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Abstract

Research on the prevention of post-traumatic epilepsy (PTE) has seen remarkable advances regarding its physiopathology in
recent years. From the search for biomarkers that might be used to indicate individual susceptibility to the development of new
animal models and the investigation of new drugs, a great deal of knowledge has been amassed. Various groups have
concentrated efforts in generating new animal models of traumatic brain injury (TBI) in an attempt to provide the means to
further produce knowledge on the subject. Here we forward the hypothesis that restricting the search of biomarkers and of new
drugs to prevent PTE by using only a limited set of TBI models might hamper the understanding of this relevant and yet not

preventable medical condition.
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Introduction

Traumatic brain injury (TBI) is a global significant
cause of death and lifelong disability resulting in cognitive,
physical, behavioral, and subjective sequela. It has been
estimated that TBI affects over 10 million people annually
worldwide, leading to either high mortality or hospitaliza-
tion rates (1). Age-standardized TBI prevalence has grown
8.4% from 1990 to 2016 (2), and it is still considered a silent
epidemic (3). Among younger adults, especially men, TBl is
a major source of years lived with disability. In addition,
reflecting the ageing global population, even more so in
high-income countries, in recent decades there has also
been an increase in the number of TBI occurrence in
elderly people, mainly related to falls (2).

TBI is defined as an alteration in brain function, or
other evidence of brain pathology, caused by an external
mechanical force, such as an impact, rapid acceleration or
deceleration, blast waves, crush, or penetration by an
object, resulting in focal or diffuse types of injury (4). As
presented, TBI is a heterogeneous condition, which
embraces different causes, severity levels, and conse-
quently a wide range of prognosis. Patients with moderate
to severe TBI have a high overall mortality, and more than
40% of survivors experience long-term disabilities (5).
Even mild TBI has been associated with several long-term
adverse outcomes. Disabilities can manifest as physical
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and cognitive deficits (for example, transient confusion,
disorientation, and impaired attention), psychological health
issues (such as depression), and impairments in self-regu-
latory behaviors (such as increased impulsivity, poor decision-
making, and aggressive behavior) (3). TBI is also the main
cause of acquired epilepsy (6).

Epilepsy is defined as a disorder of the brain charac-
terized by an enduring predisposition to generate epileptic
seizures, and by the neurobiological, cognitive, psycholog-
ical, and social consequences of this condition (7). Post-
traumatic epilepsy (PTE) accounts for 5% of all epilepsy
etiologies, making TBI one of the most important causes of
secondary epilepsy, overcoming other causes such as
infections and central nervous system tumors (8).

In spite of the high PTE incidence after TBI, the latency
from injury to development of epilepsy is variable and can
range from weeks to years (9). Seizures occurring in the
first 1-2 weeks after trauma may be due to the acute
effects of the trauma, such as hemorrhage and brain
edema, and do not necessarily characterize epilepsy. Even
so, the presence of acute seizures occurring within weeks
after TBI is often thought to be associated with the pro-
gression to PTE further along in life. The recurrence of epi-
leptic seizures within the first 2 years in TBI patients with a
single acute seizure after trauma might be as high as 86%
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(10). The causative links between TBI and epilepsy, as well
as other types of epilepsy in general, are still not completely
understood, and PTE is not yet preventable.

Epileptogenesis is a dynamic process occurring be-
tween the initial brain insult and the onset of epilepsy,
characterized by the development of the first spontaneous
seizure. The epileptogenic process can be divided into
three different stages: 1) Initial insult: primary injury by
different insults, including the already mentioned TBI, and
also status epilepticus (SE), febrile seizures, stroke, crani-
otomy, infections, tumors, and neurodegenerative dis-
eases, among others; 2) Latent period: the primary injury
triggers a cascade of molecular, cellular, and structural
changes that include increased neuronal excitability and
inflammatory processes, which contribute to additional
neurodegeneration, and reorganization of molecular and
cellular pathways, including gliosis, plasticity, neurogen-
esis, and mossy fiber sprouting (11,12). All these proces-
ses are supposed to be related, with greater or lower
importance, to the development of the epileptic focus;
and 3) Chronic epilepsy phase: clinical manifestation of
spontaneous recurrent seizures.

Therefore, different insult types can be used to mimic
specific characteristics of the primary lesion, and the sub-
sequent epileptogenic mechanisms can be further studied
during the latent period in different models of PTE.

The goal of this review is to describe the main animal
models currently used for the study of PTE and to critically
compare those models with regard to the development of
the most common features present in this pathology. We
propose that the onset of spontaneous and recurrent
seizures, regardless of the initial stimulus, should be
the most relevant feature of animal models used for the
study of PTE. We suggest that the epileptogenesis asso-
ciated with different etiologies are often very similar and
that the investigation of potential means of disease modi-
fication or prophylaxis, in the case of PTE, can rely not
only on TBI models, but also on a broader set of epilepsy
models.

Animal models of post-traumatic epilepsy

It is a great achievement for science to reproduce
human diseases in animal models. A good animal model
is homologous, able to mimic the human disorder and the
physiopathological mechanisms in every respect. Alter-
natively, the animal model can be isomorphic, when it
duplicates the disorder but not the underlying etiology, or
predictive, in the case of models that cannot reproduce
the human disorder but allow predictions about it or its
response to treatment (13). As posed by the great mathe-
matician Norbert Wiener "the best material model of a
cat is another, or preferably the same, cat" (https://en.
wikiquote.org/wiki/Norbert_Wiener). This review’s whole
argument is that, depending on the focus, the best model
should mimic mechanisms and not form. To that end, here
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we evaluate both models of epileptogenesis, consisting of
either repetitive stimulation of specific brain structures
(kindling models) or the induction of intense prolonged
acute seizures (SE models), as well as models devel-
oped for the study of PTE, using mechanical injuries (TBI
models) or iron deposition (mimicking intraparenchymal
bleeding). Other animal models for studying the epilepto-
genesis process, such as febrile seizures, models with
transgenic animals, and stroke will not be explored in the
current review. Indeed, this would not only substantially
alter the scope of the current revision but would also lead
to loss of the main argument we want to raise. Most groups
using febrile seizures to study epilepsy are interested in
developmental aspects of this condition and preferentially
deploy juvenile animals. Similar limitations arise from the
use of transgenic animals, which are usually structured as
a means to investigate very specific contributions of a given
protein or systems.

TBI models

Animal models more directly related to TBI mechan-
isms were developed to investigate how the natural pro-
gression of trauma contributes to epileptogenesis. In a
pioneer work, Willmore et al. were able to induce spon-
taneous seizures in animals over a period of a few weeks,
by using a single iron injection to different brain regions
(14). This injury model importantly relates to intracerebral
hemorrhage toxicity caused by iron-rich hemoglobin
breakdown products, similarly to what happens after a
brain trauma or hemorrhagic stroke. It is known that FeCl,
does induce free radical formation, lipid peroxidation,
and edema that can be attenuated by antiperoxidants.
FeCl, also causes alterations in glutamate transport (15).
Recurrent seizures and epileptic discharge similar to
human PTE have been seen after the generation of free
radicals with the intracortical administration of ferric
chloride into the sensorimotor cortex (16).

Thereafter, additional models mimicking different types
of mechanical trauma have gained increased attention
among experts investigating epileptogenesis associated
with TBI. Among these, the fluid percussion injury (FPI),
controlled cortical impact (CCl), weight-drop impact accel-
eration injury, and blast injury can be highlighted (4). Only
a few models consider the importance of penetrating injury
to epileptogenesis, such as the penetrating ballistic-like
brain injury (17).

The lateral FPI model is the most utilized mechanical
model to study PTE. By using a closed hydraulic system,
a precise pressure pulse is delivered distinctly in the animal
dura mater, according to the intended injury severity (18). In
this model, a single event of lateral FPI is sufficient to
induce chronic spontaneous recurrent partial seizures
that worsen over time (19). According to D’Ambrosio and
Perucca, lateral FPI can develop two epileptic foci depend-
ing on its location, one in the neocortex adjacent to the
impact site that defines the early epileptic manifestations
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after injury, and one in the hippocampal region, which
becomes increasingly dominant over time.

It is an easy to induce and highly reproducible model,
but it has limitations such as high mortality in the severe
injury conditions necessary to generate spontaneous
seizures, increasing the total number of animals required
for the PTE study. This model also promotes a low seizure
frequency, and thus requires prolonged time of electro-
encephalogram (EEG) monitoring of spontaneous seizure
events (20).

Another model used to directly mimic TBI is the CCI
injury that was described by Lighthall (21) using ferrets as
the test animal. During the 1990s, the model was adapted
to be used in other animals like rats, mice, and primates.
This model consists of a brain injury produced by a pneu-
matic or electromagnetic impact that compresses the
exposed brain and results in brain injury with varying
severity (18). Similar to FPI this model was created as a
model of TBI and adapted for studying PTE.

As in the case of FPI, scarce late spontaneous sei-
zures or epilepsy have been reported in rat CCl models
(18,22). Despite the low frequency of spontaneous sei-
zures, the model also leads to an increase in seizure
susceptibility when challenged with other agents (23).

The CCI model provides consistency, reproducibility,
with a low mortality rate compared to lateral FPI, being
beneficial in reducing sample attrition and keeping study
cost down. In contrast, this model includes mechanical
variation, wear on the device, limited diffuse effects, and
most importantly, it results in a low frequency of spon-
taneous chronic seizures, making it less useful for the
study of epileptogenic mechanisms.

Impact-acceleration, also known as the weight drop
model, is also a model of diffuse TBI. The animal is posi-
tioned on a foam block to provide a consistent position of
the animal’s body and a pre-selected weight is dropped
from a pre-selected height according to the desired injury
severity. The weight strike promotes not just a focal injury,
but also promotes an acceleration-deceleration of the
animal’s head into the foam block (4).

The impact-acceleration model produces mild-to-mod-
erate convulsions during its acute phase and may also
cause late convulsions lasting up to 15 weeks post-injury.
Although the model demonstrated an increase in suscepti-
bility to pentylenetetrazol (PTZ)-evoked seizures, it fails to
adequately recapitulate PTE because, without using a
high intensity impact that frequently promotes great
mortality, it does not promote spontaneous seizures (18).
On the other hand, this model presents the advantages of
simplicity of the method, successfully inducing a repro-
ducible lesion and consistently increasing susceptibility to
PTZ-induced seizures.

Another important model of TBI is the blast model that
mimics a real blast-induced mild TBI, such as seen in
military conflicts, and can be a potential risk factor for
behavioral disorders, cognitive alterations, and for the
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development of neurodegenerative disorders. According
to Song et al. (24), animals are allocated in open or closed
shock tubes, or in an open field, 30 m away from a TNT
explosive. Neocortical, hippocampal, and cerebellar tissue
injuries have been reported in different degrees in the
blast model together with vascular injuries, hemorrhage,
and diffuse axonal injury (24). In the blast model, the
occurrence of EEG epileptiform or PTE have not been
generally assessed. Only a few studies show the occur-
rence of acute seizures following severe blast and there
are no published studies investigating the occurrence of
chronic (spontaneous) seizures or epileptogenic altera-
tions in this model (25). The main advantage of the blast
model is that it closely replicates the scenario of a real-
world blast. On the other hand, this model is not ideal to
investigate PTE, as it is expensive, it is difficult to find a
safe place to store explosives, and the technical time
demand and the environmental conditions such as tem-
perature and wind may influence the animal responses
and the blast setting (24).

Similarly, in the penetrating ballistic-like injury model,
electrographic waveforms of ictal and inter-ictal events are
reported, but occur later after injury and less frequently
compared to those occurring in other injury models (26). In
the repetitive weight-drop model and in the repetitive blast
model, only a subset of mice (44 and 46%, respectively)
develop spontaneous recurrent seizures (27).

As aforementioned, spontaneous epileptic activity,
when present after mechanical injury, tend to show milder
characteristics in terms of the epileptic events in TBI models
(Figure 1). For example, the epileptogenesis phase in the
FPI injury is longer, the resulting frequency of spontaneous
seizures is substantially lower and occurs in fewer animals,
and most of the seizures are secondarily generalized rather
than partial, compared to epilepsy models that induce SE as
the precipitating injury (28).

Kindling model

One of the first and still widely used animal models to
study epileptogenesis is the kindling model, which is
characterized by the progressive development of focal
seizures to secondarily generalized tonic seizures, after
repeated application of an initially subconvulsive stimulus
(29), which can be either electrical or chemical.

Electrical kindling applies subthreshold repetitive elec-
trical stimuli in specific brain regions such as the dorsal
hippocampus, olfactory bulb, amygdala, perirhinal cortex,
and perforant path (30). Normally, these subthreshold
stimuli, when administered occasionally, do not result in
behavioral convulsive episodes, but, when administered
repetitively, can promote behavioral convulsions. Rather
than using electrical stimuli, chemical kindling involves
repetitive administration of chemical convulsants. Con-
vulsant substances such as cocaine, N-methyl-D-aspar-
tate, and GABAa receptor antagonists, such as PTZ, can
be used to induce chemical kindling. PTZ, one of the most
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widely used agents for the induction of chemical kindling,
produces severe self-limited convulsions in animals.

In the kindling model, the seizure focus is explicit,
seizures evolve gradually, and the development of chronic
epileptogenesis can be investigated while not resulting
in severe morphological damage (31). The progressive
changes have a permanent feature, and although labor-
ious, repeated stimulation for extended time can result in
spontaneous seizures (32,33).

Unfortunately, this method demands resources and
time, comprising long periods of handling and stimulation
procedures (34). Still, many parameters of the kindling
protocol have been modified to increase kindling repre-
sentativeness as an epileptogenic model and to increase
efficiency to assess antiepileptic drugs (AEDs). Such
changes include but are not limited to: i) decreasing the
interstimulus interval to shorten seizure development from
weeks to hours (35); ii) selective breeding for segregating
genetic predisposition to differential kindling rates (36);
and iii) more recently, the application of the novel optoge-
netic approach to stimulate animals (37).

SE models

The induction of SE, which is characterized by acute
self-sustained seizures, is another classical experimen-
tal approach for the study of epileptogenesis. As in the
kindling model, several stimuli can be used to trigger
SE, including deep electrical stimulation to specific brain
areas and systemic or topical injection of chemical agents,
most notably kainic acid (KA) and pilocarpine (38—40).
The early phase after the initial precipitating injury is
associated with intense neuroplastic changes, neurode-
generation, and neuroinflammation. After a period past the
SE event, spontaneous recurrent seizures easily develop
together with behavior impairments associated with chron-
ic inflammation, altered neurogenesis, abnormal synaptic
reorganization, and multiple molecular changes.

The pilocarpine model consists in the systemic or
topical (intrahippocampal) administration of this choli-
nergic agent, a potent muscarinic agonist. It promotes
behavioral and electrographic alterations resulting in
three different periods, which resemble the stages of the
epileptogenesis process already described: i) Acute
period characterized by SE originating in the limbic system
and lasting up to 24 h, or until interruption with some
specific drug; ii) Latent period, when the progressive
normalization of behavior and EEG aspects and epilepto-
genic changes take place (this period has been reported
to vary from 4—44 days); and iii) Chronic period, with the
emergence of spontaneous recurrent seizures. The spon-
taneous seizures observed during the chronic period are
similar to the complex partial seizures seen in patients.
Seizure frequency in the chronic period is variable, some
animals present a low seizure frequency over several
weeks or months, while others may have daily seizures,
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and others may present seizures in short periods of time
(41). Yet, all animals undergoing pilocarpine-induced SE
develop spontaneous seizures and this is by far the
animal model of epilepsy with the highest frequency of
those seizures (Mello LE, unpublished results).

Another important SE model is the kainic acid model,
which results from the intraperitoneal or intrahippocampal
administration of KA, an agonist of the ionotropic gluta-
mate receptor and a cyclic analog of L-glutamate. As it
occurs after pilocarpine administration, the epileptiform
discharges after KA administration originate in limbic
structures and then propagate to other brain areas (38),
mimicking human SE and promoting EEG changes similar
to those seen in patients. As a disadvantage, KA and
pilocarpine models result in high animal mortality and
variable frequency and severity of spontaneous seizures
among individual animals (34).

The maximal electroshock seizure, 6-Hz corneal
psychomotor seizure, and pentylenetetrazol injection are
other established models to induce acute seizures, but
differently from what occurs in SE models, those seizures
are self-limited and mostly used to test anti-seizure drugs,
instead of PTE prevention.

Models and physiopathological
mechanisms

Neurodegeneration

Although the mechanisms underlying the development
of spontaneous recurrent seizures are not clearly under-
stood, it is known that the degenerative process is one of
the characteristics of brain pathologies related to acquired
epilepsy (12).

The existence of relatively high numbers of animal
models in which the developmental process and the
morphological and molecular features of epilepsy in
humans are reproduced has obvious advantages for
research. Ideally, a model will efficiently reproduce the
variety of tissue loss and damage detected in TBI. In
human patients with severe TBI, besides local neuronal
loss, subcortical neurodegeneration in the thalamus and
hippocampus are also observed and may contribute to
epileptogenesis (28).

Comparing two SE models, Covolan and Mello (42)
observed prominent thalamic degeneration in the pilo-
carpine as well as in the KA model, although in the
pilocarpine model, neuronal injury was more remarkable
than that in the KA model in numerous areas in cortex,
hippocampus, endopiriform nucleus, amygdaloid com-
plex, and hypothalamus. On the other hand, there is no
neuronal damage associated with the electrical kindling
model (31). Furthermore, in the model of cortical injection
of ferrous chloride, neurodegeneration is limited to the
cortex (14). Moreover, the CCl model of TBI can cause
different levels of injury severity and several degrees of
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cortical, subcortical, and hippocampal tissue damage that
could lead to substantial neurodegeneration and tissue
loss in the ipsilateral neocortex and adjacent hippocam-
pus. The acute injury results in increased neuron loss,
considerable lesion volumes, and more severe functional
deficits (43) even for a long period (44).

As reviewed here, neurodegeneration is an important
feature of almost all animal models considered in this
section (Figure 1). There is no specific lesion profile or
characteristic that is unique to any of the TBI models.
More importantly, there are no neurodegenerative hall-
marks that are only present in human PTE, even more so
as the lesion event may affect a number of different
cortical and subcortical regions.

Neuroplasticity

As a consequence of brain injury, several neuroplastic
changes might ensue. Neural plasticity involves both the
proliferation and differentiation of newly-formed cells, in a
process called neurogenesis, as well as alterations in the
structure and function of neurons at different levels, from
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their morphology, subunit receptor composition, or neuro-
transmitter expression to synaptic connections. In this
sense, neurogenesis (45) and axonal sprouting (46) have
been extensively seen in chemically-induced SE models.
The efforts to reestablish the neural connections could be
beneficial, but could actually be adverse (or even an
epiphenomenon) to the occurrence of spontaneous
recurrent seizures in these animal models (46).
Neurogenesis. As previously mentioned, the latent
period is a phase that occurs after the initial precipitating
injury, lasting from days to weeks, in which the epilepto-
genic process occurs, leading to the development of later
spontaneous seizures. Curiously, it was noticed that
during the latent period a dramatic increase in cell prolif-
eration in the subgranular zone of the dentate gyrus of
the hippocampus and in subventricular zone of lateral
ventricles occurs in several animal models of PTE (47).
Jessberger and Parent (48) showed that epileptic activity
induced by KA led to changes in the neuronal polarity,
migration, and integration pattern of newly born granule
cells, resulting in their ectopic location in the hilus. Zellinger

Epileptogenesis - PTE models 3 se
= TBI
A Seizures 4 Neuroinflammation 1 Kindling
’ T “ | [ | | |
U 1
| o LALIN
: \ I
Neurodegeneration Neuroplasticity
B D * = Neurogenesis === MFS
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Figure 1. Schematic representation of epileptogenic features in main animal models of post-traumatic epilepsy (PTE). A, In classic
models of status epilepticus (SE) (e.g., pilocarpine and kainic acid), after the initial sustained acute seizure, the development of
spontaneous recurrent seizures occurs after a brief latent period in most animals. In contrast, the slow progression of evoked seizures in
kindling models implies the need of massive repetition of the stimuli protocol in order for spontaneous seizures to develop, making this
an extremely laborious protocol for that intention. Meanwhile, different parameters can be adjusted according to the desired lesion
severity, and consequent occurrence or not of acute seizures, in different traumatic brain injury (TBI) models (e.g., lateral fluid
percussion, controlled cortical impact, impact-acceleration, or weight drop). However, in TBI models, usually only a few animals, most of
them requiring severe initial lesions, develop spontaneous recurrent seizures following a longer latent period. B, The lesion event may
differently affect neurodegeneration occurrence. In general, chemically-induced SE causes severe and widespread neurodegeneration,
while minor neuronal damage is detected in the kindling model. Importantly, by adjusting the mechanical force parameters, the neuronal
damage can vary from cortical to subcortical regions, and from minor to severe neurodegeneration in TBI models. C, The
neuroinflammatory response is rapidly initiated following the initial precipitating injury, characterized by the release of inflammatory
cytokines, chemokines, and complement proteins. Astrocytes and microglial cells also became activated, proliferate, and, together with
peripheral immune cells, are recruited to the lesion site. This response decreases over days, but residual neuroinflammation may
chronically persist, supporting a pro-epileptogenic role. In general, the intensity of the neuroinflammation response can be considered
quite similar between SE and TBI models, varying with the impact intensity in the latter. D, There is a transitory increase in newborn
neurons in the subgranular zone of the dentate gyrus of the hippocampus and in the subventricular zone of lateral ventricles, in several
animal models of PTE. After this initial increase, the number of newly generated cells returns to basal levels with the occurrence of
spontaneous seizures. On the other hand, mossy fiber sprouting (MFS) increases after the initial insult and presents a permanent
pattern together with spontaneous seizure occurrence.
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et al. (49) observed that prolonged seizure activity induced
by electrical stimulation resulted in a significant rise in the
number of neuronal progenitor cells. Moreover, a significant
increase in neurogenesis was observed in the granule cell
layer of the dentate gyrus following pilocarpine-induced SE
(45) and kindling stimulations (47).

Indeed, seizure activity is a neurogenic stimulus.
Increased hippocampal neurogenesis is a common hall-
mark of most SE models, as well as TBI models (50) that
develop epilepsy (Figure 1). Approximately 4-6 weeks
after the initial insult, cell proliferation returns to normal
levels (47,51).

Neuberger et al. (52) showed that the early increase in
neurogenesis after FPI is transitory and is followed by a
persistent and dramatic decrease in the number of newly
generated cells. They suggest that early post-traumatic
increases in neurogenesis negatively affect long-term
events by diminishing the neurogenic potential of neural
stem cells, which might in turn contribute to epileptogen-
esis. In addition, Hattiangady et al. (53) demonstrated that
the intensity of neurogenesis declines in the chronic phase
with the occurrence of spontaneous seizures.

It is believed that excessive neurogenesis may contri-
bute to an aggravation of pathology, causing aberrant
connectivity and enhanced excitability (54) and although
seizures enhance neurogenesis, the survival of the new-
born granular cells may decrease with increased seizure
severity due to microglial activation (55).

While much work has been conducted regarding the
neurogenic process in response to injury in animal models,
only a few studies demonstrate these results in humans
after TBI. In this sense, Zheng et al. (56) observed that
neurogenesis occurs in the peri-damaged brain regions
after TBI. However, they were unable to confirm whether
the newly generated cells originated from local cortical
progenitor cells or migrated from neurogenic regions after
TBI. According to Richardson et al. (57), assessing the
migration of neuroblasts from the subventricular zone to the
damaged cortical area on TBI in the human brain becomes
difficult due to the long distance between the two regions
compared to the rostral migratory route of rodents. Chiaretti
et al. (58) showed a significant up-regulation of doublecortin
(DCX) level in the cerebrospinal fluid of children with severe
TBI that may reflect an attempt at neuroprotection against
the biochemical and molecular cascades triggered by
traumatic insult.

There are no consistent reports on the effects of PTE
in humans with regard to altered neurogenesis. Even
more so, there is no consistent evidence indicating what
would be the relevance of this altered neurogenesis after
TBI in humans to the ensuing PTE.

Mossy fiber sprouting. Mossy fiber sprouting (MFS)
was first described in patients with temporal lobe epilepsy
and it became an important and frequent histopathological
finding replicated in animal models. Mossy fibers normally
extend to the hilus with projections to the excitatory and
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inhibitory interneurons and then run the stratum lucidum to
synapse onto pyramidal neurons of the CA3 region. The
projection of these axons under physiological conditions
normally maintains a balance between inhibition and
excitation, but in the epileptic brain, the MFS creates
new recurrent excitatory circuits, projecting back to the
molecular layer of the dentate gyrus (59). Normally, MFS
is first detected within days after seizures or experimental
lesions, develops by 2 weeks, and is long lasting. How-
ever, there has been controversy about the overall
functional significance of sprouted excitatory circuitry as
a contributing factor of spontaneous seizure development.

SE models, such as the pilocarpine and KA models,
have been used to suggest an association between MFS
and epileptogenesis (60). In contrast, Longo et al. (61)
demonstrated that in pilocarpine-induced animals the
prevention of MFS by cycloheximide (a protein synthesis
inhibitor) does not interfere in the development of spon-
taneous seizures, despite preventing the MFS. In addition,
Longo and Mello (62) also demonstrated that cyclohex-
imide can block MFS induced by KA injection, without
altering either the frequency or intensity of the behaviorally
and/or electroencephalographically recorded ictal and
interictal events.

Sutula et al. (63) demonstrated that even brief seizures
of kindled rats induces long-lasting structural reorganiza-
tion in neuronal circuits. MFS develops after a few brief
seizures induced by kindling stimulation progressing with
repeated seizures (64).

Although MFS is mostly observed in chronic SE models,
it may also be seen in TBI models (Figure 1). According to
Golarai et al. (65) weight-drop injury leads to a progressive
bilateral MFS in the dentate gyrus. Substantial bilateral MFS
could also be observed at both acute and chronic time points
in FPI model, being more severe ipsilateral to FPI injury,
presumably due to the more intense neuronal damage (25).
Hunt et al. (66) also observed MFS ipsilateral to CCl injury at
8-12 weeks after insult. However, while some authors
recognize that the MFS is qualitatively less abundant after
TBI, compared with the robust sprouting observed after SE
(67), according to Hunt et al. (23), MFS after CCl was similar
to that observed in humans and other animal PTE models.

With the aim of evaluating the network excitability
in the dentate gyrus after TBI, a series of studies using
extracellular field recording have been done, but failed to
regularly demonstrate epileptiform activity after TBI (23).
In addition, Santhakumar et al. (68) showed that rats
presented recovery a month after FPI, together with an
early increase in granule cell layer extracellular excitability
that was related to MFS. Therefore, Hunt et al. (66) sug-
gest that the emergence of MFS may play a different
functional role in the dentate gyrus after mechanical TBI
compared to pharmacologically-induced PTE models.

In humans, MFS is frequently found in surgical epi-
lepsy tissue (69). The mossy fibers terminals are
distributed in the hippocampus of humans with epilepsy
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in a similar way as seen in the kindling model in rats (69).
Swartz et al. (70) performed further histologic analyses in
tissue from patients with a history of significant head
trauma but without any other risk factor for epilepsy, from
the California Comprehensive Epilepsy Program data-
base. Ten of 11 hippocampal specimens presented some
degree of MFS, and also of granule cell dispersion, both
related with hilar neuron loss. Despite the observed
reorganization of the mossy fibers, these authors could
not correlate the presence of sprouting to the duration of
epilepsy, and even less so whether it was a pre-existing
condition to the head trauma.

In summary, despite the various studies that investi-
gate MFS, its role in epileptogenesis remains controver-
sial and unclear. MFS is a common finding in epilepsy but
not all patients or animal models with spontaneous sei-
zures develop MFS. Taking this into account, MFS has
neither a pro-epileptogenic nor an anti-epileptogenic role.

Neuroinflammation

The induction of cytokines after the occurrence of pro-
longed and acute seizures has been extensively studied in
animal models of seizures and epilepsy. The activation
of inflammatory pathways, which leads to the release of
mediators, increases the severity of subsequent seizures
and epileptogenesis, and supports the hypothesis that
inflammation may play a lead role in the pathophysi-
ology of seizures and the associated neuropathology in
PTE (71).

Indeed, gliosis, microglia activation, and cytokine
production, such as interleukin (IL)-1p and tumor necrosis
factor (TNF)-a, and consequently neuroinflammation can
change neuronal excitability by modulating receptor func-
tion and expression, perpetuating the chronic nature of
epilepsy (71). Although neuroinflammation is considered
to play a key role in the pathophysiology of epilepsy, what
are (and whether there are) the critical neuroinflammatory
processes underlying epileptogenesis is still unclear.
Seizures induced either chemically or electrically could
increase cytokines in rodent brain areas involved in the
onset of epileptic activity (72). To that end, proinflamma-
tory cytokines are induced in the brain also by kindled
seizures (73). Also, Ambrogini et al. (74) demonstrated
that KA-induced SE is capable of triggering neuroinflam-
matory processes in the hippocampus of rats character-
ized by astrogliosis and microglial activation, in addition to
the expression of IL-1B and TNF-a.

Comparing the expression of IL-1B in microglia and
astrocyte cells in two different SE models (electrical
stimulation and pilocarpine-induced SE), Ravizza et al.
(75) observed that during the acute phases of SE, the up-
regulation of IL-13 was observed in both microglia and
astrocytes, whereas only astrocytes showed enhanced
immunostaining during epileptogenesis. In the chronic
epileptic phase, IL-1p is still observed in astrocytes and
also in microglia but only in the electrical stimulation
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model. These data indicate that the expression of IL-1f in
astrocytes is continuous regardless of seizure frequency,
whereas microglia expression depends on ongoing and
severe epileptic activity, indicating that brain inflammation
is a chronic process developing after the initial precipitat-
ing insult that can persist in epileptogenic tissue in the
absence of ongoing seizure activity.

Moreover, increased expression of inflammatory genes
(IL-18, IL-6, TNF-v) in the hippocampus and amygdala has
been reported in several PTE models such as KA (71) and
lithium-pilocarpine (76), representing a generalized molec-
ular response to seizures.

The neuroinflammation induced in TBI models has
been reported as similar to that of SE models. According
to Dalgard et al. (77), the expression of CXCL-1, IFN-y,
TNF-a, IL-4, and IL-13 are increased in ipsilateral cortex at
4 h after CCI. Increased expression of some cytokines
were also reported 24 h after lateral FPI, both in the
ipsilateral and contralateral cortex (78). Interestingly, the
same research group reported similar magnitude of
expression among the same cytokines 24 h after lateral
FPI and after pilocarpine-induced SE (78,79). Specifically,
both models showed the highest expression for CCL2 and
similar expression levels for CCL3, CCL5, and TNF-o
(78,79). In addition, Su et al. (80) using the FPI model
reported that TBI may increase the expression of eotaxin,
G-CSF, GM-CSF, GRO/KC, IFN-y, IL-1a, IL-1B, IL-2, IL-4,
IL-5, IL-6, IL-10, IL-12, p70, IL-13, IL-17, leptin, MCP-1,
TNF-a,, and VEGEF in the area of cortical injury even 7 days
after FPI. Residual level of neuroinflammation may also
persist chronically (11,44,78).

It is well established that TBI in humans is associated
with an inflammatory response that varies according to
stimulus intensity, presence of blood in the brain paren-
chyma, and the presence of penetrating injury, among
other aspects (81). However, causal links between inflam-
matory signaling cascades taking place after TBI and the
emergence of seizures and the development of epilepsy
have yet to be more firmly established.

In summary, it is well-established that seizures pro-
mote an inflammatory immune cascade, although emerg-
ing evidence also suggests that neuroinflammation may
also be causal to seizures and epilepsy by inducing
changes in neuronal function and connectivity, leading to
regional hyperexcitability and subsequent seizure sus-
ceptibility. Nevertheless there is no distinctive feature that
characterizes these processes among PTE models, which
in general, display similar cascades of events (Figure 1).

Antiepileptic drugs (AEDs)

It is known that people who suffer TBI have increased
acute seizure susceptibility. In this sense, a series of
AEDs are routinely administered in the clinic, soon after
TBI, to control acute seizures (occurring within 1-2 weeks
from injury). In addition, there are also many clinical trials
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using known AEDs, like carbamazepine, valproic acid,
phenobarbital, phenytoin, and other compounds aimed at
preventing the development of PTE, but all have failed to
prove efficacy (28). Therefore, the use of experimental
models to verify the effectiveness of already known AEDs
and test new compounds on PTE prevention is of extreme
importance.

The kindling model has long been used to study the
effects of anticonvulsant drugs on seizure development.
Diazepam is more effective at blocking amygdala-kindled
seizures compared to seizures induced by cortical stimu-
lation, which are better blocked by procaine hydrochloride
and diphenylhydantoin. Phenobarbital is effective in the
suppression of hippocampal and amygdala seizures (30).
To make the topic even more complex, a single exposure
to carbamazepine or lamotrigine 48 h after stimulation
leads to a decrease in the capacity of these AED to miti-
gate further seizures evoked after discharges (34).
According to Léscher (82), in the amygdala-kindling, low
doses of lamotrigine during the development phase
leads to a reduced anticonvulsant response to the drug in
fully kindled rats. Lamotrigine-refractory kindled rats are
resistant to topiramate, carbamazepine, and phenytoin,
but not felbamate, valproate, and retigabine. During the
kindling acquisition phase, some antiepileptogenic drugs
(i.e., valproate) given before each stimulus could be
sufficient to mitigate or retard the kindling. Song et al. (33)
compared the effects of three AEDs in mice submitted to
kindling models. Levetiracetam and phenytoin abolished
spontaneous recurrent seizures in 6 of 6 and 5 of 6 mice,
respectively. Lorazepam, in turn, was effective in decreas-
ing the motor seizures severity in all mice, but it was not
enough to reduce the duration and incidence of asso-
ciated afterdischarges in the hippocampus.

Also, many compounds have been tested in TBI
models. According to Pitkanen and Mcintosh (28), AEDs
used in clinics, such as carbamazepine, phenobarbital,
valproate, phenytoin, clonazepam, zonisamide, primi-
done, and ethosuximide, can all suppress spontaneous
seizures induced by ferric chloride, but again, with no
translational benefit proven.

In the FPI model, rats acutely treated with tacrolimus
showed a reduction in the number of non-convulsive
seizures compared to untreated rats, even presenting a
similar degree of cortical atrophy (6). In addition, slices
from rats treated with felbamate after FPI exhibited
long-term potentiation in CA1, which was suppressed in
untreated animals. This fact suggests a possible neuro-
protective property of felbamate against TBI (25). The
administration of topiramate 30 min after FPI proved bene-
ficial to sensorimotor behavior, even though it was not
favorable on learning or neuronal survival. Other drugs
used after FPI such as lacosamide had no effect on lesion
size, anatomical damage, motor impairment, or functional
recovery (83). According to Dash et al. (84), the adminis-
tration of valproate starting at 30 min or 3 h after CCI
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promoted improvement of blood-brain barrier (BBB) integ-
rity, decrease of hippocampal dendritic damage, im-
proved spatial memory and motor function, and lessened
cortical contusion volume. High doses of ethosuximide
and phenytoin administered 30 min after penetrating
ballistic-like brain injury attenuated spontaneous non-
convulsive seizures, but lower doses failed to have the
same effect (85). The clinical relevance of such findings,
however, is hampered by the extremely short time interval
between injury and drug administration.

Leite and Cavalheiro (86) tested the effect of five
AEDs in the pilocarpine model. Phenobarbital, phenytoin,
and carbamazepine were effective against spontaneous
seizures. Valproic acid was also effective against sponta-
neous seizures, but only at the high doses. Last, but not
the least, ethosuximide was not effective against sponta-
neous seizures. In accordance, Glien et al. (87) also
showed that levetiracetam decreases spontaneous recur-
rent seizures frequency in the rat pilocarpine model.

In the KA model, valproate, carbamazepine, and lamo-
trigine were effective to dose-dependently suppress hip-
pocampal paroxysmal discharges (HPDs) and modified
EEG activity and behavior. At high doses, levetiracetam
and pregabalin were effective to suppress HPDs, but did
not change any behavior or EEG activity. Furthermore,
dose-dependent diazepam, tiagabine, phenobarbital, and
vigabatrin suppressed HPDs, but did no other change (88).

Itis now clear that the so-called AEDs are in fact drugs
that affect the expression of seizures but do not affect
the development of epileptogenesis. Despite their name,
AEDs do not prevent epilepsy but only its expression
(e.g., seizures). Indeed, as discussed in the previous
sections of this review, the lesion that may trigger PTE,
regardless of its nature, sets in motion a similar cascade
of events that overlaps with other models of epilepsy.
Thus, drug treatment tested on these other epilepsy models
with a higher frequency of recurrent spontaneous seizures
would ultimately have great predictive value for PTE (even
when not using isomorphic models to TBI).

To date, neither TBI or SE models (but see below)
have provided evidence of compounds that would effec-
tively alter epileptogenesis after TBI. The predictive capa-
bility that could be expected from models with a stronger
etiological basis has not yet been demonstrated. The fact
that the emergence of spontaneous seizures is a rare
event in TBI models does not help in providing a platform
for testing of such compounds.

Research from our group has provided evidence that
anticholinergic agents might provide an effective means
to modify disease progression in the pilocarpine model
of epilepsy (89,90). The administration of scopolamine
starting 3 h after the onset of pilocarpine-induced SE was
effective in altering epileptogenesis (90). Similarly, in a
more extensive study, the administration of biperiden
(another cholinergic antagonist) was also shown to be
effective in altering disease progression in the same


http://dx.doi.org/10.1590/1414-431X202010656

Modeling of post-traumatic epilepsies

model (89). We concluded that anti-muscarinic agents or,
more broadly, drugs that interfere with plastic processes
may be potentially relevant in the quest for disease-
modifying agents that may diminish the burden of PTE.

Final remarks

We put forward the suggestion that the ideal model to
investigate potential therapies against PTE has yet to be
defined. In fact, for numerous aspects, TBI models
mimicking the mechanical traumatic injury such as CCI,
FPI, blast, and so on are the most faithful to recapitulate
the sequence of events after TBI. However, the diminished
capacity of those models to easily promote PTE also
hampers their ability to provide more useful instruments in
the screening of new compounds that may influence
epileptogenesis. Here, we addressed the main differences
and similarities between typical TBlI models, kindling,
and SE models with regard to the emergence of spon-
taneous seizures, seizure response to drugs, neuroin-
flammation, and other features often studied in animal
models and human epilepsy, most notably PTE. Currently,
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