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Abstract

Helicobacter pylori adhesion to gastric epithelial cells constitutes a key step in the establishment of a successful infection of the 
gastric mucosa. The high representation of outer membrane proteins in the bacterial genome suggests the relevance of those 
proteins in the establishment of profitable interactions with the host gastric cells. Gastric epithelial cells are protected by a mucous 
layer gel, mainly consisting of the MUC5AC and MUC6 mucins. In addition to this protective role, mucins harbor glycan-rich do-
mains that constitute preferential binding sites of many pathogens. In this article, we review the main players in the process of H. 
pylori adhesion to gastric epithelial cells, which contribute decisively to the high prevalence and chronicity of H. pylori infection. 
The BabA adhesin recognizes both H-type 1 and Lewis b blood-group antigens expressed on normal gastric mucosa of secretor 
individuals, contributing to the initial steps of infection. Upon colonization, persistent infection induces an inflammatory response 
with concomitant expression of sialylated antigens. The SabA adhesin mediates H. pylori binding to inflamed gastric mucosa 
by recognizing sialyl-Lewis a and sialyl-Lewis x antigens. The expression of the BabA and SabA adhesins is tightly regulated, 
permitting the bacteria to rapidly adapt to the changes of glycosylation of the host gastric mucosa that occur during infection, as 
well as to escape from the inflammatory response. The growing knowledge of the interactions between the bacterial adhesins 
and the host receptors will contribute to the design of alternative strategies for eradication of the infection.
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Helicobacter pylori and gastric 
carcinogenesis

Helicobacter pylori is a Gram-negative spiral-shaped 
microaerophilic bacterium specialized in the colonization 
of the human stomach, that infects more than a half of 
the world’s population (1). Although most infected indi-
viduals show no clinical symptoms, H. pylori can cause 
gastric ulcers and persistent infection may cause chronic 
atrophic gastritis with the development of intestinal 
metaplasia (IM), dysplasia and gastric carcinoma (2). 
Gastric adenocarcinoma is the second cause of cancer 
death worldwide. In 1994, based on epidemiologic evi-
dence, the International Agency for Research on Cancer 
classified H. pylori as a class I carcinogenic agent. The 
crucial role of H. pylori in the carcinogenic pathway was  
further confirmed using various animal models, which 
demonstrated that H. pylori infection induced gastritis, 
IM and gastric carcinoma (3,4). The development of 

disease upon infection depends on bacterial virulence 
factors, host susceptibility features and other environ-
mental factors such as smoking and diet. Among the 
bacterial virulence factors, the CagA protein encoded 
within the cytotoxin-associated gene pathogenicity island 
(cagPAI) and the vacuolating cytotoxin VacA have been 
demonstrated to be important features in determining 
the clinical outcome of H. pylori infection (5). In addi-
tion, genetic polymorphisms in genes codifying for host 
inflammatory cytokines, including IL-1B, TNF-A, IL-10, 
and IL-8, as well as in genes participating in the innate 
immune response such as TLR4, confer an increased 
risk of gastric cancer and its precursor lesions develop-
ment in the presence of H. pylori (6). 

Mucins and their role in the host-pathogen 
interplay

Mucins are heavily glycosylated high molecular weight 
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glycoproteins synthesized by several secretory epithelial 
cells. Mucins can be produced either as membrane-bound 
or secreted products and constitute the major component 
of the mucous viscous gels that lubricate and act as a 
physical barrier, providing protection for epithelial cells that 
line the respiratory and gastrointestinal tracts and form the 
ductal surfaces of organs such as the breast, pancreas 
and kidney (7).

The human mucin (MUC) family includes 21 members 
(MUC1 to MUC21) with a common structural feature: a tan-
dem repeat domain comprising sequences of amino acids 
repeated in tandem, which are rich in proline, threonine and 
serine residues, constituting the PTS (Pro/Thr/Ser) domains. 
These domains are extensively glycosylated through GalNAc 
O-linkages at the serine and threonine residues (7). 

In a healthy gastric mucosa, the mucins produced 
include MUC1, MUC5AC and MUC6. The membrane-
associated MUC1 is expressed in foveolar cells and, to a 
lesser extent, in mucous glands. The secreted MUC5AC 
mucin is restricted to the foveolar epithelium and is a major 
constituent of the surface mucous gel layer, whereas the 
expression of the secreted MUC6 is limited to the glands 
(8-10). This mucin distribution determines the gastric 
glycosylation pattern since expression of MUC5AC is ac-
companied by similar distribution of fucosyltransferases 
leading to co-expression of type 1 Lewis a (Lea) and Lewis 
b (Leb) blood group antigens, while MUC6 expression is 
associated with the type 2 Lewis x (Lex) and Lewis y (Ley) 
antigens (Figure 1) (11). 

H. pylori is mainly found within the gastric mucous 
layer and rarely colonizes deeper portions of the gastric 
mucosa. This distribution has been explained based on 
the production of mucins carrying carbohydrate chains with 
terminal α1,4-GlcNAc residues attached to core2-branched 
O-glycans by the gland’s mucous cells (12,13). In vitro 
experiments show that α1,4-GlcNAc-capped O-glycans 
function as a natural antibiotic by inhibiting the biosynthesis 
of a major cell wall component and thus hampering H. pylori 
growth (13). Recently, it has been demonstrated that the 
membrane-associated MUC1 can limit H. pylori binding to 
gastric epithelial cells both by steric inhibition of binding 
to other cell surface ligands and by acting as a releasable 
decoy (14). These observations are in agreement with 
previous studies showing that mice deficient in Muc1 were 
more susceptible to H. pylori infection (15). 

Chronic gastritis occasionally evolves to IM, character-
ized by the aberrant expression of MUC2 and the sialyl-Tn 
antigen, which are markers normally expressed in intestinal 
mucosa (12,16). Two distinct profiles of mucin expression 
have been described in IM, one corresponding to the 
complete type characterized by decreased expression of 
MUC1, MUC5AC and MUC6 and de novo expression of 
MUC2, and the other corresponding to the incomplete type 
characterized by the co-expression of the typical gastric 
mucins MUC1, MUC5AC and MUC6 with the intestinal 

MUC2 (16). Complete IM is not colonized by H. pylori but a 
few cases of incomplete IM with H. pylori colonization have 
been described, suggesting that infection is dependent on 
the gastric microenvironment, which is largely determined 
by the mucin and carbohydrate composition of the gastric 
mucin layer (10,17).

Helicobacter pylori adhesion to human 
gastric mucosa

H. pylori colonizes the gastric mucosa by adhering to 
the mucous epithelial cells and the mucous layer lining the 
gastric epithelium. Adhesion to the gastric cells is a crucial 
step in the establishment of a successful infection because 
it provides protection from clearance mechanisms such as 
liquid flow, peristaltic movements or shedding of the mucous 
layer. Approximately 4% of the H. pylori coding potential 
encodes a diverse repertoire of outer membrane proteins 
including the Helicobacter outer membrane porins (Hop) 
and Hop-related protein (Hor) subfamilies. The currently 
identified adhesins are phylogenetically clustered in the Hop 
subfamily and display a substantial degree of homology to 
each other (18,19).

Blood group antigen-mediated 
Helicobacter pylori adhesion

In the early 90’s, in vitro adhesion assays identified 
the fucosylated blood group antigens H-type 1 and Leb as 
mediators of H. pylori adhesion to human gastric epithelial 
cells (20). Later the Leb-binding adhesin, named blood group 
antigen-binding adhesin (BabA), was identified and purified 
by receptor activity-directed affinity tagging (Figure 2). Two 
corresponding genes encoding BabA have been cloned: 
babA1 and babA2, but only the babA2 gene was shown to 
be functionally active (21). H. pylori strains expressing the 
BabA adhesin were shown to bind to the human gastric 
MUC5AC from healthy individuals in a Lewis b-dependent 
manner (22,23). 

The bacterial Lewis b-binding phenotype is epidemio-
logically associated with the presence of the cagPAI (21,24). 
Several studies have established the clinical relevance of 
the babA2 gene, suggesting it as a marker to identify pa-
tients at higher risk for specific H. pylori-related diseases 
(24,25). Considering the clinical relevance of BabA, a 
vaccine strategy based on this adhesin might be used to 
target virulent strains of H. pylori (21,26).

H. pylori strains are able to adapt their outer membrane 
expression profile according to alterations in host environ-
ment, including changes in mucosal glycosylation patterns, 
by switching on and off gene expression. The presence of 
highly homologous genes allows allelic replacement be-
tween genomic areas with different transcriptional activity. 
It has been demonstrated in vitro that if the babA2 gene is 
disrupted the bacteria can regain the Leb-binding phenotype 
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Figure 2. Glycan-mediated adhesion of Helicobacter pylori to gas-
tric cells. The figure illustrates some of the characterized bacterial-
glycan interactions that contribute to a successful colonization of the 
gastric mucosa. H. pylori BabA mediates binding to either Lewis b or 
H-type 1 structures (not represented in the figure) present in secret-
ed or membrane-associated glycoproteins expressed on the gastric 
mucosa of healthy secretor individuals, while SabA recognizes the 
inflammation-induced sialylated antigens, sialyl-Lewis a and sialyl-
Lewis x expressed on glycoproteins and glycolipids. Although the 
host receptors have not yet been determined, several other bacterial 
adhesins (represented in yellow) may contribute to bacterial binding 
to gastric epithelial cells.

Figure 1. Schematic representation of the terminal ABH structures and Lewis epitopes present in O-glycans. Type 1 chains are char-
acterized by the Galβ1,3GlcNAc linkage (represented in black), while type 2 chains display a Galβ1,4GlcNAc linkage (represented 
between parentheses and in red).
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by recombining the silent babA1 gene into the babB locus 
where it is then expressed, encoding a functionally active 
adhesin (27). Moreover, reisolated strains from Rhesus ma-
caques infected with a BabA-positive strain lost their Lewis 
b-binding capacity by switching off babA expression either 
by slipped-strand mispairing (SSM) or by recombination of 
the babB gene into the babA locus (28). Recently, these 
observations have been extended to different animal hosts, 
including mice and gerbils, and six amino acid changes in 
the BabA sequence have been identified as sufficient to 
abolish the Leb-binding phenotype (29). BabA metastabil-
ity and heterogeneity in Leb antigen binding contributes 
to bacterial persistence, allowing periodic activation and 
deactivation of virulence adequate to the host response to 
infection (27,30). The plasticity of BabA adhesin has also 
been illustrated by the finding that some H. pylori strains 
are generalists, which means that they are able to tolerate 
the GalNAc (blood group-A) or Gal (blood group-B) terminal 
structures and bind A-Leb and B-Leb in addition to Leb, while 
other strains, so-called specialists, exclusively bind to naked 
Leb and a few strains exclusively bind to A-Leb (Figure 1) 
(31). More recently, H. pylori strains, which express BabA 
adhesin but are unable to bind any Leb structure, have 
been described (32).

The fucosylated H-type 1 and Leb antigens are naturally 
expressed on the gastric mucosa of secretor and Lewis-
positive individuals. The secretor status depends on an 
active FUT2 enzyme, an α(1,2)fucosyltransferase that 
catalyzes the addition of terminal α(1,2)fucose residues (33). 
Inactivating mutations in the secretor gene affect 20% of the 
human population and have been associated with reduced 
susceptibility to infections by Norwalk virus and H. pylori 
(34-37). We have used an animal model of non-secretors, 
the Fut2-null mice, to characterize the glycosylation profile 
and evaluate the effect of the observed glycan expression 
modifications in H. pylori adhesion. As expected, Fut2-null 
mice showed marked alteration in gastric mucosa glyco-
sylation, characterized by diminished expression of α(1,2)
fucosylated structures. This altered glycosylation profile 
resulted in the absence of Fucα(1,2)-dependent binding 
of calicivirus virus-like particles. Regarding H. pylori adhe-
sion, we observed that strains expressing a functional BabA 
adhesin showed decreased adhesion to the gastric mucosa 
of Fut2-null mice whereas the binding pattern of strains that 
only express the sialic acid-binding adhesin SabA was not 
altered, demonstrating that this impaired adhesion could 
be strictly attributed to reduced expression of BabA ligands 
in the gastric mucosa of Fut2-null mice (38). 

Helicobacter pylori adhesion during 
persistent infection

Persistent H. pylori colonization of the gastric mucosa 
results in inflammation with concomitant expression of sia-
lylated glycans such as sialyl-Lea and sialyl-Lex (Figures 1 

and 2) (39,40). Parallel to what was described for humans, in 
the Rhesus monkey model, H. pylori infection resulted in an 
increase of sialylated mucosal antigens and a concomitant 
decrease in fucosylated antigens (41). Similar to BabA, the 
sialic acid-binding adhesin, SabA, has been identified by the 
retagging technique based on its affinity for sialyl-Lex (39). 
The minimal structure required for SabA adhesin binding 
was shown to be NeuAcα2-3Gal (42,43). Accordingly, it 
has been demonstrated that SabA interaction with the host 
gastric sialyl-Lex antigen enhances H. pylori colonization in 
patients with weak or no Leb expression (44). 

Recently, we have demonstrated that H. pylori infection 
induces several alterations in the glycosylation-related 
gene expression profile of a human gastric cell line. In-
terestingly, the observed gene expression modifications 
were highly related to the degree of pathogenicity of the 
infecting H. pylori strain (45). Among the genes that were 
up-regulated by H. pylori, a specific glycosyltransferase, 
β3GlcNAcT5, was identified and this enzyme was reported 
to be involved in the biosynthesis pathway of carbohydrate 
chains such as sialyl-Lex on glycolipids. The induction 
of β3GlcNAcT5 expression was specific of the highly 
pathogenic cagPAI-positive strains. In vitro experiments 
demonstrated that overexpression of the β3GlcNAcT5 
enzyme led to an up-regulation of sialyl-Lex expression, 
concomitant with increased H. pylori SabA-mediated 
adhesion to gastric cells (45).

As previously described for the babA gene, sabA gene 
expression can be modulated by phase variation through 
SSM. The length of a dinucleotide cytosine-thymine repeat 
tract near the 5’ end of the open reading frame determines 
if translation results in a truncated non-functional protein 
or in a full-length functional adhesin (39,46). In addition 
to SSM, SabA protein production is also controlled at the 
transcriptional level by the acid-responsive signal (ArsRS) 
two-component signal transduction regulatory system (46). 
This capacity of rapidly switching on and off BabA and SabA 
expression allows a continuous adaptation of the bacterial 
binding properties to the glycan profile modifications that 
occur during the inflammation process. This adaptation is 
essential for the maintenance of a chronic infection.

Other players that participate in the 
Helicobacter pylori adhesion process

Although BabA and SabA are the most prominent ad-
hesins studied in detail so far, it is important to note that 
not every H. pylori strain expresses functional BabA or 
SabA adhesins, suggesting that other bacterial proteins are 
involved in H. pylori adhesion to gastric cells. It has been 
demonstrated that the adherence-associated lipoprotein 
A and B (AlpA and AlpB) and HopZ participate in H. pylori 
binding, but its corresponding host receptors remain to 
be determined (19,47,48). Additionally, two sulfo-binding 
H. pylori proteins have been described, the neutrophil-
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activating protein (NAP), which binds specifically to sulfated 
oligosaccharide structures such as sulfo-Lea, sulfogalactose 
and sulfo-N-acetyl-glucosamine on mucins, and Hsp70 that 
has been suggested to mediate sulfatide recognition under 
stress conditions (49,50). Heparan sulfate glycosaminogly-
cans have also been described to have a role in H. pylori 
adhesion to cell-line models (51,52). In vitro studies have 
shown that H. pylori infection up-regulates expression of 
syndecan-4, which represents one of the major sources of 
heparan-sulfate on the cell surface (53,54). These results 
were further validated in vivo by demonstrating that H. pylori-
infected individuals expressed syndecan-4 in the foveolar 
epithelium of the gastric mucosa and that this expression 
was dependent on the cagPAI status of the infecting strain 
(53). Although several studies have favored a role for hepa-
ran sulfate glycosaminoglycans in the process of bacterial 
adhesion to epithelial cells there is still no explanation of 
how the induction of syndecan-4 by highly pathogenic H. 
pylori strains can contribute to the higher aggressiveness 
of these strains.

Helicobacter pylori mimics the host Lewis 
antigens

Lipopolysaccharide (LPS) is a structural component 
of the outer cell wall of all Gram-negative bacteria. LPS is 
composed of a long-chain fatty acid anchor called lipid A, a 
core sugar chain, and a variable carbohydrate chain named 
O antigen. In contrast to several other pathogens, H. pylori 
LPS is of very low toxicity to the host. Interestingly, the O an-
tigen of H. pylori shares structural homology with the Lewis 
blood group antigens expressed in human gastric mucosa, 
including antigens based on both type 1 chains, namely Lea 
and H-type 1, and type 2 chains, like Lex and Ley (Figure 
1) (55). The expression of these antigens undergoes phase 
variation, with different bacterial fucosyltransferases being 
switched on and off, contributing to a dynamic glycosyla-
tion even in the same host. It has been proposed that Lex 
structures expressed by the H. pylori O antigen side-chain 
may promote adhesion to gastric epithelial cells, but the 
relevance of this interaction as well as the nature of the 
Lex-receptors in gastric mucosa remain unknown (56,57). 
Beside the potential role in bacterial adhesion, this anti-
gen mimicry may contribute to immune tolerance towards 
bacterial antigens (58). Furthermore, this mimicry process 
can induce the production of autoantibodies that recognize 
the host gastric epithelial cells, favoring the development 
of autoimmune-associated disease (58). 

Strategies to inhibit Helicobacter pylori 
binding to human gastric mucosa

The increasing antibiotic resistance associated with 
H. pylori eradication by antimicrobial therapy is raising the 
need to search for alternative strategies such as those 

based on blocking bacterial adhesion to host receptors. A 
strategy of carbohydrate-dependent inhibition of H. pylori 
colonization using porcine milk has been tested with success 
in mice, suggesting that milk from certain pig breeds may 
have a therapeutic and or prophylactic effect on H. pylori 
infection (59). In addition, ongoing studies are addressing 
the potential of using synthetic carbohydrates to inhibit H. 
pylori adhesion to gastric epithelial cells.

A human domain antibody specific for BabA adhesin 
has been recently isolated and proved to efficiently inhibit 
Leb binding and to prevent adhesion of BabA-expressing 
H. pylori strains to human gastric mucosa (60). These 
experiments suggest its potential therapeutic application 
in combination with Leb glycoconjugates in the treatment 
of antibiotic-resistant H. pylori infection.

Final remarks

Although H. pylori levels of infection are decreasing, the 
number of infected individuals is still very high, with half of the 
world population estimated to be infected. Antibiotic-based 
eradication therapies should be carefully considered due to 
the observed increased antibiotic resistance. Knowing that 
infection and persistent colonization of human gastric mucosa 
by H. pylori is highly dependent on bacterial adhesion to 
gastric epithelial cells, an effort should be made in order to 
better understand which bacterial lectin-host glycan interac-
tions are truly critical for adhesion. Mucin type-O glycans have 
been demonstrated to be crucial players in the interaction 
between the bacteria and host gastric epithelial cells. The 
BabA adhesin recognizes both Leb and H-type 1 structures 
expressed by the gastric epithelial cells of healthy secretors, 
while SabA mediates adhesion to inflamed gastric mucosa 
by binding the sialylated sialyl-Lea and sialyl-Lex antigens 
(Figure 2). However, some H. pylori strains express neither 
BabA nor SabA adhesins, which implies that other outer 
membrane proteins, already described or still unidentified, 
are participating in the adhesion process. 

The clarification of why only a small percentage of H. 
pylori-infected individuals develop disease remains a major 
puzzling question regarding H. pylori infection. Besides the 
current knowledge of host genetic polymorphisms, bacterial 
virulence features and environmental factors that contribute 
to the clinical outcome of H. pylori infection, it is expected that 
the diversity of carbohydrate expression on gastric mucosa 
among individuals may confer distinct susceptibilities to H. 
pylori colonization and infection. This is demonstrated by the 
reduced susceptibility of non-secretor individuals to become 
infected by BabA-expressing H. pylori strains.

The characterization of the glycan receptors essential 
for H. pylori adhesion will allow the identification of individu-
als at higher risk to develop H. pylori infection-associated 
diseases, as well as the design of new infection eradica-
tion strategies based on inhibition of bacterial adhesion to 
gastric epithelial cells. 
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