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Abstract

The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of 
neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmenta-
tion based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for 
each single class of brain tissue. We compared the performance of this method using a range of different q parameters and 
found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion 
that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by 
generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we 
used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. 
The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this 
algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude 
that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not 
been demonstrated previously.
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Multiple sclerosis (MS) is understood today as a geneti-
cally determined autoimmune disease, with environmental 
modulation, which mainly affects young adults and is 
characterized by multifocal and multiphasic inflamma-
tory destruction of myelin in the central nervous system. 
Pathological findings include multiple areas of lymphocyte 
and macrophage infiltration associated with multifocal de-
myelination throughout the white central nervous system 
(1). As a disease of young people, which begins most often 
between 20 and 30 years of age, MS involves a very high 
economic and social cost because it affects people who 
are in their most productive phase of life (1).

There are several clinical variants of MS. The classic 
form is characterized by attacks, or recurrences, followed 
by remission, usually with complete regression of symptoms 
during the initial phase of the disease. However, after some 

time, there is a residual deficit after the attacks, followed by 
a gradual evolution (2). The former stage is called relapse-
remitting MS (RR) and the latter, secondary progressive 
MS (SP). After a period of about 8 to 15 years, the disease 
usually enters the SP phase. In about 15% of patients, the 
disease immediately starts in the progressive phase and 
is called primary progressive MS (PP) (2).

The use of magnetic resonance imaging (MRI) has 
proved to be sensitive enough for the diagnosis and follow-
up of the lesions and other tissue alterations with time (3). 
The disease burden in MS is measured by the total area 
of visible lesions in T2 weighted images. However, the T2 
lesion volume is poorly correlated with clinical disability 
measured by current clinical scales (3). Stronger correlations 
have been found between the disability and the individual 
quantitative evaluation by MRI of brain tissue volumes (3). 



78 P.R.B. Diniz et al.

www.bjournal.com.brBraz J Med Biol Res 43(1) 2010

These findings, in agreement with histopathologic exams, 
suggest that permanent neurological dysfunction is associ-
ated with brain and spinal cord atrophy (4-7).

The development of atrophy seems to be associated 
with the progressive loss of myelin and axons and, sec-
ondarily, with neuronal apoptosis. It is apparently more 
evident in the late phase of the disease, when the number 
of lesions reaches a limit and the volumetric loss becomes 
perceptible.

The measurement of brain volume by MRI is a potential 
marker to be used to monitor the evolution of the disease. 
The fractional volumes of gray and white matter in MS have 
been investigated in a few studies (8-10). It is known that 
changes are not restricted to white matter, with involvement 
of the gray matter having also been observed (10). Moreover, 
recent studies have suggested that gray and white matter 
atrophy does not occur simultaneously, but can be related 
to independent degenerative processes depending on the 
type of disease progression.

Lukas et al. (10) have proposed the use of the brain 
parenchymal fraction as a marker for destructive pathologi-
cal processes in patients with MS. This measurement is 
defined as the ratio between brain parenchymal volume 
and intracranial volume.

The measurements of progressive brain alterations 
require the use of sensitive techniques capable of detect-
ing small variations, since temporal changes in encephalic 
volume are very subtle. Depending on the techniques 
used, brain volume reduction over a year is 0.6 to 1.0% in 
patients with MS. In contrast, the annual reduction of total 
volume of the brain in healthy controls varies from 0.1 to 
0.3% and is mainly due to a decrease of gray matter (10). 
Although cerebral atrophies have been measured in several 
longitudinal studies, there is still no consensus about the 
most appropriate method.

Material and Methods

Image acquisition and patients
The MRI exams were acquired with a 1.5 Tesla scan-

ner (Magneton Vision, Siemens, Germany). A standard 
head coil was used to acquire 40 T1-weighted 3-D axial 

slices (MPRAGE) covering the whole brain. The sequence 
involved the following parameters: TE, 11 ms; TR, 34 ms; 
FA, 30°; slice thickness, 5 mm.

Forty-three clinically defined MS patients were selected 
(19 males and 24 females, mean age of 36.35 years) in-
cluding the RR, SP, and PP subtypes. To obtain a higher 
degree of consistency, all patients were examined by a 
single neurologist, a specialist in demyelinating diseases, 
and all MRI exams were reviewed by two radiologists. Ten 
healthy volunteers (5 males and 5 females, mean age of 
36 years) were studied for comparison. 

Exams contaminated by artifacts, such as those caused 
by movement, were excluded. The study was approved by 
the Ethics Committee and Research of the Hospital das 
Clínicas of Ribeirão Preto and all patients gave written in-
formed consent to participate in the study. Table 1 presents 
the demographic characteristics of the subjects, as well as 
patient distribution according to MS type.

Algorithm for tissue volumetric quantification
There are several studies describing brain structures 

observed by MRI as fractal geometry (11). The fractal dimen-
sion was found to be a sensitive marker for certain brain 
diseases (12,13). This suggests that an entropy formulation 
suitable for fractal manifesting systems (14) is adequate as 
a segmentation marker for brain tissues.

The algorithm evaluated in the present study was de-
veloped using the NIH ImageJ software, which provides the 
automatic quantification of brain total volume, cerebrospinal 
fluid (CSF), white matter, and gray matter.

The segmentation method involves two stages: Snake 
algorithm or active contour model for encephalon extraction, 
and the maximum entropy algorithm for tissue segmentation. 
A diagram presenting the overall steps of the developed 
algorithm is illustrated in Figure 1.

Brain segmentation 
Snake is a particular type of active contour in which an 

initial curve is deformed towards the border by internal and 
external forces (15), which can be obtained by a process 
of global minimization or can be considered only based 
on local information (15). Active contours make use of lo-
cal information about a contour. The active contours are 
especially useful when the geometry of the object borders 
is unknown (15) and are an effective technique for image 
segmentation.

In this method, we use anisotropic filtering followed 
by the use of Snakes to obtain reliable encephalon seg-
mentation. The overall effect of an anisotropic filter is a 
kind of smooth image and the reduction of the amount of 
gray level variations. This smoothing effect is controlled 
by the local gradient, so that the neighborhoods with gray 
level transitions are preserved. The controlled smoothing 
process tends to minimize noises, but preserves border 
transitions (16).

Table 1. Characterization of the patients studied. 

Normal 
controls

Total No. of 
patients

Patients 
with PP

Patients 
with RR

Patients 
with SP

N 10 43 4 27 12

Men   5 19 4   9   6

Women   5 24 0 18   6

Age (years) 36 ± 11.06 36.35 ± 9.97 47 ± 11 35 ± 9.6 35 ± 9.1

Data are reported as numbers or means ± SD. PP = primary pro-
gressive multiple sclerosis; RR = relapse-remitting multiple scle-
rosis; SP = secondary progressive multiple sclerosis.
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After anisotropic filtering, a Snake algorithm was applied, 
with a circle as the contour for initialization, centered on 
the mass center of the image. Its optimum radius is heu-
ristically defined and varies according to the image plane 
used. The segmentation resulting from Snake algorithm 
is an image with a black background and the segmented 
encephalon. Figure 2 shows the typical result of applica-
tion of the anisotropic diffusion filter application and the 
Snake algorithm.

A common problem in automatic segmentation methods 
is the presence of non-uniformity in MRI. It appears as a 
smooth variation of the signal intensity across the image 
and is usually attributed to many factors such as poor ra-
diofrequency (RF) field uniformity, eddy currents driven by 
the switching of field gradients, and patient anatomy both 
inside and outside the field of view (17). Although these fac-
tors contribute to 10 to 20% of variation in signal intensity, 
they have little impact on the visual diagnosis. However, 
automatic segmentation performance can be significantly 
reduced by this inhomogeneity (17), and such artifacts 
must be corrected prior to tissue classification using an 
inhomogeneous isotropic diffusion 2-D filter.

Tissue classification
Following the previously described pre-processing 

step, the encephalon extracted from MRI was segmented 
into different brain tissues (white matter, gray matter and 
CSF) by the use of an algorithm based on the maximum 
generalized entropy principle (18). The entropy is frequently 
used to indicate the amount of information produced in a 
certain source, and is also used to measure the disorder 
or complexity of a dataset.

The information entropy was conceived by Shannon 
intuitively rather than from basic principles (19). We can con-
jecture, for instance, that an event with complete certainty of 
occurrence, i.e., probability equal to unit, the corresponding 
entropy is zero. On the other hand, if an event is rare, with a 
very small probability of occurrence, the net entropy is large. 
The mathematical function of this behavior is logarithmic 
function. The choice of a logarithmic base in the entropy 
formula determines the unit for information entropy used. 
The most common unit of information is the bit, based on 
the binary logarithm. An interesting and useful property of 
entropy is the fact that, for a closed dynamic system, the 
entropy always grows to a maximum value.

This formalism has been shown to be restricted to the 
domain of validity of the Boltzmann-Gibbs-Shannon (BGS) 
statistics, and it seems to describe nature when the effective 
microscopic interactions and the microscopic memory are 
short ranged. Generally, systems that obey BGS statistics 
are called extensive systems. If we consider that a physical 
system can be decomposed into two statistical independent 
subsystems A and B, the probability of the composite sys-
tem is pA + B = pA · pB. It has been shown that Shannon 
entropy has the following additivity property:

	                                            [1]

However, for a certain class of physical systems, pre-
sumably those that entail long-range interactions, long-time 
memory and multifractal-like macrostates, an extension of 
this principle can be interesting (19). Inspired by multifractal 
concepts, Tsallis (19) has proposed a generalization of the 
BGS statistics, which is based on a generalized entropic 
form:

                                                          [2]

where k is the total number of possibilities of the system and 
the real number, q, is an entropic index that characterizes 
the degree of nonadditivity. This expression meets the BGS 
entropy in the q→1 limit. Tsallis entropy is nonadditive in 
such a way that, for a statistical independent system, the 
entropy of the system is defined by the following nonad-
ditivity entropic rule:

 [3]

Figure 1. Diagram of the proposed algorithm. MRI = magnetic 
resonance image.

A B

Figure 2. Illustration of the result of the first stage of the proposed 
method. A, Original magnetic resonance imaging slice; B, result 
after anisotropic filtering and active contour.
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Extending these concepts to the imaging context, we 
can consider an image as a result of a random process, 
with the probability (pi) corresponding to the probability of 
a certain pixel to assume a specific intensity value, i (i = 
1,..,G), that is the normalized histogram of the considered 
image. The intensity histogram of an image becomes the 
probability density function of the image just by dividing 
each number of pixels of intensity i, gi, by the number of 
pixels in the image, N.

However, the entropy of an image is a positive measure 
and the maximum entropy occurs when an image contains 
the same amount of pixels for all intensities, that is, all 
intensities have the same probability of occurrence.

The algorithm used is based on the entropy algorithm 
proposed by Kapur et al. (20) and Pun (21). According to 
them, the entropy associated with the black pixels, Sb, and 
the entropy associated with the white pixels, Sw, is delimited 
by the threshold value t. The algorithm assumes that t is such 
that it maximizes the total accumulated entropy function. Sb 
is the accumulated entropy ranging from dark black-gray 
level to threshold and Sw is the accumulated entropy from 
threshold to bright white-gray level. One can define p[i] as 
the value of the probability for pixels in a particular gray 
level. In the present context, the q parameter represents how 
a particular tissue accumulates information in the images, 
according to the generalized statistics. Thus, as can be seen 
in Equation 3, q values tell us the way system incorporates 
entropy or information from subsystems. 

The first structure segmented by this process is the 
CSF, which is subtracted from the original image. The im-
age without the CSF is submitted again to the algorithm of 
maximum entropy and gray matter is segmented. Once the 
gray matter is subtracted, one ends with the white matter. 
Figure 3 shows an example of segmentation based on this 
technique. In the MRI context, the gray level probability 
distribution is directly correlated with the overall fractal 
constituent tissue structure. Therefore, if one considers 

different overall structure images having different statistical 
distributions, this will lead to a different threshold that cor-
responds to the maximum parametric entropy principle.

Quantitative evaluation of the segmentation results
Segmentation results were compared with the manu-

ally segmented volume as delineated by a specialist. This 
comparison was made using the following error types:

Total error. The total error, denoted by “εT”, is calcu-
lated as:

                                          [4]

where A is the segmentation by the proposed algorithm, 
M is the manual segmentation performed by the special-
ist, and V(A) and V(M) are the respective volumes of the 
segmentation.

False-positive error. A false-positive (FP) voxel is a 
voxel that is selected in automatic algorithm segmentation 
but not in the manually segmented volume. The FP error, 
denoted by “εFP”, is calculated as:

                                     
[5]

False-negative error. A false-negative (FN) voxel is the 
voxel selected by manual segmentation but not by automatic 
algorithm segmentation. The FN error, denoted by “εFN”, 
is calculated as:

                                     [6]

Accuracy tests with simulated MRI
We used simulated MRI data (BrainWeb, http://www.

bic.mni.mcgill.ca/brainweb/) (22) to evaluate the accuracy 
of segmentation in terms of similarity by comparing our 
segmented tissue masks to the gold standard tissue masks. 
The segmentation algorithm was evaluated for the effects 
of radio frequency inhomogeneities (at 0, 20, and 40%) and 
noise (0, 1, 3, 5, 7, and 9%) using the similarity index (Si) 
(23). This index is calculated as:

                                                     [7]

where TP (correctly labeled), FP and FN are, respectively, 
the number of true-positive, false-positive and false-negative 
voxels. The parameter used for evaluation indicates that 
a similarity index of 0.7 or above is considered to indicate 
good agreement.

Brain parenchymal fraction
Atrophy is calculated by the brain parenchymal fraction 

(BPF), which is expressed by the percentage of intracra-
nial volume (ICV) occupied by the brain, where the ICV 

Figure 3. Maximum entropy segmentation example. A, Original 
image; B, image with the segmentation masks. Blue indicates 
cerebrospinal fluid, white indicates the gray matter, and red indi-
cates the white matter.

A B
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is defined as the sum of CSF + white matter (WM) + gray 
matter (GM). BPF is then calculated by the sum of WM + 
GM divided by the ICV, multiplied by 100, yielding the value 
in percentage. This formula is presented below:

                                      [8]

Results

Searching for the best parametric q value for tissue 
segmentation

The entropic index, q, can be interpreted as a parameter 
that characterizes the degree of non-extensivity of a system. 
In image segmentation, the non-extensivity of a system can 
be interpreted as the presence of correlations among pixels 
of the same object in the image. These correlations can be 
classified as long-range correlations in the case of images 
that present pixels strongly correlated in terms of gray levels 
and scale invariant spatial filling.

In the development of this method, we used positive 
values of q to search for the optimal value from 0.1 to 2.0 and 
investigated the threshold level for visual inspection and for 
the smallest relative error of the volume for all structures.

The error analysis showed that the best q values for 
CSF, white matter and gray matter are 0.2, 0.1 and 1.5, 
respectively. The graph in Figure 4 and Table 2 summarize 
the results of the experiment.

Total volume evaluation
Figure 5 shows the result of extraction of the brain tissue 

in two images, one located at the base of the skull and the 
other in the region of the eyes. The region of the eyes is of 
difficult limitation since it presents signal intensity values 
similar to those of brain tissue. Traces of the occipital and 
temporal lobes appear at the skull base, whose respective 
limits are well defined; the difficulty is to delimit them as a 
single structure. It is important to observe a good perfor-
mance of the developed tool regarding the eyeball region. 
A nonsignificant (P ≥ 0.05) difference of 21.75 cm3 in time 
can be observed.

Cerebrospinal fluid, white matter and gray matter 
segmentation

Using BrainWeb-simulated MR images, the similarity 

Figure 4. Relative error for each 
segmented tissue as a function 
of q value.

Figure 5. Result obtained with the proposed tool based on a 
deformable model (Snake). A, Image of skull base. B, Image of 
eye region. 

A B

Table 2. Calculated tissue q value. 

Tissue q value Total error 

Cerebrospinal fluid 0.2 27%
White matter 0.1 21%
Gray matter 1.5 27%

The q values were determined by minimizing the relative errors 
for each tissue.
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index (22) for GM, WM and CSF mask images was 0.832, 
0.875, and 0.823 at 3% noise and 20% RF inhomogeneity 
level. A similarity index of 0.7 or above is considered to 
indicate good agreement (22). The segmentation method 
presented here works well in the presence of RF inhomo-
geneity and the various noise levels, as can be seen in 
Table 3.

Volume, manual segmentation and automatic seg-
mentation values were compared by the Student t-test for 
paired samples and the total error, false-positive error and 
false-negative error were determined.

The results showed that there was no significant 
difference between the volumes measured by manual 
segmentation and automatic segmentation for the CSF 
(347.22 ± 94.07 vs 322.842 ± 114.43 cm3, respectively). 
The mean relative error was 27% with an εFN of 15% and 
an εFP of 11%.

For the white matter volumes, the test showed no 
significant differences between the values obtained by 
manual segmentation and automatic segmentation using 
the method presented here (556.218 ± 120.86 vs 574.44 
± 166.97 cm3, respectively). The relative error found was 
21% with an εFN of 8% and an εFP of 14%.

The Student t-test for paired samples showed no signifi-
cant differences between the gray matter volumes obtained 
by manual segmentation and by automatic segmentation 
(459.01 ± 145.26 vs 412.72 ± 106.27 cm3, respectively). 
The relative error found was 27% with an εFN of 14% and 
an εFP of 12%. Table 4 shows these results.

Brain parenchymal fraction
It is important to note that the patients were compared 

to control individuals matched for age and gender. The 
influence of age on brain atrophy is known. The BPF was 
estimated at 76.23 ± 5.75% for the controls and at 74.12 
± 4.23% for the patients. The annual loss was calculated 
by the clinical classification of the patients. In general, 
MS patients presented an annual loss of 0.98%. For each 
clinical classification, we found an annual volumetric loss 
of 1.15% for patients in the PP phase, of 1.01% for patients 
in the RR phase and of 0.66% for patients in the SP phase. 
Table 5 presents these results.

The amount of atrophy is obtained from the BPF, calcu-
lated from the volumetric data acquisition as the percentile 
rate of intracranial volume occupied by the encephalon, 
which is the sum of CSF, WM and GM.

Table 3. Similarity indices at various radiofrequency (RF) inho-
mogeneity and noise levels in an accuracy test using BrainWeb 
simulation images.

Noise level RF inhomogeneity levels

0% 20% 40%

Gray matter

0% 0.86903 0.797637 0.804889

1% 0.817627 0.816415 0.820566

3% 0.832996 0.832575 0.830091

5% 0.808635 0.806584 0.808027

7% 0.762137 0.767459 0.769204

9% 0.715715 0.721006 0.720388

White matter

0% 0.85809 0.856086 0.859677

1% 0.866448 0.863903 0.864305

3% 0.876857 0.875415 0.872875

5% 0.863628 0.860913 0.861685

7% 0.835257 0.839319 0.838922

9% 0.80627 0.812064 0.812882

Cerebrospinal fluid

0% 0.767662 0.769236 0.772654

1% 0.789707 0.797884 0.808227

3% 0.816233 0.82367 0.827553

5% 0.80185 0.80318 0.805297

7% 0.775803 0.777564 0.777821

9% 0.738604 0.740258 0.741042

Table 4. Errors by region of interest. 

Total error FN error FP error 

Cerebrospinal fluid 27% 15% 11%

White matter 21%   8% 14%

Gray matter 27% 14% 12%

FN = false-negative; FP = false-positive.

Table 5. Annual measured volume loss as a function of clinical 
classification. 

Total  PP  RR  SP

N 43 4 27 12

Age (years) 36.35 ± 9.97 47 ± 11 35 ± 9.6 35 ± 9.1

Annual loss 0.98% 1.15% 1.01% 0.66%

Data are reported as means ± SD. PP = primary progressive mul-
tiple sclerosis; RR = relapse-remitting multiple sclerosis; SP = 
secondary progressive multiple sclerosis.
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Discussion 

Brain tissue segmentation is the key image processing 
tool allowing a precise quantification of atrophy in degen-
erative diseases such as MS. Brain volume quantification 
when performed manually, although a simple procedure, 
is time consuming and subject to wide variability between 
different experts. Alternatively, one can use automated 
segmentation procedures. The algorithm to be used should 
be precise enough to detect small differences and robust 
enough to allow reproducible measurements to be used in 
evolutionary evaluations.

The intensity threshold segmentation technique has 
not yet been used successfully due to the lack of a reliable 
automatic method (24-26). Therefore, we propose here a 
segmentation method based on the search for the intensity 
threshold by maximizing generalized Tsallis entropy (19). 
Generalized Tsallis entropy is a formulation for statistical 
mechanic entropy that considers the long-range correlations 
between system bodies and multifractal phase space (14). 
While classical Shannon entropy considers the particles 
of a system to be statistically independent, Tsallis entropy 
considers their interdependence. These concepts can be 
transported into the context of image processing in view 
of the correlation between differently spaced pixels and 
the fractal pattern or scale invariant similarity observed in 
certain images.

Within the context of neuroimaging studies, we have al-
ready used Tsallis entropy applied to functional MRI (27,28). 
Tsallis generalized entropy was used in the current study in 
order to optimize the segmentation threshold. In the Tsallis 
formulation, there is a q parameter related to the statistical 
consequences of pixel correlations. Deviation of q from unit 
is a measure of the departure from regular geometries, or 
from random statistics.

When compared to classical Shannon entropy, this 
approach seems to be much more suitable for tissue seg-
mentation. Figure 6 shows an example of this segmenta-
tion. Parametric Tsallis entropy can separate the different 
structures using different q values. These results suggest 
that each brain tissue has its own fractal-like geometry.

The clinical application of these atrophy calculation 
techniques is important, mainly for the evaluation of neural 
degenerative disease progress, and of patient response to 
specific treatments. When made manually, this measure-
ment is time consuming and requires specific training. The 
use of tools that make this task easier is of key importance 
in clinical practice.

The automatic segmentation method proposed here 
proved to be very practical and reproducible, with small 
variability, for the quantitation of CSF, WM and GM using 

the whole intracranial volume, and for the calculation of 
BPF using the sum of WM and GM.

Our results showed a more intense atrophy in patients 
considered as a whole compared with the control group. 
When the patients were divided into subgroups according 
to disease stage, atrophy became significantly more intense 
in patients in the PP phase, followed by those in the RR and 
SP phases. Comparison of atrophy data with the clinical data 
of the patients yielded encouraging results, with the patterns 
of atrophy detected by the algorithm being consistent with 
the phase of MS clinically determined in the patients. It is 
important to note that the average volume loss of 0.98% 
for the group as a whole, 1.15% for those classified as PP, 
1.01% for those classified as RR, and 0.66% for patients SP 
agreed with the rates reported by Lukas et al. (10), which 
were 0.6 to 1.0% in MS patients. 

The use of Tsallis entropy produces better results in 
the targeting of tissues to obtain a better identification of 
the threshold and the inclusion of partial volume between 
classes. The ideal q values for the segmentation of the 
classes are: CSF = 0.2, WM = 0.1, GM = 1.5, which have 
not been shown previously.

The algorithm described here is very fast (20 s for 
segmentation) and it worked well even with thick slice 
in the presence of RF inhomogeneity and at the various 
noise levels. These characteristics allow its application to 
clinical routine. 

It resulted in a computer algorithm capable of detect-
ing volume loss in patients with progressive stages of the 
disease, distinguishing the values for patients in the early 
stages of multiple sclerosis from control values.
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