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Focal adhesion kinase (FAK) is a broadly expressed tyrosine kinase implicated in cellular functions such as migration, growth
and survival. Emerging data support a role for FAK in cardiac development, reactive hypertrophy and failure. Data reviewed here
indicate that FAK plays a critical role at the cellular level in the responses of cardiomyocytes and cardiac fibroblasts to
biomechanical stress and to hypertrophic agonists such as angiotensin Il and endothelin. The signaling mechanisms regulated

by FAK are discussed to provide insight into its role in the pathophysiology of cardiac hypertrophy and failure.

Key words: Focal adhesion kinase; Mechanical signaling; Cardiovascular system; Signal transduction

Presented at the IV Miguel R. Covian Symposium, Ribeirdo Preto, SP, Brazil, May 23-25, 2008.

Research supported by FAPESP (#2006/54878-3, #2006/55920-3 and #2004/10167-0) and CNPq (#305604/2006-6, #474650/

2006-5, #474117/2007-3).

Received July 8, 2008. Accepted December 11, 2008

Introduction

Adult heart translates sustained increases in workload
in pathological conditions such as hypertension, valvular
heart diseases and myocardial infarction into reactive in-
creases of myocardial mass (i.e., reactive hypertrophy).
Although reactive hypertrophy is initially adaptive, after a
time, it causes maladaptive effects that eventually set the
stage for heart failure. At the cellular level, myocardial
hypertrophy is the consequence of an increase in cardio-
myocyte size. Mechanical forces that are generated as a
consequence of hemodynamic stress are thought to be the
primary stimuli for the reactive hypertrophy of cardiomyo-
cytes. However, there is much evidence showing a link
between concurrent increases in neural or hormonal fac-
tors (e.g., norepinephrine, angiotensin 1) and the reactive
hypertrophic growth of cardiomyocytes in pathological con-
ditions. Notably, when stimulated by continuous mechan-
ical stress and neuro-hormonal factors, hypertrophic car-
diomyocytes develop pathologic features and eventually
die. In addition, the connective tissue stroma increases in
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excess of the apparent need, leading, together with cardio-
myocyte degeneration, to myocardial dysfunction. The
stimulation of cardiomyocytes and cardiac fibroblasts by
mechanical stress and neurohormonal factors activates
multiple signal transduction cascades, which ultimately
affect nuclear factors that regulate gene expression and
hypertrophic growth. Many signaling pathways of cardio-
myocytes that are associated with reactive hypertrophy
have been also found to be activated in maladapted hyper-
trophic hearts, the difference being that there is an exag-
geration of their activities in failing hearts compared to
those observed in adapted hypertrophy (1). In this review,
we focus on the regulation of focal adhesion kinase (FAK),
an intracellular tyrosine kinase, in cardiomyocytes and
consider its role in reactive hypertrophy and failure.

The structure and mechanisms of focal
adhesion kinase regulation

FAK plays a pivotal role in important aspects of cell
behavior such as migration, proliferation, growth, and sur-
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vival. In many cell types FAK is recruited primarily to sites
of integrin clustering where it is activated by undefined
mechanism(s). The pleiotropic effects of FAK on cells are
mediated by the mobilization of multiple signaling path-
ways, issues that have been the topic of excellent reviews
(2,3) and will not be discussed in detail here.

FAK is a 125-kDa protein tyrosine kinase composed of
an N-terminal FERM (protein 4.1, ezrin, radixin and moesin
homology) domain, followed by an ~40 residue linker re-
gion, a central kinase domain, a proline-rich low-complex-
ity region, and a C-terminal focal-adhesion targeting do-
main (Figure 1A) (2). The crystal structure of the FERM/
catalytic domain complex (4) suggests that FAK is main-
tained in an autoinhibitory conformation by an intra-molec-
ular interaction between the FERM and the catalytic do-
main that blocks the active site of the catalytic domain
inhibiting access to the ATP and substrate-binding sites as
depicted in the scheme shown in Figure 1B. When FAK is
activated, Tyr397 within the linker region between the
FERM and the catalytic domain is exposed by conforma-
tional changes and autophosphorylated, with the conse-
quent creation of a high-affinity binding site for the Src
homology 2 domains of Src family kinases (5). Accord-
ingly, mutations introduced in a patch of residues compris-
ing Y180 through M183 located at the bottom of the FERM
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Figure 1. A, Domain structure of focal adhesion kinase (FAK).
Src interaction site and key tyrosine phosphorylation sites are
indicated. B, Schematic presentation of auto-inhibited FERM/
catalytic domain derived from crystal structure. FAT = C-terminal
focal-adhesion targeting domain; FERM = protein 4.1, ezrin,
radixin and moesin homology.
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F2 lobe disrupt the FERM/catalytic domain interface and
markedly increase FAK catalytic activity (4,6). However,
the mechanisms responsible for FERM domain release
from the catalytic domain in cells remain elusive. It is
suspected that an activating protein, presumably docked
in the FERM domain, might be responsible for disrupting
the FERM/kinase interface and activation of FAK (4). Can-
didate proteins include the cytoplasmic regions of B-inte-
grin or epidermal growth factor receptor, but cytosolic
ligands may also exist. More recently (7), studies per-
formed with a fluorescence resonance energy transfer-
based FAK biosensor used to probe FAK conformational
change in live cells showed that FAK activation may be
mediated by interaction of phosphatidylinositol 4,5-bis-
phosphate with a basic patch of the FERM F2 lobe. This
patch (KAKTLRK) comprises amino acids K216 through
K222 located on the surface of the FERM/catalytic domain
complex. Mutation-based studies have identified this patch
as a key motif for FAK activation in vivo in response to cell
adhesion (8).

Once phosphorylated, Tyr397 sites recruit and activate
Src. The interaction between Tyr397-phosphorylated FAK
and Src leads to a cascade of tyrosine phosphorylation of
multiple sites in FAK (residues Tyr576, Tyr577, and Tyr925)
(9,10), as well as in other signaling molecules such as
the 130-kD adaptor protein Crk-associated substrate
(p130Cas) (11) and paxillin (12). Active FAK can also
affect the organization of the actin cytoskeleton via Rho-
family GTPases and other downstream signaling path-
ways (3), including Ras and the mitogen-activated protein
kinases ERK1/2 (13). Furthermore, phosphorylation of
Tyr397 also appears to be important for the recruitment of
other SH2-containing proteins, including the 85-kDa sub-
unit of phosphoinositide-3-kinase (PI3K), which can pro-
mote activation of AKT, a serine kinase involved in the
regulation of energetic metabolism, cell growth and sur-
vival (14,15).

Localization and regulation of FAK in
cardiomyocytes

FAK is highly expressed in cardiomyocytes, has a
relatively low basal level of activity and is promptly acti-
vated by mechanical stimuli (16-19) as well as by agonists
such as endothelin and angiotensin Il (20,21). While the
spatial distribution of FAK in cardiomyocytes provides
some insight into the mechanisms responsible for its acti-
vation in this particular cell type, this matter remains largely
unclear. Immunohistochemistry and immunoelectron mi-
croscopy using FAK-specific antibody were used to inves-
tigate the localization of FAK in adult and neonatal rat
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ventricular cardiomyocytes (17,18,22,23). It is important to
mention that, despite some phenotypic differences, neo-
natal rat ventricular cardiomyocytes simulate the responses
of adult animal in vivo with reasonable accuracy and have
been extensively used to identify potential signaling path-
ways involved in hypertrophy. Cardiomyocytes double-
labeled with anti-FAK antibody and phalloidin (a marker for
actin) showed anti-FAK fluorescent staining to be regularly
distributed in register with the myofilaments preferentially
in the sarcomeric A-bands, as well as in the perinuclear
region (Figure 2A-C) (23). The location of FAK in the
sarcomeric A-bands was confirmed by the overlap be-
tween anti-FAK and anti-myosin fluorescence as well as
by immunoelectron microscopy imaging (23). Interestingly,
the spatial distribution of FAK in cardiomyocytes was shown
to vary in response to mechanical stress. In mechanically
stimulated cardiomyocytes, FAK-specific immunofluores-
cence did not overlap the A-band but rather the I-band,
suggesting that mechanical stress induces FAK relocation
to distinct sites of cardiomyocytes (17,23). Indeed, anti-
FAK immunogold staining was detected preferentially as
aggregates close to Z-discs and costameres in cardiomyo-
cytes from the overloaded rat left ventricle. In addition to
mechanical stress, FAK also undergoes translocation and
activation in response to agonists that activate Gg-coupled
receptors (20,24). In this context it is important to mention
that stretch-induced release of angiotensin Il and endothe-
lin-1 from cardiomyocytes and/or non-muscle cells may
also indirectly activate FAK in cardiomyocytes. Moreover,
consistent with the imaging data, studies conducted with
yeast-two hybrid screening of a rat left ventricle cDNA
library with a FERM/catalytic domain construct and pull
down assays indicated that FAK interacts with a C-terminal
region of myosin, possibly through a direct binding in the
FAK FERM domain (23). Remarkably, FAK/myosin inter-
action was observed in non-stimulated cardiomyocytes
but not in cells that were subjected to mechanical stress
(23). Together, cardiomyocyte imaging and biochemical
data raise the interesting possibility that FAK quiescence
in non-stimulated cardiomyocytes may depend on its inter-
action with myosin in sarcomeric A-bands. In turn, FAK
activation might be dependent on its dissociation from
myosin, relocation and clustering at costameres and Z-
disks. The mechanisms responsible for the dissociation of
FAK from myosin, its relocation as well as their meaning for
FAK activation in cardiomyocytes remain unclear. It could
be that FAK relocation and clustering at sites such as Z-
discs and costameres may optimize FAK signaling be-
cause of the location at strategic sites that convey me-
chanical stimuli as well as because the molecular proxim-
ity in clusters may serve to enhance and sustain FAK
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signaling. This agrees with data from studies (25) per-
formed in distinct cell types indicating that FAK clustering
enhances and sustains FAK activation, allowing the re-
cruitment and activation of additional cellular signaling
molecules such as those involved in the activation of
growth and survival pathways. Still in this context, it is
important to mention that several mechanisms have been
shown to modulate FAK activity in cardiomyocytes, possi-
bly by interfering in the ability of FAK to interact with myosin
or even by modulating the efficiency of the mechanisms
responsible for its relocation in the cells. For instance, FAK
activation in cardiomyocytes either by stretch or endothe-
lin has been demonstrated to be highly dependent on the
upstream activation of RhoA/ROCK, perhaps mediated via
local alterations in the actin cytoskeleton at or near sites of
integrin clustering (18,26). Moreover, there is also evi-
dence to indicate that protein kinase C epsilon (PKCg) is
directly involved in FAK activation. PKCe co-localizes with
FAK in focal adhesions and is involved in the endothelin-
induced activation of FAK in cardiomyocytes (26). PKCe
also seems to regulate FAK via signaling pathways in-
volved in local changes in the actin cytoskeleton. Finally,
tyrosine phosphatases provide an additional level for regu-
lating FAK phosphorylation and activity in cardiomyocytes.
Recently, we demonstrated that Shp2, a tyrosine phos-
phatase, may exert a critical function in controlling FAK
activity in non-stimulated cardiomyocytes (27). FAK activ-
ity is enhanced in non-stimulated cardiomyocytes depleted
of Shp2, indicating that depletion of Shp2 is sufficient to
bypass the mechanisms that activate the FAK/Src com-
plex by biomechanical stress and soluble factors. The data
suggest the possibility that FAK and Shp2 may form a
complex that regulates the basal phosphorylation status of
FAK in cardiomyocytes. Furthermore, reduction of Shp2
activity toward FAK seems to play a permissive role in the
activation of FAK induced by biomechanical stimuli in
cardiomyocytes, suggesting that FAK activation by me-

Figure 2. Ventricular adult cardiomyocyte fluorescent imaging.
A, Anti-focal adhesion kinase (FAK) staining in green. B, Phalloi-
din staining in red. C, Merge anti-FAK/phalloidin.

www.bjournal.com.br



FAK and heart diseases

chanical stress in cardiomyocytes may depend on down-
regulation of Shp2 phosphatase activity and dissociation
of FAK from Shp2. Interestingly, Shp2 activity was demon-
strated to be markedly increased when RhoA is down-
regulated or stress fibers are disrupted (28-30). Yet, bind-
ing of Src to FAK reduces the susceptibility of FAK to
tyrosine phosphatases (31). These data suggest the pos-
sibility that FAK/Src association, activation of RhoA/ROCK
signaling and rearrangement of cytoskeletal proteins might
reduce FAK susceptibility to Shp2 phosphatase activity,
tune-down Shp2 catalytic activity and promote dissocia-
tion of FAK from Shp2, contributing to the activation of the
FAK/Src complex in stretched cardiomyocytes
Interestingly, in cardiomyocytes subjected to prolonged
stimulation by mechanical stress FAK also relocates to the

Figure 3. Focal adhesion kinase (FAK) depletion impairs the
hypertrophic responses of cardiomyocytes to mechanical stress
(A, non-stimulated; B, stretched - 24 h; C, depleted of FAK and
stretched cardiomyocyte; bar = 10 um for panels A-C). D, High
maghnification (1200X) of anti-FAK myocardial staining (yellow-
ish) from 12-week banded mice highlighting an area of focal
myocardial fibrosis. E, Low magnification (400X) of anti-FAK
staining from a myocardial biopsy taken from a patient with heart
failure due to mitral regurgitation. F, Low magnification (400X) of
Masson trichrome staining (green) from 6-week banded mice
treated with an irrelevant small interfering RNA (siRNA) targeted
to green fluorescent protein. G, Low magnification (400X) of
Masson trichrome staining from a 6-week banded mouse treated
with siRNA targeted to FAK.
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nucleus (23,32,33). The role of FAK in the nucleus of
cardiomyocytes is still unclear, but it has been suspected
to regulate chromatin structure, transcription, mRNA pro-
cessing, and nuclear export (32). Recent studies in non-
myocyte cells have shown that FAK interacts with and
sequesters p53 in the nucleus of cells (34,35). This inter-
action is thought to facilitate the proteolysis of p53 by
Mdm2, which causes the ubiquitination and degradation of
p53. These effects were demonstrated to be anti-apopto-
tic. Therefore, FAK is proposed to be a critical scaffold
protein that sequesters proapoptotic proteins, such as
p53, to mediate cell survival. However, this issue remains
unexplored in cardiomyocytes.

FAK and cardiac development and
hypertrophy

Cardiomyocytes withdraw irreversibly from the cell cycle
soon after birth and subsequent growth in this particular
cell type occurs predominantly through hypertrophy rather
than hyperplasia. While several lines of evidence support
a role for FAK in cardiomyocyte hypertrophy, more re-
cently studies have also implied the participation of FAK in
cardiogenesis and in cardiomyocyte proliferation during
embryonic development (36-38). Studies using cultured
cardiomyocytes demonstrated that FAK overexpression
up-regulates the hypertrophic gene markers (39), suggest-
ing that FAK may be sufficient to induce hypertrophy, but it
remains unknown whether it is sufficient to induce a com-
plete hypertrophic phenotype of cardiomyocytes. In addi-
tion, FAK has also been shown to be necessary for the up-
regulation of cardiomyocyte hypertrophic gene markers to
biomechanical stress and to agonists such as phenyleph-
rine and endothelin (17-21). Recent studies performed in
cardiomyocytes depleted of FAK confirmed the impor-
tance of FAK to the hypertrophic growth that occurs in
response to biomechanical stress (27) (Figure 3A-C). In-
terestingly, however, depletion of FAK does not affect the
phenotype of non-stimulated cardiomyocytes, suggesting
that FAK is not necessary for the maintenance of cardio-
myocytes basally.

The studies on the cardiomyocyte model system have
also contributed to clarify the signaling pathways down-
stream to FAK. Multiple downstream pathways are pro-
posed to mediate the effects of FAK in cardiomyocytes.
For instance, activation of mitogen-activated protein ty-
rosine kinases has been attributed a role in mediating the
pro-hypertrophic effects of FAK. Studies have shown that
activation of ERK1/2 in response to hypertrophic agonists
may be mediated by FAK (16,22). Of note, the early activa-
tion of ERK1/2 has been suggested to contribute to the

Braz J Med Biol Res 42(1) 2009



48

expression of fetal genes (e.g., atrial natriuretic factor, R-
myosin heavy chain, and skeletal muscle o-actin) and
hypertrophy in cardiomyocytes (40). In addition, FAK can
also regulate the JNK/c-Jun pathway, which in turn plays
an important role in the regulation of the atrial natriuretic
factor promoter activity and the immediate early genes
induced by cyclic stretch (19). However, the relative impor-
tance of ERK1/2 and JNK to the pro-hypertrophic effects
mediated by FAK remains unclear. Studies in cardiomyo-
cytes also revealed that MEF2 transcription factors, which
are master regulators for several sarcomeric and regula-
tory proteins in cardiomyocytes, are also critical down-
stream effectors to FAK signaling. However, the intermedi-
ate signaling pathways that connect FAK signaling to
MEF2 are still unknown (19). Recent studies have re-
vealed the importance of the AKT/mammalian target of
rapamycin (mTOR) pathway as a mediator of FAK pro-
hypertrophic effectors (27). FAK activation induced by
depletion of Shp2 or by cyclic stretch was demonstrated to
be linked to AKT and mTOR activation. Pharmacological
inhibition with the specific mTOR inhibitor rapamycin sup-
pressed cardiomyocyte hypertrophy induced by Shp2 de-
pletion or biomechanical stress, highlighting a potentially
critical role for AKT and mTOR as downstream mediators
of the pro-hypertrophic actions of FAK signaling. Interest-
ingly, FAK has been demonstrated to control AKT via
interaction with the p85 subunit of PI3K (16,41), and AKT
regulates mTOR primarily through the phosphorylation of
TSC2 at Thr1462 (42). FAK also directly interacts with and
inhibits TSC2, thereby regulating the mTOR pathway (43).
An increase in cardiomyocyte size has been observed fol-
lowing the stimulation of AKT by the upstream activator of
PI3K and after inhibition of PTEN, the enzyme that degrades
inositol 3,4,5-trisphosphate (44). In addition, a constitu-
tively active mutant of AKT increases cardiomyocyte size.
The hypertrophy caused by the expression of active AKT is
attenuated by rapamycin, which indicates that mTOR is
the principal effector (45). Rapamycin also blocks left
ventricular hypertrophy induced by mechanical stress (45).

Many of the molecules and mechanisms that regulate
growth in the adult heart in response to stress signals that
provoke cardiac hypertrophy seem to also contribute to
cardiac development (46). A role for FAK in cardiac devel-
opment and hypertrophy was recently highlighted by the
use of FAK loss-of-function models. Total deletion of FAK
in the mouse embryo induces early embryonic lethality
with mesoderm and cardiovascular development defects
(47,48). Neither a normal heart nor fully developed blood
vessels were present in the FAK-null embryos. The role of
FAK in cardiac development was examined in cardiac-
specific conditional knockout (38) produced by crossing
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floxed FAK mice with MLC2a-Cre transgenic mice, a trans-
genethatis efficiently expressed in embryonic heart. These
mice showed high embryo lethality and heart developmen-
tal defects characterized by muscular ventricular septal
defect and thin ventricular wall that contained only a small
number of loosely packed cells in the compact and trabec-
ular zone. Furthermore, the number of Ki67 and troponin T
double-positive cells in embryos depleted of FAK was
significantly decreased compared with the control, sug-
gesting a defect in embryonic cardiomyocyte proliferation
as the cause of cardiac defects in this model. However, a
distinct mouse model of embryonic deletion of floxed FAK
directed by nkx2-5-Cre showed no change in the ability of
cardiomyocytes to proliferate or survive, although it con-
firmed the importance of FAK for the proper embryonic
development of outflow tract and ventricular septation
(37). The reason for the differences in the effects of embry-
onic FAK on cardiomyocytes is unclear but may be attrib-
uted to the differences in the cardiac specificity and effi-
ciency of the promoters used to drive the recombinase in
the two studies. Still regarding this issue, it is important to
mention that FAK has been demonstrated to be an impor-
tant factor for cell proliferation and differentiation of skel-
etal muscle myoblasts (49,50). Moreover, studies per-
formed in mouse embryonic stem cells have demonstrated
that FAK signaling is a key negative regulator of cardiogen-
esis (36).

FAK loss-of-function models were also used to explore
its role in cardiac hypertrophy (51-53). While the various
models presented discrepant results, they generally con-
firmed the assumption that FAK is required for the proper
response of the heart to hypertrophic stimuli, although it is
not required for the maintenance of basal myocardial ar-
chitecture. Peng et al. (51) generated ventricular cardio-
myocyte-specific FAK-null mice by deleting floxed FAK
(loxP sites flanked exon 3 of FAK gene) directed by MLC2v-
Cre, which is efficiently expressed during the postnatal
period. Cardiac-specific reduction of FAK protein level was
observed 2 weeks after birth. The deletion of FAK in
cardiomyocytes did not affect basal cardiac function or
structure, but left ventricular chamber dimensions, the
heart/body weight ratio and the levels of hypertrophic
genetic markers were increased in FAK knockout mice
after transverse aortic constriction or infusion of angio-
tensin Il, compared with the control littermates. Further-
more, FAK knockout mice but not control mice showed
multifocal interstitial fibrosis in the myocardium. In contrast
with these findings, another lineage of cardiac-specific
FAK knockout mice (loxP sites flanking exon 20; directed
by MLC2v-Cre; maximal FAK depletion by the 3rd month
after birth) (52) showed a mild to moderate attenuation of
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reactive hypertrophy and hypertrophic gene markers to
aortic constriction, although, similar to the model devel-
oped by Peng et al. (51), no change was found in basal
structure or function of the left ventricle in their FAK knock-
out mice. Enhanced perivascular fibrosis was also ob-
served following aortic constriction in FAK-depleted hearts.
The reason for the discrepancies between the two models
of FAK cardiac-specific knockout is unclear, but might be
related to differences in the period necessary to achieve
the maximal depletion of FAK (2 weeks and 3 months) and
the timing and intensity of hypertrophic stimuli used in the
two studies. More recently, by using a model of FAK
silencing induced by RNA interference strategy, we dem-
onstrated that transient FAK depletion (80%) markedly
attenuated the development and reversed already-estab-
lished left ventricular hypertrophy in aortic-banded mice
(53). This implies that FAK is necessary not only to the
development but also to sustain left ventricular hypertro-
phy in response to chronic pressure overload. The marked
effects of FAK depletion induced by gene silencing in
comparison to those seen in FAK cardiac-specific knock-
out mice might be related to the fact that this strategy
induces a broad depletion of FAK in the myocardium,
namely cardiomyocytes, fibroblasts and cells from blood
vessels.

FAK signaling and heart failure

Evidence is emerging implicating FAK signaling in the
development of hypertrophy maladaptation. Increases in
FAK levels and activity were demonstrated in dysfunctional
chronically overloaded rat left ventricle (54). There was a
high correlation between the degree of hypertrophy and FAK
expression during the transition from compensatory left
ventricular hypertrophy to heart failure. Remarkably, al-
though FAK was detected in cardiomyocytes of both sham
and banded rats, much of the increased FAK expression
appeared to occur in the cardiac interstitium, suggesting that
the increased FAK expression in the cardiac interstitium was
derived from proliferating cardiac fibroblasts. However, in
this model FAK was also shown to be increased in some
cardiomyocytes adjacent to areas of fibrosis, implying that
activation of FAK in cardiomyocytes may also contribute to
the deterioration of chronically overloaded rat heart. Similar
results were obtained for chronically overloaded mouse left
ventricle (53) (Figure 3D). In addition, FAK expression and
activity were also demonstrated to be increased in myocar-
dial samples taken during cardiac surgery from subjects with
mitral regurgitation hearts as compared to samples from
cardiac transplantation donor hearts (55). Remarkably, al-
though in myocardial samples from donor hearts FAK was
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detected almost exclusively restricted to cardiac myocytes,
in samples from failing hearts FAK was found to be located
in cardiomyocytes and in the myocardial interstitium (Figure
3E). A positive correlation was found between collagen and
the interstitial areas stained with the anti-FAK antibody.
Moreover, the areas stained with FAK were shown to be
coincident with fibroblasts, indicating that most of the intersti-
tial FAK was located in fibroblasts. These data agree with
our recent demonstration that fibroblasts harvested from the
left ventricles of 7-day banded mice had increased FAK
expression (53). Moreover, it was shown that FAK silencing
markedly attenuated the interstitial fibrosis (Figure 3F,G),
strengthening the notion that FAK plays a critical role in the
myocardial fibrogenesis induced by chronic pressure over-
load. Indeed, myocardial FAK silencing was shown to be
accompanied by attenuation in the rises of myocardial col-
lagen and MMP-2 activity, and, importantly, it was also
demonstrated that FAK silencing in fibroblasts harvested
from overloaded myocardium was accompanied by a reduc-
tion in MMP-2 expression, a molecule that has been shown
to be a major determinant of the extracellular matrix remod-
eling process in overloaded myocardium (56). Further mor-
phological and echocardiographic analysis indicated that
FAK silencing also mitigated the ongoing structural and
functional deterioration of the hypertrophic mouse left ven-
tricle. While these data support a role for FAK signaling in the
deterioration of chronically overloaded heart, they are ap-
parently in conflict with the observations in cardiomyocyte-
restricted knockoutmice that have indicated that depletion of
FAK predisposesto a premature maladaptive remodeling of
chronically overloaded hearts. We postulate that such ap-
parently contradictory effects might be relatedto the fact that
myocardial FAK silencing, in contrast to the myocyte-re-
stricted knockout, may attenuate the development offibrosis
by lowering FAK expression in fibroblasts, in addition to
cardiac myocytes, favoring a better outcome of chronically
overloaded left ventricles. Still in the context of myocardial
deterioration it is worth mentioning that FAK activation has
been implicated in the expression of hypertrophic markers
by cardiomyocytes, which are thought to be associated with
deterioration of the myocardium (17-19,53). This implies that
activation of FAK may be important to activate signaling
pathways involved in pathologic hypertrophy of cardiomyo-
cytes. Thus, it is conceivable that the persistently activated
FAK signaling both in fibroblasts and in cardiomyocytes may
be detrimental to the hypertrophied left ventricle.

Conclusion

FAK regulates the response of cardiomyocytes to bio-
mechanical stress and hypertrophic agonists such as an-
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giotensin Il and endothelin. The mechanisms of FAK acti-
vation by biomechanical stress and the downstream path-
ways involved in FAK signaling have begun to be unrav-
eled. The importance of FAK signaling in cardiac patho-
physiology is not restricted to its effects in cardiomyocytes
but is also important in fibroblasts and possibly in cells
from myocardial vessels. FAK loss-of-function models have
recently provided data that confirm the role of FAK in

References

1. Kong SW, Bodyak N, Yue P, Liu Z, Brown J, lzumo S, et al.
Genetic expression profiles during physiological and patho-
logical cardiac hypertrophy and heart failure in rats. Physiol
Genomics 2005; 21: 34-42.

2. Parsons JT. Focal adhesion kinase: the first ten years. J
Cell Sci2003; 116: 1409-1416.

3. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion ki-
nase: in command and control of cell motility. Nat Rev Mol
Cell Biol 2005; 6: 56-68.

4. Lietha D, Cai X, Ceccarelli DF, Li Y, Schaller MD, Eck MJ.
Structural basis for the autoinhibition of focal adhesion ki-
nase. Cell 2007; 129: 1177-1187.

5. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines
RR, Parsons JT. Autophosphorylation of the focal adhesion
kinase, pp125FAK, directs SH2-dependent binding of
pp60src. Mol Cell Biol 1994; 14: 1680-1688.

6. Cooper LA, Shen TL, Guan JL. Regulation of focal adhesion
kinase by its amino-terminal domain through an autoinhibi-
tory interaction. Mol Cell Biol 2003; 23: 8030-8041.

7. Cai X, Lietha D, Ceccarelli DF, Karginov AV, Rajfur Z,
Jacobson K, et al. Spatial and temporal regulation of focal
adhesion kinase activity in living cells. Mol Cell Biol 2008;
28:201-214.

8. Dunty JM, Gabarra-Niecko V, King ML, Ceccarelli DF, Eck
MJ, Schaller MD. FERM domain interaction promotes FAK
signaling. Mol Cell Biol 2004; 24: 5353-5368.

9. Calalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation
of focal adhesion kinase at sites in the catalytic domain
regulates kinase activity: a role for Src family kinases. Mol
Cell Biol 1995; 15: 954-963.

10. Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. Inte-
grin-mediated signal transduction linked to Ras pathway by
GRB2 binding to focal adhesion kinase. Nature 1994; 372:
786-791.

11. Tachibana K, Urano T, Fujita H, Ohashi Y, Kamiguchi K,
Ilwata S, et al. Tyrosine phosphorylation of Crk-associated
substrates by focal adhesion kinase. A putative mechanism
for the integrin-mediated tyrosine phosphorylation of Crk-
associated substrates. J Biol Chem 1997; 272: 29083-
29090.

12. Schaller MD, Parsons JT. pp125FAK-dependent tyrosine
phosphorylation of paxillin creates a high-affinity binding
site for Crk. Mol Cell Biol 1995; 15: 2635-2645.

13. Renshaw MW, Price LS, Schwartz MA. Focal adhesion
kinase mediates the integrin signaling requirement for
growth factor activation of MAP kinase. J Cell Biol 1999;

Braz J Med Biol Res 42(1) 2009

K.G. Franchini et al.

cardiac embryonic development and hypertrophy, and have
also indicated that the persistent activation of FAK may
contribute to the deterioration of chronically overloaded
hearts. However, we still lack a complete view of how FAK
is activated by mechanical forces, as well as how the
various signaling mechanisms downstream to FAK are
integrated and can influence the pathophysiology of car-
diac hypertrophy and failure.

147:611-618.

14. Chen HC, Appeddu PA, Isoda H, Guan JL. Phosphorylation
of tyrosine 397 in focal adhesion kinase is required for
binding phosphatidylinositol 3-kinase. J Biol Chem 1996;
271: 26329-26334.

15. Akagi T, Murata K, Shishido T, Hanafusa H. v-Crk activates
the phosphoinositide 3-kinase/AKT pathway by utilizing fo-
cal adhesion kinase and H-Ras. Mol Cell Biol 2002; 22:
7015-7023.

16. Franchini KG, Torsoni AS, Soares PH, Saad MJ. Early
activation of the multicomponent signaling complex associ-
ated with focal adhesion kinase induced by pressure over-
load in the rat heart. Circ Res 2000; 87: 558-565.

17. Torsoni AS, Constancio SS, Nadruz W Jr, Hanks SK,
Franchini KG. Focal adhesion kinase is activated and medi-
ates the early hypertrophic response to stretch in cardiac
myocytes. Circ Res 2003; 93: 140-147.

18. Torsoni AS, Marin TM, Velloso LA, Franchini KG. RhoA/
ROCK signaling is critical to FAK activation by cyclic stretch
in cardiac myocytes. Am J Physiol Heart Circ Physiol 2005;
289: H1488-H1496.

19. Nadruz W Jr, Corat MA, Marin TM, Guimaraes Pereira GA,
Franchini KG. Focal adhesion kinase mediates MEF2 and
c-Jun activation by stretch: role in the activation of the
cardiac hypertrophic genetic program. Cardiovasc Res
2005; 68: 87-97.

20. Eble DM, Strait JB, Govindarajan G, Lou J, Byron KL,
Samarel AM. Endothelin-induced cardiac myocyte hyper-
trophy: role for focal adhesion kinase. Am J Physiol Heart
Circ Physiol 2000; 278: H1695-H1707.

21. Taylor JM, Rovin JD, Parsons JT. A role for focal adhesion
kinase in phenylephrine-induced hypertrophy of rat ventric-
ular cardiomyocytes. J Biol Chem 2000; 275: 19250-19257.

22. Domingos PP, Fonseca PM, Nadruz W Jr, Franchini KG.
Load-induced focal adhesion kinase activation in the myo-
cardium: role of stretch and contractile activity. Am J Physiol
Heart Circ Physiol 2002; 282: H556-H564.

23. Fonseca PM, Inoue RY, Kobarg CB, Crosara-Alberto DP,
Kobarg J, Franchini KG. Targeting to C-terminal myosin
heavy chain may explain mechanotransduction involving
focal adhesion kinase in cardiac myocytes. Circ Res 2005;
96: 73-81.

24. Heidkamp MC, Bayer AL, Kalina JA, Eble DM, Samarel AM.
GFP-FRNK disrupts focal adhesions and induces anoikis in
neonatal rat ventricular myocytes. Circ Res 2002; 90: 1282-
1289.

www.bjournal.com.br



FAK and heart diseases

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Katz BZ, Miyamoto S, Teramoto H, Zohar M, Krylov D,
Vinson C, et al. Direct transmembrane clustering and cyto-
plasmic dimerization of focal adhesion kinase initiates its
tyrosine phosphorylation. Biochim Biophys Acta 2002; 1592:
141-152.

Heidkamp MC, Bayer AL, Scully BT, Eble DM, Samarel AM.
Activation of focal adhesion kinase by protein kinase C
epsilon in neonatal rat ventricular myocytes. Am J Physiol
Heart Circ Physiol 2003; 285: H1684-H1696.

Marin TM, Clemente CF, Santos AM, Picardi PK, Pascoal
VD, Lopes-Cendes |, et al. Shp2 negatively regulates growth
in cardiomyocytes by controlling focal adhesion kinase/Src
and mTOR pathways. Circ Res 2008; 103: 813-824.

von Wichert G, Haimovich B, Feng GS, Sheetz MP. Force-
dependent integrin-cytoskeleton linkage formation requires
downregulation of focal complex dynamics by Shp2. EMBO
J2003; 22: 5023-5035.

Xu F, Zhao R, Peng Y, Guerrah A, Zhao ZJ. Association of
tyrosine phosphatase SHP-2 with F-actin at low cell densi-
ties. J Biol Chem 2001; 276: 29479-29484.
Schoenwaelder SM, Petch LA, Williamson D, Shen R, Feng
GS, Burridge K. The protein tyrosine phosphatase Shp-2
regulates RhoA activity. Curr Biol 2000; 10: 1523-1526.
Cobb BS, Schaller MD, Leu TH, Parsons JT. Stable asso-
ciation of pp60src and pp59fyn with the focal adhesion-
associated protein tyrosine kinase, pp125FAK. Mol Cell Biol
1994; 14: 147-155.

Yi XP, Zhou J, Huber L, Qu J, Wang X, Gerdes AM, et al.
Nuclear compartmentalization of FAK and FRNK in cardiac
myocytes. Am J Physiol Heart Circ Physiol 2006; 290:
H2509-H2515.

Senyo SE, Koshman YE, Russell B. Stimulus interval, rate
and direction differentially regulate phosphorylation for
mechanotransduction in neonatal cardiac myocytes. FEBS
Lett 2007; 581: 4241-4247.

Lim ST, Chen XL, Lim Y, Hanson DA, Vo TT, Howerton K, et
al. Nuclear FAK promotes cell proliferation and survival
through FERM-enhanced p53 degradation. Mol Cell 2008;
29: 9-22.

Golubovskaya VM, Finch R, Zheng M, Kurenova EV, Cance
WG. The 7-amino-acid site in the proline-rich region of the
N-terminal domain of p53 is involved in the interaction with
FAK and is critical for p53 functioning. Biochem J2008; 411:
151-160.

Hakuno D, Takahashi T, Lammerding J, Lee RT. Focal
adhesion kinase signaling regulates cardiogenesis of em-
bryonic stem cells. J Biol Chem 2005; 280: 39534-39544.
Hakim ZS, DiMichele LA, Doherty JT, Homeister JW, Beggs
HE, Reichardt LF, et al. Conditional deletion of focal adhe-
sion kinase leads to defects in ventricular septation and
outflow tract alignment. Mol Cell Biol 2007; 27: 5352-5364.
Peng X, Wu X, Druso JE, Wei H, Park AY, Kraus MS, et al.
Cardiac developmental defects and eccentric right ventricu-
lar hypertrophy in cardiomyocyte focal adhesion kinase
(FAK) conditional knockout mice. Proc Natl Acad Sci U S A
2008; 105: 6638-6643.

Pham CG, Harpf AE, Keller RS, Vu HT, Shai SY, Loftus JC,
et al. Striated muscle-specific beta(1D)-integrin and FAK
are involved in cardiac myocyte hypertrophic response path-
way. Am J Physiol Heart Circ Physiol 2000; 279: H2916-
H2926.

www.bjournal.com.br

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

51

Clerk A, Cullingford TE, Fuller SJ, Giraldo A, Markou T,
Pikkarainen S, et al. Signaling pathways mediating cardiac
myocyte gene expression in physiological and stress re-
sponses. J Cell Physiol 2007; 212: 311-322.

Hanks SK, Ryzhova L, Shin NY, Brabek J. Focal adhesion
kinase signaling activities and their implications in the con-
trol of cell survival and motility. Front Biosci 2003; 8: d982-
d996.

Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC.
Identification of the tuberous sclerosis complex-2 tumor
suppressor gene product tuberin as a target of the phospho-
inositide 3-kinase/akt pathway. Mol Cell 2002; 10: 151-162.
Gan B, Yoo Y, Guan JL. Association of focal adhesion
kinase with tuberous sclerosis complex 2 in the regulation of
s6 kinase activation and cell growth. J Biol Chem 2006; 281:
37321-37329.

Crackower MA, Oudit GY, Kozieradzki I, Sarao R, Sun H,
Sasaki T, et al. Regulation of myocardial contractility and
cell size by distinct PI3K-PTEN signaling pathways. Cell
2002; 110: 737-749.

Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T,
Franke TF, et al. Akt/protein kinase B promotes organ
growth in transgenic mice. Mol Cell Biol 2002; 22: 2799-
2809.

Olson EN, Schneider MD. Sizing up the heart: development
redux in disease. Genes Dev 2003; 17: 1937-1956.

llic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuiji
N, et al. Reduced cell motility and enhanced focal adhesion
contact formation in cells from FAK-deficient mice. Nature
1995; 377: 539-544.

Furuta Y, llic D, Kanazawa S, Takeda N, Yamamoto T,
Aizawa S. Mesodermal defect in late phase of gastrulation
by a targeted mutation of focal adhesion kinase, FAK. On-
cogene 1995; 11: 1989-1995.

Clemente CF, Corat MA, Saad ST, Franchini KG. Differenti-
ation of C2C12 myoblasts is critically regulated by FAK
signaling. Am J Physiol Regul Integr Comp Physiol 2005;
289: R862-R870.

Sastry SK, Lakonishok M, Wu S, Truong TQ, Huttenlocher
A, Turner CE, et al. Quantitative changes in integrin and
focal adhesion signaling regulate myoblast cell cycle with-
drawal. J Cell Biol 1999; 144: 1295-1309.

Peng X, Kraus MS, Wei H, Shen TL, Pariaut R, Alcaraz A, et
al. Inactivation of focal adhesion kinase in cardiomyocytes
promotes eccentric cardiac hypertrophy and fibrosis in mice.
J Clin Invest 2006; 116: 217-227.

DiMichele LA, Doherty JT, Rojas M, Beggs HE, Reichardt
LF, Mack CP, et al. Myocyte-restricted focal adhesion ki-
nase deletion attenuates pressure overload-induced hyper-
trophy. Circ Res 2006; 99: 636-645.

Clemente CF, Tornatore TF, Theizen TH, Deckmann AC,
Pereira TC, Lopes-Cendes |, et al. Targeting focal adhesion
kinase with small interfering RNA prevents and reverses
load-induced cardiac hypertrophy in mice. Circ Res 2007;
101: 1339-1348.

Bayer AL, Heidkamp MC, Patel N, Porter MJ, Engman SJ,
Samarel AM. PYK2 expression and phosphorylation in-
creases in pressure overload-induced left ventricular hyper-
trophy. Am J Physiol Heart Circ Physiol 2002; 283: H695-
H706.

Lopes MM, Ribeiro GC, Tornatore TF, Clemente CF,

Braz J Med Biol Res 42(1) 2009



52

Teixeira VP, Franchini KG. Increased expression and phos-
phorylation of focal adhesion kinase correlates with dys-
function in the volume-overloaded human heart. Clin Sci
2007; 113: 195-204.

56. lwanaga Y, Aoyama T, Kihara Y, Onozawa Y, Yoneda T,

Braz J Med Biol Res 42(1) 2009

K.G. Franchini et al.

Sasayama S. Excessive activation of matrix metalloprotein-
ases coincides with left ventricular remodeling during transi-
tion from hypertrophy to heart failure in hypertensive rats. J
Am Coll Cardiol 2002; 39: 1384-1391.

www.bjournal.com.br



