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Neural reflex regulation of arterial pressure
in pathophysiological conditions: interplay
among the baroreflex, the cardiopulmonary
reflexes and the chemoreflex
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Abstract

The maintenance of arterial pressure at levels adequate to perfuse the
tissues is a basic requirement for the constancy of the internal environ-
ment and survival. The objective of the present review was to provide
information about the basic reflex mechanisms that are responsible for
the moment-to-moment regulation of the cardiovascular system. We
demonstrate that this control is largely provided by the action of arterial
and non-arterial reflexes that detect and correct changes in arterial
pressure (baroreflex), blood volume or chemical composition (mechano-
and chemosensitive cardiopulmonary reflexes), and changes in blood-
gas composition (chemoreceptor reflex). The importance of the integra-
tion of these cardiovascular reflexes is well understood and it is clear that
processing mainly occurs in the nucleus tractus solitarii, although the
mechanism is poorly understood. There are several indications that the
interactions of baroreflex, chemoreflex and Bezold-Jarisch reflex inputs,
and the central nervous system control the activity of autonomic pregan-
glionic neurons through parallel afferent and efferent pathways to achieve
cardiovascular homeostasis. It is surprising that so little appears in the
literature about the integration of these neural reflexes in cardiovascular
function. Thus, our purpose was to review the interplay between periph-
eral neural reflex mechanisms of arterial blood pressure and blood
volume regulation in physiological and pathophysiological states. Spe-
cial emphasis is placed on the experimental model of arterial hyperten-
sion induced by N-nitro-L-arginine methyl ester (L-NAME) in which the
interplay of these three reflexes is demonstrable.
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Introduction

The maintenance of arterial pressure and
blood volume at levels adequate to perfuse
the tissues is a basic requirement for the
constancy of the internal environment and
survival. The minute-to-minute control of
cardiovascular function is achieved through
arterial and non-arterial reflexes that detect

and correct changes in arterial blood pres-
sure (baroreceptor reflex), blood volume or
chemical composition (cardiopulmonary re-
flexes), and specifically changes in oxygen,
dioxide tension and pH (chemoreceptor re-
flex) (1-6). It is surprising that so little ap-
pears in the literature about the integration of
these neural reflexes in cardiovascular func-
tion. Thus, our purpose was to review the
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interplay between peripheral neural reflex
mechanisms of arterial blood pressure and
blood volume regulation in physiological
and pathophysiological states.

This review provides evidence concern-
ing the importance of the major role of the
autonomic nervous system in arterial hyper-
tension and other cardiovascular disorders.
Our purpose is not to provide a comprehen-
sive review of arterial blood pressure regula-
tion but to concentrate on the areas in which
new ideas have developed lately. Thus, spe-
cial emphasis is placed on experimental arte-
rial hypertension induced by inhibition of
nitric oxide synthase (N-nitro-L-arginine
methyl ester (L-NAME)-induced hyperten-
sion) which is characterized by an enhance-
ment of the baroreceptor, chemoreceptor and
Bezold-Jarisch reflexes, mainly due to the
hyperresponsiveness of the pacemaker mus-
carinic receptors (7-9). In other models of
experimental hypertension and in experi-
mental myocardial infarction these reflexes
are also altered, but not in the same direc-
tion. There is evidence that the left ventricu-
lar hypertrophy following these pathophysi-
ological states can contribute to the derange-
ment of these reflexes.

Arterial baroreceptor reflex

The maintenance of arterial blood pres-
sure at adequate levels to perfuse the tissues
during different conditions is a basic re-
quirement for the survival of mammals and
is achieved by many complex neurohumoral
mechanisms. The main purpose of the
baroreflex function is to provide rapid and
efficient stabilization of arterial blood pres-
sure on a beat-to-beat basis by means of
strategically located arterial sensors which
are sensitive to high blood pressure and are
known as arterial baroreceptors. The recep-
tor endings of this neural system terminate
primarily in the adventitia of the carotid
sinus and aortic arch with their soma located
in the petrosal and nodose ganglia, respec-

tively. At each arterial systole, the stretching
of these sensors depolarizes them and action
potentials are then triggered and travel cen-
trally to synapse onto neurons in the nucleus
tractus solitarii (NTS) in the dorsal medulla.
These second-order neurons project to the
caudal ventrolateral medulla (CVLM) where
they synapse with inhibitory neurons that in
turn project to the rostral ventrolateral me-
dulla (RVLM) and synapse with bulbospinal
sympathoexcitatory neurons located in that
area. In parallel, the second-order neurons
maintain a tonic excitatory influence upon
preganglionic parasympathetic neurons lo-
cated in the dorsal nucleus of the vagus,
rostral ventromedial medulla (RVMM) and
mainly in the nucleus ambiguus. Thus, arte-
rial baroreceptors maintain a moment-to-
moment control of both sympathetic and
vagal innervation to the cardiovascular sys-
tem (for detailed reviews, see 1,2,10-12).
The modulation of this system is not re-
stricted to the medullary areas of neurons but
is also influenced by supramedullary areas
(1). Recently, our laboratory showed that
lesion of the dorsal portion of the periaque-
ductal gray matter significantly decreases
the basal arterial pressure and attenuates the
baroreceptor control of heart rate in sponta-
neously hypertensive rats (13), indicating a
functional role of this area in tonic and reflex
maintenance of cardiovascular function un-
der resting conditions.

Baroreceptor nerve activity is modulated
by various neurohumoral factors such as the
activity of ion channels and paracrine fac-
tors, in addition to changes in vascular struc-
ture and distensibility during physiological
and pathological states (14,15). Examples of
factors modulating baroreceptor activity are
a) the study supervised by Chapleau (16)
demonstrating that endogenous nitric oxide
and the nitric oxide donor, S-nitrosocysteine,
suppress baroreceptor activity (Figure 1) and
b) the study of Ferrari et al. (17) showing that
the atrial natriuretic factor potentiates the
baroreflex function in conscious rats.
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Although arterial baroreceptors are ca-
pable of acute and chronic resetting to high
levels of arterial pressure (18), baroreflex
dysfunction has been reported in arterial
hypertension and other cardiovascular dis-
eases both in clinical and experimental hy-
pertension (19-21). There are data in the
literature showing that the impairment of
baroreflex sensitivity can be both a conse-
quence or a cause of arterial hypertension.
Changes in vascular structure and distensi-
bility can occur in the aortic arch and
sinoaortic vessel walls, for example with
aging, arteriosclerosis and diabetes, which
decrease baroreceptor activity and conse-
quently can contribute to the development of
arterial hypertension (14,18). There is evi-
dence that human hypertension may be in-
duced or aggravated by impaired barorecep-
tor reflex control (4) as also observed in
experimental models of genetic hyperten-
sion showing a decreased baroreceptor sen-
sitivity in the prehypertensive stage of Dahl-
salt rats and spontaneously hypertensive rats
(22,23). On the other hand, there is strong
evidence that baroreceptor reflex impairment
could be a consequence, rather than a cause,
of hypertension both in human and experi-
mental animals (21). Interestingly, impaired
baroreflex control of heart rate is seen in

renovascular 1K1C (1 day post-artery clip-
ping) but not in 2K1C rats (3 days post-
artery clipping), both groups presenting the
same levels of arterial hypertension (24,25).
This phenomenon suggests that differences
in time course of baroreceptor hyporespon-
siveness should be considered for each model
of hypertension (Figure 2, right panels).

The baroreceptor dysfunction occurring
in renovascular hypertension (24,25) and in
spontaneously hypertensive rats (26) is
mainly due to a vagal deficit. However, with
increasing hypertension the sympathetic com-
ponent of the baroreflex is also impaired.
Head and collaborators (19,27) have studied
the relationship between cardiovascular hy-
pertrophy and baroreflex function extensively
and have shown that cardiac hypertrophy
may contribute to the vagal heart rate deficit.

In addition, our laboratory has also dem-
onstrated in rats that the baroreflex control
of heart rate can be exaggerated instead of
attenuated in certain pathological conditions,
such as hypertension induced by inhibition
of nitric oxide synthase using L-NAME for 6
days (9; Figure 2, middle panels). In a recent
study similar results were also observed in
rabbits (28). In contrast, using a small dose
of L-NAME for 35 days which causes less
increase in arterial pressure a decrease of

Figure 1 - Effect of S-nitrosocysteine (cysNO) on the baroreceptor activity in rabbits. Data are reported as means ± SEM for 13-15 measurements. ·,
Control; !, cysNO; l, recovery. Reproduced from Ref. 16, with permission.

%
 C

on
tr

ol
 m

ax

100

50

0

100

50

0

100

50

0

0 80 160 0 80 160 0 80 160

Carotid sinus pressure (mmHg)

0.1 mM
cysNO

0.2-0.3 mM
cysNO

1 mM
cysNO



524

Braz J Med Biol Res 30(4) 1997

E.C. Vasquez et al.

baroreflex sensitivity has been observed (29).
The studies cited above suggest that the ef-
fects of L-NAME on baroreflex function are
dependent on the time course of treatment
and the dose used to inhibit nitric oxide
synthase. Changes in baroreflex sensitivity
can also occur in nonhypertensive condi-
tions such as those studied by Meyrelles et
al. (30) who showed enhanced sensitivity of
the baroreflex control of heart rate in chronic
myocardial infarction, which is accompa-
nied by arterial hypotension and bradycardia
(Figure 2, left panels).

Cardiopulmonary reflexes

Despite the importance of the arterial
baroreceptors in the rapid stabilization of

arterial pressure, studies performed in hu-
man beings and experimental animals dur-
ing the last three decades have shown that
neural reflex control of circulation depends
not only on baroreflex but also, and to an
important extent, on cardiopulmonary re-
flexes (21).

Vagal afferent pathways originating in
cardiopulmonary receptors have been rec-
ognized for many years (6). The impulses
arising in these receptors exert a tonic re-
straint on cardiac function and contribute to
the physiological control of circulation. Car-
diopulmonary reflexes are stimulated not
only by changes in cardiac filling pressure
but also by chemical agents (31,32). In a
recent report Ustinova and Schultz (33)
showed that approximately 65% of cardiac

Figure 2 - Sigmoidal-fitting baroreceptor curve analysis (upper panels) comparing three pathophysiological conditions: myocardial infarction (left), L-
NAME-induced hypertension (middle) and one-kidney one clip renovascular hypertension (right) in conscious rats. Maximum baroreflex gains calculated
from the first derivative of the logistic function are shown in the bottom panels. Data from Refs. 30 (left panels), 9 (middle panels) and 24 (right panels),
with permission.
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vagal afferents in rats are sensitive to capsai-
cin and are mainly located in the left ven-
tricle and atrium. This chemosensitive reflex
is often referred to as the Bezold-Jarisch
reflex which is characterized by simulta-
neous vagal-induced bradycardia and hypo-
tension, the latter due to both sympathetic
withdrawal and decreased cardiac output.
Endogenously occurring substances stimu-
lating the Bezold-Jarisch reflex are prosta-
glandins and serotonin through 5-HT3 recep-
tors.

The vagal afferents of the Bezold-Jarisch
reflex project onto neurons located in the
NTS (5,6,34). The pre-ganglionic vagal neu-
rons to the heart originate in the RVMM and
mainly in the nucleus ambiguus (35,36). The
neurons controlling the efferent sympathetic
activity to the resistance vessels and heart
originate primarily in the RVLM (12,37,38).
There is also evidence that the activation of
central nervous muscarinic receptors (39)
and 5-HT1A receptors (40) might be involved
in the mediation of the Bezold-Jarisch reflex
in rats.

Clinical and experimental data have
shown that the Bezold-Jarisch reflex plays
an important role in the control of cardiovas-
cular function in normal and pathophysi-
ological conditions (41-43). An indication
of the functional role of this reflex in cardio-
vascular regulation was reported by Chianca
Jr. and Machado (44), demonstrating an in-
creased sensitivity of the Bezold-Jarisch re-
flex in both acute and chronic sinoaortic
denervated rats (Figure 3).

In human beings the cardiopulmonary
reflex has been reported to be exaggerated in
borderline hypertension, normal in mild hy-
pertension and impaired in hypertension ac-
companied by cardiac hypertrophy (21,45).
Results reported by Meyrelles et al. (42)
demonstrating in conscious rats an impair-
ment of the Bezold-Jarisch reflex in isopro-
terenol-induced cardiac hypertrophy agree
with the hypothesis that myocardial hyper-
trophy is an important factor that accounts

for the attenuation of this reflex in arterial
hypertension. Recently, we also observed a
decrease in the sensitivity of this reflex in
myocardial infarcted rats, as illustrated in
Figure 4, which could be due to a) the marked
hypertrophy of the left atrium and/or to a
non-infarcted hypertrophied left ventricle or
b) to morphological necrotic injury of the
innervation in the left ventricle which are the
main origins of the vagal chemosensitive
afferents (46).

The Bezold-Jarisch reflex has been tested
in different models of experimental hyper-
tension but the results are not comparable.
This reflex is impaired in spontaneously hy-
pertensive rats (47), renal hypertensive rats
(48) and Dahl salt-hypertensive rats fed a
low-salt diet (49). In contrast, a high-salt diet
sensitizes the cardiopulmonary reflex in Dahl
salt-resistant rats (50) and, as seen in Figure
5, this reflex is also extremely enhanced in
the arterial hypertension induced by inhibi-

Figure 3 - Sensitivity of the
Bezold-Jarisch reflex 15 days
after sinoaortic deafferentation
(solid line) compared to sham-
operated rats (dashed line). Data
reported as means ± SEM for
8 rats in each group and indi-
cate changes in heart rate (HR)
and mean arterial pressure
(MAP) in response to intrave-
nous 5-hydroxytryptamine (5-
HT). *P<0.05 compared to the
control group for the doses of
16 and 32 µg/kg (ANOVA). Re-
produced from Ref. 44, with
permission.
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tion of nitric oxide synthase using L-NAME
(51).

Chemoreceptor reflex

The chemoreflex has been extensively
studied as one of the neural components of
arterial pressure regulation (52-60). The lit-
erature has shown a lot of evidence that the
peripheral chemoreflex does not contribute
solely to the ventilation control, but also to
the neural mechanisms involved in arterial
pressure control (5,34,61).

Peripheral chemoreceptors are located in
the aortic and carotid bodies and play a
major role in all mammals, but the aortic
bodies are functionally absent in the rabbit,
mouse and rat (3,62). The chemosensitive
cells in the carotid bodies receive constant
blood flow through a thin artery originated
in the middle of the bifurcation of the com-
mon carotid artery (Figure 6) that maintains
these cells in close contact with blood gases.
When decreases in pO2 or increases in the
pCO2 or pH occur these cells are excited and
release a neurotransmitter that will stimulate
the terminal innervation of the carotid sinus
nerve (63). The afferent fibers from the ca-
rotid chemoreceptors join fibers from the
baroreceptors to form the carotid sinus nerve,
a branch of the glossopharyngeal nerve (64).
Although the chemoreceptor and barorecep-
tor afferent fibers run together in the same
nerve, i.e., the carotid sinus nerve, these
afferents perform synapses at substantially
separable sites in the NTS which has been
identified as the primary central site that
receives the afferents of several reflexes,
including baro-, chemo- and cardiopulmo-
nary ones (34,53,65-67).

Some authors suggest that the commis-
sural subnucleus of the NTS is the principal
site of carotid chemoreceptor synapses
(56,58,68), placing them close to but not
upon respiratory premotor neurons of the
same nucleus (68). However, others suggest
that the intermediolateral subnucleus of the
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NTS also plays an important role in the
neurotransmission of this reflex (53,69). The
synapses of this reflex in the NTS promote
the excitation of several neural pathways to
different regions of the brainstem, produc-
ing changes in the sympathetic and vagal
outflow to the heart and blood vessels and
phrenic outflow to the lungs. In a study of the
central neural pathways involved in the baro-
and chemoreflexes, Koshiya et al. (55) dem-
onstrated that the CVLM contains an essen-
tial relay of the sympathetic baroreflex but
the same area plays no important role in the
sympathetic chemoreflex. These authors sug-
gest that the chemoreflex and baroreflex may
have a largely independent course through
the medulla and that integration of their in-
formation used for sympathetic vasomotor
control may occur as late as during the
premotor neural stage in the RVLM.

Changes in chemoreceptor activity, es-
pecially in severe hypoxia, cause primary
reflex effects on the cardiovascular system
and evoke adjustments in the central drive
for ventilation and cardiovascular function
as an attempt to maintain adequate perfusion
of vital organs (68,70). The excitation of the
chemoreceptors produces increased minute
ventilation, systemic vasoconstriction, hy-
pertension and bradycardia. Tachycardia is
then usually observed as the steady-state
response to arterial chemoreceptor activa-
tion, because the increase in ventilation in-
hibits vagal outflow to the heart (3).

Intravenous injection of potassium cya-
nide (KCN) has been used to demonstrate
the typical activation of the chemoreflex in
rats (63,69,71,72). KCN produces charac-
teristic cardiovascular (bradycardia and hy-
pertension), respiratory (tachypnea) and be-
havioral (alerting) responses which may be
attributed to the actions of the chemical on
chemosensitive cells. Selective aortic but
not sino-aortic deafferentation does not pre-
vent the chemoreflex (71,73). In addition,
the same investigators showed that these
responses are not due to the sinus barorecep-

Figure 6 - Diagram illustrating
the localization of the carotid
body and the carotid arteries
supplying the chemoreceptor
cells of the rat. Reproduced from
Ref. 71, with permission.
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Figure 7 - Reflex arterial pres-
sure and heart rate responses
to intravenous injection of KCN
(80 µg/rat) one day after sham
(CO), aortic (AD), carotid sinus
(SD) and sinoaortic (SAD) den-
ervation. Reproduced from Ref.
73, with permission.
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tor stimulation because the isolated elimina-
tion of chemoreceptors by carotid body ar-
tery ligation, preserving the carotid barore-
ceptor, completely abolished the responses
evoked by intravenous KCN (Figure 7).

Morphological and biochemical changes
in the carotid bodies (74,75) such as increase
in the size (76,77) and changes in the capil-
laries (77) which could produce local is-
chemia (78) have been observed in several
species of animals with arterial hyperten-
sion. Others have shown a close correlation
between left ventricular hypertrophy and the
size of carotid bodies (79). In addition, it has
been observed that the hypoxia-induced
chemoreflex is increased in spontaneously
hypertensive rats (80). Increased chemore-
ceptor sensitivity was also observed in hy-
pertensive humans (81).

Interplay among baroreflex, chemore-
flex and Bezold-Jarisch reflex

The maintenance of arterial blood pres-
sure at adequate levels and the integrity of
body fluid composition and extracellular fluid
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volume in mammals depend on a series of
interactions among sensing mechanisms ca-
pable of recognizing changes in parameters
related to cardiovascular function. The stud-
ies summarized above indicate that, although
individual classes of afferents have distinc-
tive patterns of projection to the central med-
ullary areas, the various subnuclei receive
input from several different classes of affer-
ents mediating different reflex responses (5).
One aspect that is not completely under-
stood is the interaction of the afferent signals
in the NTS when different cardiovascular
reflexes are excited simultaneously and how
the efferent pathways act to achieve control
of the circulation in humans and experimen-
tal animals (1,58,66,69). Experiments in rab-
bits have shown that the presence of tonic
cardiovascular inhibition exerted by the ar-
terial baroreceptors tends to reduce the
Bezold-Jarisch reflex, but the baroreceptors
do not function adequately if there is a buff-
ering of the cardiovascular inhibition pro-
duced by the cardiogenic reflex (82). An-
other example is the work of Daly (83) show-
ing that inputs specifically related to lung
inflation modified both the cardiac and the
vascular responses to the baroreceptor and
chemoreceptor reflex, independent of cen-
tral respiratory activity.

Activation of the baroreflex or Bezold-
Jarisch reflex and of the chemoreflex results
in decreasing and increasing arterial pres-
sure, respectively, but all produce bradycar-
dia. However, many authors, including Spyer
(5), have raised some questions: a) Are there
individual neurons acting to integrate these
afferent inputs related to baroreflex, Bezold-
Jarisch reflex and chemoreflex? b) Do affer-
ent fibers interact presynaptically? c) Is there
a developed interneuronal system within the
NTS that controls transmission through the
various reflex pathways initiated there? d)
Does this possible integration occur only in
the central nervous system or also peripher-
ally? Brunner et al. (84) showed in dogs that
chemoreflex responses are strongly influ-

enced by simultaneous activation of the
baroreceptor reflex. On the other hand, it
was also demonstrated in rats that activation
of arterial baroreceptors attenuated excita-
tory chemoreceptor input to a subpopulation
of NTS neurons (85), which is further evi-
dence that reflex inputs interact to develop
appropriate responses. Based on the litera-
ture, such interaction processes may involve
other central areas that compose the chemore-
flex, baroreflex and the Bezold-Jarisch re-
flex pathways such as a portion of the nucleus
ambiguus, the reticular formation, the hypo-
thalamic defense area, the periaqueductal
gray matter, and the RVLM and RVMM
(55,57,70,86). Additional studies are neces-
sary for a better understanding of the interac-
tion of these reflexes producing integrated
physiological responses in daily life situa-
tions or in pathological states.

A recent report showed that the cardio-
decelerating capacity of the carotid baroreflex
remains active during exercise in man, and
may even be sensitized by the chemoreflex-
induced increase in arterial pressure, but is
not affected by cardiopulmonary barorecep-
tor activity (87), illustrating the diversity of
interaction among these reflexes under those
testing conditions.

We have studied the interplay among
these reflexes using the experimental model
of hypertension induced by inhibition of
nitric oxide synthase using L-NAME. This
hypertension is largely mediated by sympa-
thetic activity to the heart and resistance
vessels (8,88). An important finding in this
model was the observation that the cardiac
vagal tone was almost abolished in L-NAME-
treated rats (8). We speculate that this auto-
nomic disturbance, especially the decreased
cardiac vagal activity, could result in up-
regulation and consequently could enhance
the vagal activity for any triggered neural
reflex using this common pathway to the
heart. First of all, using bolus injections of
the vasopressor phenylephrine and the vaso-
depressor sodium nitroprusside we tested
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the arterial baroreceptor sensitivity by the
sigmoidal curve-fitting equation and ob-
served an exaggerated baroreflex gain (Fig-
ure 1, middle panel) mainly due to vagal
reflex bradycardia (9). Thus, we postulated
that the activation of neural reflexes origi-
nating in other cardiovascular sensory sys-
tems and related to other specific cardiovas-
cular functions would result in a similar
cardiac response. In fact, testing the seroto-
nin-5-HT3-sensitive cardiopulmonary recep-
tors to evoke the Bezold-Jarisch reflex we
observed an exaggerated bradycardia and
hypotension in L-NAME-treated rats (51).
In addition, we also tested the chemoreflex
and, as expected, the L-NAME-treated rats
showed an enhanced KCN-induced brady-
cardia (Figure 8). At least two hypotheses
could explain this potentiated bradycardia:
a) a possible dysfunction at central sites
involved in the neural baroreflex, the Bezold-
Jarisch reflex and/or the chemoreflex path-
ways, or b) possible changes directly in the
heart. Thus, we tested the reactivity of car-
diac muscarinic receptors to acetylcholine in
isolated perfused hearts using the Langen-
dorff technique and observed a profound
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enhancement in L-NAME-treated rats com-
pared to control rats (7). This series of ex-
periments supports the hypothesis of an im-
portant functional interplay among the arte-
rial baroreceptor reflex, the cardiopulmona-
ry Bezold-Jarisch reflex and the chemore-
ceptor reflex in pathophysiological conditions.

Figure 8 - Typical recording showing the KCN-induced chemoreflex comparing the changes
in pulsatile (PAP) and mean (MAP) arterial pressure and heart rate (HR) in a rat treated with
N-nitro-L-arginine methyl ester (L-NAME, 0.5 mg/ml added to the drinking water for 3 days)
with a control rat.
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