi et al.’s (2010) geothermometer showed that 
the amphibole’s temperature varies between 945 and 862°C. 
The dataset suggests an interval between 945 and 862°C for 
the liquidus temperature of the Pedra Branca magma (Tab. 2), 
which is consistent with the proposed mafic tholeiitic source 
proposed by Feio et al. (2013) and in this paper. 

Pressure
The Al-in-hornblende geobarometer was proposed by 

Hammarstron and Zen (1986) and Hollister et al. (1987) to 
estimate the emplacement pressure of intermediate silicate plu-
tons. The pressure calculation may match the granitoid emplace-
ment. The Pedra Branca suite has an ideal paragenesis to use the 
geobarometers proposed by Hammarstron and Zen (1986) and 
Hollister et al. (1987), the plagioclase present in Pedra Branca 
suite (An < 25) are more sodic than the plagioclase founded in 
calc-alkaline granitoids in which the geobarometer was initially 
proposed (~An25-35; Anderson and Smith 1995). Therefore, the 
geobarometers proposed by Hammarstron and Zen (1986), 
Hollister et al. (1987), Johnson and Rutherford (1989), and 
Schmidt (1992) was used to determine the pressure (Tab. 3).

The Hammarstron and Zen’s (1986) geobarometer indi-
cates pressure varying between 8–6 and 4.3 Kbar. The Schmidt’s 
(1992) one indicates pressures between 8.6 and 4.8 Kbar. 
The pressures obtained, according to Hollister et al. (1987), 
was 9.3–4.4 Kbar. The model proposed by Johnson and 
Rutherford (1989) indicated values varying between 7.1 and 
3.4 Kbar. The Fe/(Fe + Mg) vs. AlIV+AlVI diagram (Fig. 15A) 
indicated pressure between 7.4 and 4.5 Kbar. 

According to the data obtained in this and in previous works 
(Feio et al. 2013), the Pedra Branca magma was derived from a 
lower tholeiitic mafic crust, so the pressure related to the magma 
source can be estimated between 9.3 and 7.1 Kbar, based on the 
proposed lower crustal source. On the order hand, these granitoids 
present intense deformation, magmatic banding, sub-vertical foli-
ation, and local lineation caused by ductile deformation (Gomes 
and Dall’Agnol 2007), probably generated during the emplacement. 
These features indicate pluton emplacement in mesozone, possi-
bly corresponding to the lower pressures of 4.8–3.4 Kbar. Thus, it 
is possible to conclude that pressures around 9.3–7.1 Kbar corre-
spond to the magma source, and pressures around 3.4–4.8 Kbar 
represent the emplacement of the Pedra Branca suite (Tab. 3).

Oxygen fugacity
The PBS has a high to intermediate FeOt/(FeOt + MgO) 

ratio (0.60–0.97) varying according to the lithology (Tab. 1). 
The tonalites have a 0.60–0.83 ratio, and the trondhjemites, 
0.91–0.97. Amphibole shows low ratios around 0.51–0.59, sim-
ilarly to the tonalite ratios, which indicate high oxygen fugac-
ity according to the Fe/(Fe+Mg) vs. AlIV diagram (Fig. 15B). 

Petrographic data show ilmenite as the main opaque min-
eral in the Pedra Branca suite, occurring mainly in tonalites. 
The FeOt/(FeOt + MgO) ratio of this lithology and Fe/(Fe 
+ Mg) ratio in amphibole indicate  an equilibrium between 
rock crystallization and these mineral phases. On the order 
hand, magnetite was found only in one sample (AMR-191) 
with a 0.96 FeOt/(FeOt+MgO) ratio.
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Thus, it can be affirmed that tonalites are classified as oxi-
dized granitoids from the Magnetite series (Ishihara 1997), 
and trondhjemites are lightly oxidized to reduced.

Water content
The water content necessary to stabilize amphibole varies 

along with pressure: 2.0–4.0 Kbar requires 4% of water, 5% of 
the water in pressures around 4.0 Kbar, and 7–9% in a 9.6 Kbar 
pressure are necessary to stabilize amphibole without pyrox-
ene in a silicate magma (Naney 1983, Dall’Agnol et al. 1999, 
Klimm et al. 2003, Prouteau and Scaillet 2003, Bogaerts et al. 
2006). Clinopyroxene relicts occur in the Pedra Branca suite 
(Gomes and Dall’Agnol 2007) and are scarce and located, which 
suggests that clinopyroxene was stable during initial magma 
state and almost totally reacted during cooling (Naney 1983, 
Dall’Agnol et al. 1999).

Thus, it is possible to affirm that these tonalites and trondh-
jemites are derived from magmas with more than 4% H2O, and 
depending on the assumed pressure crystallization, possibly 
around or even more than 7%. This evidence is endorsed by 
the absence of clinopyroxene crystals.

Petrogenesis
The tonalites from PBS were originated from the partial 

melting of rocks with compositional similarities with dia-
base from Nova Canadá (Marangoanha and Oliveira 2014). 
According to Marangoanha and Oliveira (2014), these dia-
bases are post-Archean, so they are not the real source of PBS. 
However, we consider that the real source of PBS had similar 
features if compared to the Nova Canadá diabase. These data 
match with the geochemical modeling, which shows that the 
tonalites were derived from a partial melting with a residue 
containing hornblende, plagioclase, and clinopyroxene, and 
may or may not have magnetite. It is worth pointing out that 
according to Marangoanha and Oliveira (2014), the diabase 
from Nova Canadá is enriched in Y (14.9 to 63.9 ppm) and 
Zr (56.1 to 236.6 ppm). The sample used in the modeling 
was a diabase classified as hornblende-grabbronorite (ADK 

43, Marangoanha and Oliveira 2014), as representative of 
the magma source. Therefore, it is possible to affirm that the 
HFSE enrichment in the granitoids of the Pedra Branca suite 
is derived directly from the source and not associated with the 
order process as hydrothermal alteration.

For the trondhjemites, it is proposed that they were orig-
inated by the same processes (partial melting) as tonalites, 
from similar but not identical sources, probably with lower 
melting degrees than tonalites, and evolved as two different 
liquids throughout magmatic differentiation.

Geotectonic setting
A subduction setting does not seem capable of explaining 

the genesis of Pedra Branca magma (2.75 Ga; Feio et al. 2013, 
Sardinha et al. 2004), considering the opening and closing of 
the Carajás rift occurred during the Neoarchean (2.76–2.68 
Ga; Tavares 2015, Gibbs et al. 1986), which was responsi-
ble for generating the metavolcanic rocks of the Itacaiunas 
Supergroup (2.76–2.73 Ga; Machado et al. 1991). Moreover, 
several A-type granites were formed in the Carajás Basin, and 
Canaã dos Carajás Domain during Neoarchean, such as the 
Estrela Granitic Complex (2.76 Ga, Barros et al. 2001), Serra 
do Rabo granite (2.74 Ga, Sardinha et al. 2006) and Planalto 
granite (2.74–2.73 Ga; Feio et al. 2013). This evidence indi-
cates that, during the Neoarchean, there was a continental 
intraplate setting in the CB and the CCD. Also, the hypothesis 
of an extensional continental setting for this region is ratified 
by the presence of Diopside-Norite Pium, which was dated 
from 3.0 Ga and metamorphosed in 2.85 Ga (Pidgeon et al. 
2000). However, recent research shows that this unit in the 
Canãa area was crystallized 2.74 Ga (Santos et al. 2013a) in 
an extensional setting.

The accentuated crustal thickening associated with the for-
mation of Itacaiunas shear belt, the elevated geothermal gradient 
in the Archean and the high volume of magma generation during 
the Neoarchean in the Canaã dos Carajás Domain and Carajás 
basin indicate that there was an expressive thermal anomaly in the 
Canaã dos Carajás area (Gomes and Dall’Agnol 2007). The small 

Figure 13. Log diagrams of compatible elements (V) vs. Incompatible elements (Th and Rb). Symbology according to Figure 3.

13

Braz. J. Geol. (2020), 50(3): e20190093



Figure 14. Covariance diagrams between the wt% CaO (a) and 100×Mg# (b) against the wt% K2O, Sr, Zr, and Yb (ppm) for the rocks of the 
Pedra Branca suite. Arrow indicates vectors to the residual liquids of the suite. Symbology according to Fig. 3.
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volume of Pedra Branca bodies associates its genesis to lower 
continental crust partial melting (continental tholeiitic gabbros 
composition) generated in an extensional setting (Carajás Rifte) 
just like Diopside-Norite Pium (Santos et al. 2013a). This granitic 
magmatism and associated Neoarchean mafic volcanism related 
to Grão-Pará group (Martins et al. 2017), and other mafic bodies 
in Canaã and adjacent areas (Lafon et al. 2000, Machado et al. 
1991) might have been responsible for such high temperatures 
(almost 1,000°C) in a rift setting.

Zhang et al. (2012) studied the generation of TTG mag-
mas associated with partial melting from the lower continental 
crust, in the North China Craton. According to these authors, 
the Neoarchean trondhjemites with high- and low-Al are con-
temporaneous and were formed by partial melting of the juve-
nile lower crust induced by magma underplating to form the 
high-Al group and the intraplate to low-Al.

Why the Pedra Branca Suite  
Diverge From Typical Archean TTGs? 

The unique geochemical features can be explained by 
three reasons:

 • The magmatic source has different geochemical and min-
eralogical features than typical TTG, which are related to 
partial melting of garnet-amphibolite or eclogite under 
varying conditions of fluids presence (Martin 1994, Martin 
and Moyen 2002, Moyen et al. 2003); on the order hand, 
PBS rocks are associated with the partial melting of con-
tinental tholeiitic grabbros;

 • The PBS was originated in a distinct geotectonic setting. 
TTG are associated with the partial melting of basalts from 
a thickened oceanic crust (Smithies 2000, Condie 2005) 
or to subduction of a basaltic oceanic crust (Condie 1989, 
Martin 1994, Rollison 1993, Martin and Moyen 2002, 
Moyen et al. 2003); on the order hand, PBS were orig-
inated from partial melting of continental gabbros in an 
extensional setting (Carajás Rift);

 • The high water content in Pedra Branca magma (up to 4%) 
diverge from TTG’s magmas. According to Moyen and Stevens 
(2006), based on experimental petrology studies, the partial 
melting that originate TTG’s magma can be divided accord-
ing to the fluids content. These authors emphasize mainly 
the fluid-absent melting; the water content in this process 

Table 3. Estimate of pressure and temperature of crystallization for the tonalites and trondhjemites of the Pedra Branca suite.

Pedra Branca suite Tonalite

Samples AMR – 121A AMR – 124A

Pressure (kbar)

Al total 1.89 – 2.16 1.63 – 2.50

Hammarstron and Zen (1986) 5.4 – 6.9 4.3 – 8.6

Schmidt (1992) 5.8 – 7.2 4.9 – 8.9 

Hollister et al. (1987) 5.7 – 7.4 4.4 – 9.3

Johnson and Rutherford (1989) 4.4 – 5.7 3.4 – 7.1

Anderson and Smith (1995) 5.8 – 7.3 4.5 – 6.1

Temperature (°C)

Ridolfi et al. (2010) 888 – 905 862 – 945

Figure 15. (A) Fe/(Fe+Mg) vs. AlIV + AlVI diagram showing the compositional variation of amphibole of the Pedra Branca Suite. 
Crystallization pressure ranges according to Anderson and Smith (1995); (B) Fe/(Fe+Mg) vs. AlIV diagram showing the compositional 
variation of amphibole of the Pedra Branca Suite. Low, Intermediate and High ƒO2 fields according to Anderson and Smith (1995). 
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comes only from hornblende breakdown, which can gen-
erate less than 1.8 wt% H2O in these magmas. 

Comparison with other  
Neoarchean TTGs and similar rocks 

The Pedra Branca suite has unique features that differ from 
the Archean TTG. For this reason, similar rocks like PBS have 
not been previously described in the literature. Gomes and 
Dall’Agnol (2007) compared the suite to Paleoarchean grey 
gneisses (3,42 Ga) from Sete Voltas Massif, São Francisco Craton. 
According to Martin (1997), these rocks show positive anom-
alies of Zr (142-288 ppm) and Nb (6-13 ppm), similar to PBS.

In the Mineiro Belt, Seixas et al. (2012) described the Lagoa 
Dourada Suite (2.3 Ga) a TTG suite enriched in Zr (140–261 
ppm), Nb (4.5–8.2 ppm), and relatively in Y (5–11 ppm). 
Also in the Mineiro Belt, tonalites from the Alto Maranhão 
Suite also have high contents of Zr (150 to 238 ppm), Y (11 to 
20 ppm), and low Rb content (40–94 ppm) (Seixas et al. 2013).

In the Amazonian Craton, Vila União tonalites, central 
portion of Canaã dos Carajás Domain, are similar to PBS. The 
main ferromagnesian minerals are hornblende and biotite, are 
relatively enriched in TiO2 (0.76 to 1.51 wt%) and have a high 
content of HFSE Zr (529.00–936.80 ppm), Y (34.80–56.00 
ppm), and Nb (14.50–18.90) (Oliveira et al. 2018).

CONCLUSIONS
 • Tonalites are metaluminous, and trondhjemites vary from 

peraluminous and metaluminous. They both belong to the 
subalkaline low-K series, which are calc and ferroan granitoids;

 • The magmatic differentiation process among the suite 
members was possibly controlled by crystal accumulation 
during the magmatic flow; 

 • Amphibole is classified as ferroan edenite and hasting-
site. Plagioclase is oligoclase. Titanite is a primary igneous 
mineral that was reequilibrated during a deformational or 
metamorphic event;

 • A temperature interval of 862–945°C was concluded for the 
initial crystallization of the Pedra Branca suite. Pressures 
of 9.3–7.1 kbar for the origin and 4.8–3.4 kbar for the 
emplacement of the Pedra Branca magma. The dominance 
of amphibole and biotite among the mafic minerals of the 

Planalto Suite and the typical absence of pyroxene indi-
cate that the water content in the magma was higher than 
4 wt% and could even exceed 7 wt%;

 • Pedra Branca Magma originated from the partial melting 
of continental tholeiitic gabbros, in an extensional set-
ting (Carajás Ritfte). This process left a residue contain-
ing plagioclase, hornblende, clinopyroxene and may or 
may not have magnetite. The magma source had chemi-
cal-mineralogical features similar to Nova Canadá Diabase 
(Marangoanha and Oliveira 2014) and not rocks similar to 
Serra Geral Basalts, as affirmed by Gomes and Dall’Agnol 
(2007); another divergence is about the fusion degree, 
those authors affirmed that the Pedra Branca bodies were 
formed by a low scale fusion, however, according to the 
geochemical modeling, fusion degree was ~28%;

 • The enrichment in HFSE in these granitoids is derived 
directly from the source rock and is not related to the order 
process as hydrothermal alteration;

 • Pedra Branca suite diverges from typical Archean TTG, due 
to the derivation from a different source, formed in a dif-
ferent geotectonic setting proposed to most TTG, and by 
the presence of elevated quantities of water in the magma 
if compared to typical TTG;

 • In geochemical and petrographic terms, it is similar to Vila 
União tonalites (Oliveira et al. 2018), both units have high 
HFSE content and hornblende and biotite as ferromag-
nesian minerals.
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