Acessibilidade / Reportar erro
Brazilian Journal of Medical and Biological Research, Volume: 52, Número: 6, Publicado: 2019
  • Linderae radix ethanol extract attenuates alcoholic liver injury via attenuating inflammation and regulating gut microbiota in rats Research Article

    Lou, Zhaohuan; Wang, Junwei; Chen, Yingjun; Xu, Chandi; Chen, Xinyi; Shao, Tiejuan; Zhang, Kena; Pan, Hongying

    Resumo em Inglês:

    This study aimed to explore the influence of gut microbiota alterations induced by Linderae radix ethanol extract (LREE) on alcoholic liver disease (ALD) in rats and to study the anti-inflammatory effect of LREE on ALD through the lipopolysaccharide (LPS) toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB) pathway. ALD rat models were established by intragastric liquor [50% (v/v) ethanol] administration at 10 mL/kg body weight for 20 days. Rats were divided into six groups: normal group (no treatment), model group (ALD rats), Essentiale group (ALD rats fed with Essentiale, 137 mg/kg), and LREE high/moderate/low dose groups (ALD rats fed with 4, 2, or 1 g LREE/kg). NF-κB and LPS levels were evaluated. Liver pathological changes and intestinal ultrastructure were examined by hematoxylin and eosin staining and transmission electron microscopy. The gut microbiota composition was evaluated by 16S rDNA sequencing. Expression levels of TLR4 and CD68 in liver tissue, and occludin and claudin-1 in intestinal tissue were measured. LREE treatment significantly reduced NF-κB and LPS levels, improved liver pathological changes, and ameliorated intestinal ultrastructure injury. Meanwhile, LREE-fed groups showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than the rats in the model group. Administration of LREE suppressed TLR4 overexpression and promoted the expression of occludin and claudin-1 in intestine tissue. Thus, LREE could partly ameliorate microflora dysbiosis, suppress the inflammatory response, and attenuate liver injury in ALD rats. The protective effect of LREE might be related to the LPS-TLR4-NF-κB pathway.
  • Evaluation of the effects of Uncaria rhynchophylla alkaloid extract on LPS-induced preeclampsia symptoms and inflammation in a pregnant rat model Research Article

    Wu, Liang-Zhi; Xiao, Xiao-Min

    Resumo em Inglês:

    Excessive pro-inflammatory cytokines result in adverse pregnancy outcomes, including preeclampsia-like phenotypes, and fetal growth restriction. Anti-inflammation might be an effective therapy. The aim of this research was to investigate whether Uncaria rhynchophylla alkaloid extract (URE), a highly safe anti-inflammation constituent of the herb, can inhibit inflammation and improve clinical characteristics of preeclampsia in a lipopolysaccharide (LPS)-induced preeclampsia rat model. The rat model was established by daily administration of LPS (1 μg/kg body weight per day) from gestational day (GD) 14 to 19. Different doses of URE (35, 70, and 140 mg/kg body weight per day) were administered from GD 14 to GD 19. The effects of URE on proteinuria, maternal hypertension, pregnancy outcomes, as well as pro-inflammatory cytokines levels in serum and placenta were measured. High-dose URE (HURE) treatment decreased LPS-induced mean 24-h proteinuria and systolic blood pressure, and increased fetal weight, placental weight, and the number of live pups (P<0.05). Moreover, increased serum and placental levels of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, and interferon-γ in the LPS-treated group were obviously inhibited after HURE administration (P<0.01). URE improved preeclampsia symptoms and mitigated inflammatory responses in the LPS-induced preeclampsia rat model, which suggests that the anti-inflammation effect of URE might be an alternative therapy for preeclampsia.
  • Moderate-intensity exercise allows enhanced protection against oxidative stress-induced cardiac dysfunction in spontaneously hypertensive rats Research Article

    Mi, Chunjuan; Qin, Xinghua; Hou, Zuoxu; Gao, Feng

    Resumo em Inglês:

    The progression of myocardial injury secondary to hypertension is a complex process related to a series of physiological and molecular factors including oxidative stress. This study aimed to investigate whether moderate-intensity exercise (MIE) could improve cardiac function and oxidative stress in spontaneously hypertensive rats (SHRs). Eight-week-old male SHRs and age-matched male Wistar-Kyoto rats were randomly assigned to exercise training (treadmill running at a speed of 20 m/min for 1 h continuously) or kept sedentary for 16 weeks. Cardiac function was monitored by polygraph; cardiac mitochondrial structure was observed by scanning electron microscope; tissue free radical production was measured using dihydroethidium staining. Expression levels of SIRT3 and SOD2 protein were measured by western blot, and cardiac antioxidants were assessed by assay kits. MIE improved the cardiac function of SHRs by decreasing left ventricular systolic pressure (LVSP), and first derivation of LVP (+LVdP/dtmax and −LVdP/dtmax). In addition, exercise-induced beneficial effects in SHRs were mediated by decreasing damage to myocardial mitochondrial morphology, decreasing production of reactive oxygen species, increasing glutathione level, decreasing oxidized glutathione level, increasing expression of SIRT3/SOD2, and increasing activity of superoxide dismutase. Exercise training in SHRs improved cardiac function by inhibiting hypertension-induced myocardial mitochondrial damage and attenuating oxidative stresses, offering new insights into prevention and treatment of hypertension.
  • CCAAT/enhancer-binding protein alpha (CEBPA) gene haploinsufficiency does not alter hematopoiesis or induce leukemia in Lck-CALM/AF10 transgenic mice Research Article

    Lange, A.P.; Almeida, L.Y.; Araújo Silva, C.L.; Scheucher, P.S.; Chahud, F.; Krause, A.; Bohlander, S.K.; Rego, E.M.

    Resumo em Inglês:

    Although rare, CALM/AF10 is a chromosomal rearrangement found in immature T-cell acute lymphoblastic leukemia (T-ALL), acute myeloid leukemia, and mixed phenotype acute leukemia of T/myeloid lineages with poor prognosis. Moreover, this translocation is detected in 50% of T-ALL patients with gamma/delta T cell receptor rearrangement, frequently associated with low expression of transcription factor CCAAT/enhancer-binding protein alpha (CEBPA). However, the relevance of CEBPA low expression for CALM/AF10 leukemogenesis has not yet been evaluated. We generated double mutant mice, which express the Lck-CALM/AF10 fusion gene and are haploinsufficient for the Cebpa gene. To characterize the hematopoiesis, we quantified hematopoietic stem cells, myeloid progenitor cells, megakaryocyte-erythrocyte progenitor cells, common myeloid progenitor cells, and granulocyte-macrophage progenitor cells. No significant difference was detected in any of the progenitor subsets. Finally, we tested if Cebpa haploinsufficiency would lead to the expansion of Mac-1+/B220+/c-Kit+ cells proposed as the CALM/AF10 leukemic progenitor. Less than 1% of bone marrow cells expressed Mac-1, B220, and c-Kit with no significant difference between groups. Our results showed that the reduction of Cebpa gene expression in Lck-CALM/AF10 mice did not affect their hematopoiesis or induce leukemia. Our data corroborated previous studies suggesting that the CALM/AF10 leukemia-initiating cells are early progenitors with lymphoid/myeloid differentiating potential.
  • Cardiac function and intracellular Ca2+ handling proteins are not impaired by high-saturated-fat diet-induced obesity Research Article

    Deus, A.F.; Vileigas, D.F.; Silva, D.C.T.; Tomasi, L.C.; Campos, D.H.S.; Okoshi, K.; Padovani, C.R.; Cicogna, A.C.

    Resumo em Inglês:

    Obesity is often associated with changes in cardiac function; however, the mechanisms responsible for functional abnormalities have not yet been fully clarified. Considering the lack of information regarding high-saturated-fat diet-induced obesity, heart function, and the proteins involved in myocardial calcium (Ca2+) handling, the aim of this study was to test the hypothesis that this dietary model of obesity leads to cardiac dysfunction resulting from alterations in the regulatory proteins of intracellular Ca2+ homeostasis. Male Wistar rats were distributed into two groups: control (C, n=18; standard diet) and obese (Ob, n=19; high-saturated-fat diet), which were fed for 33 weeks. Cardiac structure and function were evaluated using echocardiographic and isolated papillary muscle analyses. Myocardial protein expressions of sarcoplasmic reticulum Ca2+-ATPase, phospholamban (PLB), PLB serine-16 phosphorylation, PLB threonine-17 phosphorylation, ryanodine receptor, calsequestrin, Na+/Ca2+ exchanger, and L-type Ca2+ channel were assessed by western blot. Obese rats presented 104% increase in the adiposity index (C: 4.5±1.4 vs Ob: 9.2±1.5%) and obesity-related comorbidities compared to control rats. The left atrium diameter (C: 5.0±0.4 vs Ob: 5.5±0.5 mm) and posterior wall shortening velocity (C: 36.7±3.4 vs Ob: 41.8±3.8 mm/s) were higher in the obese group than in the control. The papillary muscle function was similar between the groups at baseline and after inotropic and lusitropic maneuvers. Obesity did not lead to changes in myocardial Ca2+ handling proteins expression. In conclusion, the hypothesis was not confirmed, since the high-saturated-fat diet-induced obese rats did not present cardiac dysfunction or impaired intracellular Ca2+ handling proteins.
  • Transcriptional profiling of uterine leiomyoma rats treated by a traditional herb pair, Curcumae rhizoma and Sparganii rhizoma Research Article

    Yu, Cheng Hao; Zhao, Jin Shuang; Zhao, Hui; Peng, Teng; Shen, Dong Cheng; Xu, Qiu Xia; Li, Yao; Webb, R. Clinton; Wang, Mong Heng; Shi, Xing Ming; Peng, Cheng; Ding, Wei Jun

    Resumo em Inglês:

    The aim of this study was to elucidate the concise effects of a traditional herb pair, Curcumae rhizoma-Sparganii rhizoma (CRSR), on uterine leiomyoma (UL) by analyzing transcriptional profiling. The UL rat model was made by intramuscular injection of progesterone and gavage administration of diethylstilbestrol. From 11 weeks of the establishment of the model, rats of the UL+CRSR group were gavaged daily with CRSR (6.67 g/kg). The serum concentrations of progesterone (P) and estradiol (E2) were determined by radioimmunoassay, the uterine index was measured by caliper measurement, and the pathological status was observed by hematoxylin and eosin stain. Gene expression profiling was checked by NimbleGen Rat Gene Expression Microarrays. The results indicated that the uterine mass of UL+CRSR rats was significantly shrunk and serum P and E2 levels significantly reduced compared to UL animals and nearly to the level of normal rats. Results of microarrays displayed the extensive inhibition of CRSR upon the expression of proliferation and deposition of extracellular matrix (ECM)-related genes, and significantly regulated a wide range of metabolism disorders. Furthermore, CRSR extensively regulated key pathways of the UL process, such as MAPK, PPAR, Notch, and TGF-β/Smad. Regulation of the crucial pathways for the UL process and ECM metabolism may be the underlying mechanisms of CRSR treatment. Further studies will provide clear clues for effectively treating UL with CRSR.
  • Pancreatic β-cell function is inhibited by miR-3666 in type 2 diabetes mellitus by targeting adiponectin Research Article

    Tan, J.; Tong, A.; Xu, Y.

    Resumo em Inglês:

    Type 2 diabetes mellitus (T2D) is a common endocrine and metabolic disorder, and poses threats to human health worldwide. Recently, microRNAs (miRNAs) have been suggested to play important roles in the pathophysiology of T2D. In this study, we explored the role of miR-3666 in T2D. miR-3666 was significantly down-regulated in the serum of T2D patients when compared to that of healthy volunteers, and miR-3666 expression level was negatively correlated with blood glucose levels of T2D patients. Overexpression of miR-3666 inhibited cell proliferation, reduced insulin secretion, and promoted cell apoptosis of pancreatic β-cell line (INS-1 cells). On the other hand, knockdown of miR-3666 had the opposite effects in INS-1 cells. The bio-informatics analysis using TargetScan revealed that adiponectin (ADIPOQ) was a downstream target of miR-3666, and the interaction between miR-3666 and ADIPOQ was validated by luciferase reporter assay. In addition, miR-3666 negatively regulated the mRNA and protein expression of ADIPOQ. Overexpression of ADIPOQ promoted insulin secretion after glucose stimulation, promoted cell proliferation, inhibited cell apoptosis, and partially abolished the effects of miR-3666 overexpression on insulin secretion, cell proliferation, and cell apoptosis of INS-1 cells. In conclusion, our results revealed that miR-3666 inhibited pancreatic cell proliferation, reduced insulin sensitivity, and promoted apoptosis by targeting ADIPOQ.
  • Are experienced and high-level race walking athletes able to match pre-programmed with executed pacing? Research Article

    Alves, D.L.; Cruz, R.; Lima-Silva, A.E.; Domingos, P.R.; Bertuzzi, R.; Osiecki, R.; De-Oliveira, F.R.; Lima, J.R.P.

    Resumo em Inglês:

    The objective of this study was to verify the agreement between pre-programmed and executed pacing during race walking and whether level of the athletes experience and performance influenced this relationship. Twenty-nine national and international race walkers participated in this study (14 males, 24.0±7.1 years old, and 15 females, 23.3±7.3 years old). Pre-programmed pacing for 10- and 20-km official walking races was self-selected via demonstrative pacing charts prior to races, while executed pacing was analyzed by a specialist investigator via an individual plot of current velocity versus distance. There was no agreement between pre-programmed and executed pacing (P=0.674). There was no association between the ability to match the pre-programmed pace with the executed pace and race walking experience or level of performance. Low- and high-performance athletes pre-programmed a similar pacing profile (P=0.635); however, high-performance athletes generally executed an even pacing strategy, while low-performance athletes generally adopted a positive pacing strategy (P=0.013). Race walkers did not faithfully match their pre-programmed with their executed pacing, and this seemed to be independent of previous experience and level of performance. High-performance athletes, however, tended to execute an even pacing strategy, even though this had not been pre-programmed.
  • Expression of myo-inositol cotransporters in the sciatic nerve and dorsal root ganglia in experimental diabetes Research Article

    Farias, V.X.; Uchoa, P.N.; Aquino, C.P.; Britto, L.R.G.; Fonteles, M.C.; Leal-Cardoso, J.H.; Silva-Alves, K.S.; Havt, A.; Prata, M.M.G.; Heimark, D.B.; Nascimento, N.R.F.; Santos, C.F.

    Resumo em Inglês:

    The transport of myo-inositol is the main mechanism for the maintenance of its high intracellular levels. We aimed to measure the mRNA and protein levels of myo-inositol cotransporters in the sciatic nerve (SN) and dorsal root ganglia (DRG) during experimental diabetes. Streptozotocin-induced (STZ; 4, 8, and 12 weeks; 65 mg/kg; ip) diabetic rats (DB) and age-matched euglycemic (E) rats were used for the analysis of mRNA and protein levels of sodium myo-inositol cotransporters 1, 2 (SMIT1, SMIT2) or H+/myo-inositol cotransporter (HMIT). There was a significant reduction in the mRNA levels for SMIT1 in the SN and DRG (by 36.9 and 31.0%) in the 4-week DB (DB4) group compared to the E group. SMIT2 was not expressed in SN. The mRNA level for SMIT2 was up-regulated only in the DRG in the DB4 group. On the other hand, the protein level of SMIT1 decreased by 42.5, 41.3, and 44.8% in the SN after 4, 8, and 12 weeks of diabetes, respectively. In addition, there was a decrease of 64.3 and 58.0% of HMIT in membrane and cytosolic fractions, respectively, in the SN of the DB4 group. In the DRG, there was an increase of 230 and 86.3% for SMIT1 and HMIT, respectively, in the DB12 group. The levels of the main inositol transporters, SMIT1 and HMIT, were greatly reduced in the SN but not in the DRG. SMIT-1 was selectively reduced in the sciatic nerve during experimental STZ-induced diabetes.
  • Downregulation of lncRNA CCDC26 contributes to imatinib resistance in human gastrointestinal stromal tumors through IGF-1R upregulation Research Article

    Yan, Jingyi; Chen, Didi; Chen, Xiaolei; Sun, Xuecheng; Dong, Qiantong; Hu, Changyuan; Zhou, Feng; Chen, Wei

    Resumo em Inglês:

    Imatinib is the first line of therapy for patients with metastatic or gastrointestinal stromal tumors (GIST). However, drug resistance limits the long-term effect of imatinib. Long non-coding RNAs (lncRNAs) are emerging as key players in regulating drug resistance in cancer. In this study, we investigated the association between lncRNA CCDC26 and IGF-1R in GIST and their involvement in drug resistance. Considering the key role of lncRNAs in drug resistance in cancer, we hypothesized that IGF-1R is regulated by lncRNAs. The expression of a series of reported drug resistance-related lncRNAs, including CCDC26, ARF, H19, NBR2, NEAT1, and HOTAIR, in GIST cells treated with imatinib H19 was examined at various time-points by qRT-PCR. Based on our results and published literature, CCDC26, a strongly down-regulated lncRNA following imatinib treatment, was chosen as our research target. GIST cells with high expression of CCDC26 were sensitive to imatinib treatment while knockdown of CCDC26 significantly increased the resistance to imatinib. Furthermore, we found that CCDC26 interacted with c-KIT by RNA pull down, and that CCDC26 knockdown up-regulated the expression of IGF-1R. Moreover, IGF-1R inhibition reversed CCDC26 knockdown-mediated imatinib resistance in GIST. These results indicated that treatments targeting CCDC26-IGF-1R axis would be useful in increasing sensitivity to imatinib in GIST.
  • Effect of intraoperative lung-protective mechanical ventilation on pulmonary oxygenation function and postoperative pulmonary complications after laparoscopic radical gastrectomy Research Article

    Liu, Jing; Meng, Zhipeng; lv, Ran; Zhang, Yaping; Wang, Gaojian; Xie, Junran

    Resumo em Inglês:

    This study aimed to observe the effects of lung-protective ventilation (LPV) on oxygenation index (OI) and postoperative pulmonary complications (PPCs) after laparoscopic radical gastrectomy in middle-aged and elderly patients. A total of 120 patients who were scheduled to undergo laparoscopic radical gastrectomy with an expected time of >3 h were randomly divided into conventional ventilation (CV group) with tidal volume (TV) of 10 mL/kg without positive end-expiratory pressure (PEEP), and lung-protective ventilation (PV group) with 7 mL/kg TV and personal level of PEEP with regular recruitment maneuver every 30 min. Measurements of OI, modified clinical pulmonary infection score (mCPIS), and PPCs were assessed during the perioperative period. Fifty-seven patients in the CV group and 58 in the PV group participated in the data analysis. Patients in the PV group showed better pulmonary dynamic compliance, OI, and peripheral capillary oxygen saturation during and after surgery. The mCPIS was significantly lower in the PV group than in the CV group after surgery. The incidence rate of PPCs was lower in the PV group than in the CV group and the difference was significant in patients whose ventilation time was longer than 6 h in both groups. LPV during laparoscopic radical gastrectomy significantly improved pulmonary oxygenation function and reduced postoperative mCPIS and the incidence of PPCs during the early period after surgery of middle-aged and elderly patients, especially patients whose mechanical ventilation time was longer than 6 h.
Associação Brasileira de Divulgação Científica Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto SP Brazil, Tel. / Fax: +55 16 3315-9120 - Ribeirão Preto - SP - Brazil
E-mail: bjournal@terra.com.br