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Abstract

Resistance to Trypanosoma cruzi infections is critically dependent on
cytokine-mediated activation of cell-mediated immune effector mecha-
nisms. This review focuses on the role of IL-10, TNF-α, IFN-γ and IL-12
in controlling T. cruzi replication by the innate and specific immune
systems of the vertebrate host. A study performed on mice with disrupted
recombinase-activating genes (RAG/KO), which lack T and B lympho-
cytes, revealed the importance of IL-12, IFN-γ and TNF-α in the
resistance against T. cruzi mediated by the innate immune system. In
addition, data from experiments using IL-10 KO, RAG/KO and double
RAG/IL-10 KO mice indicating an in vivo regulatory role of IL-10 in
innate and T. cruzi-specific immunity are discussed.
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The digenetic protozoan Trypanosoma
cruzi is the etiologic agent of Chagas� dis-
ease in man. The parasite can potentially
infect any mammalian species and, in its
sylvatic cycle, the infection has been de-
tected in wild mammals captured in North
America. The parasite is most commonly
transmitted to man by strictly hematopha-
gous insects of the Reduviidae family. T.
cruzi infection is prevalent in South and
Central America and the number of infected
individuals is estimated to be about 18 mil-
lion; thirty percent of the infected persons
will eventually develop the cardiac and/or
digestive manifestations characteristic of
Chagas� disease. The infection has a self-
limited acute phase, detected only in a mi-
nority of infected persons. The immune re-
sponse controls parasitism yet fails to com-
pletely eradicate the parasite and the patients
remain infected for life. Systematic vector
control and improvement of housing condi-
tions are the most important preventive meas-

ures that were effective in controlling insect
transmission of T. cruzi infection in several
South American countries including Brazil.

T. cruzi can infect a variety of host cell
types including macrophages; intracellular
replication as amastigotes is followed by the
release of trypomastigotes that can virtually
reach all host organs through the blood-
stream.

Efficient control of parasite load and host
survival rely on T cell-mediated immunity
via T helper (TH) cell-dependent protective
antibody responses and macrophage activa-
tion for intracellular killing of the protozoan.
In addition to class II-restricted T cells, class
I-dependent effector mechanisms (1-5) par-
ticipate in immune resistance to T. cruzi.
Natural killer (NK) cells have also been
shown to play a role in host defense against
the infection (6). In spite of the vigorous
immune response, small numbers of para-
sites persist in the host.

Control of T. cruzi parasitism during the
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first weeks of infection is considered to be
critically dependent on effective macrophage
activation by cytokines. Evidence has accu-
mulated over the years showing that in vitro
treatment of macrophages with IFN-γ (7-10)
and/or TNF-α (10-12) results in more effi-
cient intracellular killing of intracellular
amastigotes whereas addition of TGF-ß (13)
or IL-10 (14,15) to cultures inhibits the try-
panocidal action of IFN-γ-activated macro-
phages. Treatment of infected mice with re-
combinant IFN-γ (rIFN-γ) (16) or rTGF-ß
(13) respectively increases resistance and
aggravates parasitism, consistent with the
effects of these cytokines on macrophage
trypanocidal activity observed in vitro. Early
treatment of infected mice with anti-IFN-γ
(17,18) neutralizing antibodies increases
parasitism whereas treatment with anti-IL-
10 (19) or anti-IL-4 (20) monoclonal anti-
bodies (mAbs) results in a better control of
the infection. Moreover, early in vivo activa-
tion of parasite-specific IL-10- and IL-4-
secreting TH2 cells eliminates resistance to
the infection, indicating that imbalances of
TH1/TH2 cell activation might lead to in-
creased or longer persisting tissue parasitism
with consequent worsening of inflammation
and tissue damage (21).

Multiple genes outside the H-2 locus de-
termine the outcome of infection in the
mouse, although a spectrum of resistance
patterns is found among inbred strains
(22,23). Unlike the situation observed in
murine Leishmania major infections in which
resistant and susceptible mouse strains ex-
hibit an overwhelming dominance of either
TH1- or TH2-type cytokine responses (24),
respectively, both T. cruzi-resistant and
-susceptible mouse strains show elevated
production of IFN-γ during infection (25).
IL-2 and IL-4 production is very low and
often undetectable in stimulated lymphocyte
culture supernatants (25-29). Increased
mouse strain susceptibility to the infection
has been linked to the detection of IL-4
(30,31) or IL-10 production (15,19,31) by

spleen or peritoneal cell populations, de-
pending on the parasite and mouse strain
combinations utilized. However, other stud-
ies have detected IL-10 production by spleen
cells from susceptible and/or resistant mouse
strains infected with T. cruzi (29,32, and
Abrahamsohn IA, unpublished results). The
concomitant synthesis of IL-10 with high
levels of IFN-γ in lymphoid organs from T.
cruzi-infected mice raises the question to
what extent the endogenous production of
IL-10 may affect parasitism control by the
host.

Over the years it has become clear that
cells of the innate (or natural) immune sys-
tem contribute to the synthesis of the macro-
phage-activating and regulatory cytokines
TNF-α, IFN-γ and IL-10 in the early phases
of infection by several pathogens; as the
immune response develops, antigen-specific
TH cells become the most important source
of these cytokines. In addition, IL-12 synthe-
sized by infected or LPS-stimulated macro-
phages, in addition to other actions, stimu-
lates cytokine synthesis by both NK and T
helper cells and promotes the activation and
expansion of these lymphocyte subpopula-
tions (33). Reciprocal regulatory interactions
among cytokines secreted by the innate and
acquired immune systems ultimately control
the activation of each system and its cytokine-
mediated effector functions.

Mice with disrupted IL-10 genes (IL-10
KO) or with disrupted recombinase-activat-
ing genes that completely lack T and B cells
(RAG/KO) provide a model to investigate
the role of IL-10 in the regulation of immune
responses and to directly evaluate the rela-
tive contribution of innate and acquired im-
munity and respective cytokines to in vivo
resistance to T. cruzi.

Using this approach, Abrahamsohn and
Coffman (34) have recently shown that IL-
10 KO mice infected with the Y strain of T.
cruzi have lower parasite numbers in blood
and tissues than strain-matched infected wild-
type (WT) mice, indicating that control of T.
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cruzi replication was more efficient in the
absence of IL-10. The higher IFN-γ and ni-
tric oxide production in response to T. cruzi
antigen stimulation found in these mice is
consistent with a more effective control of
parasitism than that observed in WT mice.
Confirmation that IL-10 does indeed control
T. cruzi parasitism comes from experiments
in which the protection exhibited by IL-10
KO mice was reversed by treatment with the
missing cytokine. Moreover, treatment of
WT mice with recombinant IL-10 resulted in
increased parasitemia. In order to determine
the contribution of the innate and acquired
immunity to IL-10 regulation of in vivo para-
sitism, the course of T. cruzi infection was
compared between RAG/KO mice and
double RAG/IL-10 KO mice. Both types of
mice had superimposable parasitemia curves,
indicating that in the absence of T and B
cells endogenous IL-10 does not limit the
efficacy of the innate immune system. More-
over, RAG/KO mice reconstituted with IL-
10 KO spleen cells had lower blood parasite
counts than those reconstituted with WT
spleen cells (Abrahamsohn IA and Coffman
RL, unpublished results), further indicating
that the regulation of parasitism levels by IL-
10 depends on an intact immune compart-
ment. Although T. cruzi-infected IL-10 KO
mice had lower blood and tissue parasitism,
they did not survive longer and often died
slightly earlier than infected WT or RAG/
KO mice. IL-10 KO mice are extremely sus-
ceptible to endotoxemia by LPS as a conse-
quence of their higher TNF-α production
(35) and are prone to developing intermittent
inflammatory bowel disease (36) that may
contribute to Gram-negative toxemia. The
importance of endogenous IL-10 synthesis
in preventing cytokine-mediated immuno-
pathology in intracellular infections was em-
phasized by the recent results of accelerated
death of Toxoplasma gondii-infected IL-10
KO mice (37).

Direct evidence of the importance of in-
nate immunity mechanisms in the early re-

sistance to T. cruzi infection was recently
obtained in experiments conducted on RAG/
KO and WT mice (34). Parasitemia levels
did not differ between RAG/KO and WT
mice until day 11 of infection. From then on,
the contribution of specific immunity to re-
sistance became apparent since WT but not
RAG/KO mice were able to control parasit-
ism. These results may indicate that, during
the first days after parasite inoculation, con-
trol of parasitism relies on mechanisms of
innate immunity that precede the onset of the
specific immune response by T and B cells.
Most important, the increase in parasitemia
levels and shorter survival time observed in
RAG/KO mice treated with anti-IFN-γ, anti-
IL-12 or anti-TNF mAbs provide direct evi-
dence of the important contribution of innate
immunity, via endogenous production of
these cytokines, to the control of the parasite
load early in the course of infection. Within
this context, it was recently shown that in
vivo depletion of NK cells aggravates the
infection and reduces IFN-γ production to T.
cruzi stimulation (6). That anti-IL-12 mAb
treatment of RAG/KO mice resulted in in-
creased parasitemia indicates that IFN-γ pro-
duction by cells from the natural immune
system (possibly by NK cells) is IL-12 de-
pendent. IFN-γ, IL-12 and TNF-α also medi-
ate T. cruzi resistance mechanisms in mice
with an intact immune system, since the
respective mAb treatments increased the
parasitemia levels of infected WT mice.
Moreover, anti-IFN-γ- or anti-TNF-mAb-
treated T. cruzi-infected mice presented in-
creased IL-10 and decreased nitric oxide
production by spleen cells, whereas anti-IL-
12 mAb treatment resulted in diminished
IFN-γ and nitric oxide production, providing
further evidence of mechanisms whereby
endogenous production of these cytokines
controls intracellular parasitism (34). These
results confirm and extend recent reports on
aggravation of T. cruzi infection in WT mice
treated with anti-TNF or with anti-IL-12 neu-
tralizing antibodies (38-40). Production of
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IL-12 is stimulated by T. cruzi infection of
cultured macrophages (39) and treatment of
infected mice with rIL-12 during the first
week of infection markedly reduced tissue
parasitism (40).

Taken together, these recent results draw
attention to the importance of innate immu-
nity in the resistance to T. cruzi infection.
Early in the infection, IL-12, IFN-γ and
TNF-α primarily produced by cells of the
innate immune system would trigger phago-
cytic cell activation and inflammation and
thus contribute to the control of parasite
growth. IL-12 and IL-12-induced IFN-γ also
favor TH1 cell differentiation and IL-12 fur-
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