Acessibilidade / Reportar erro

Test of Anderson-Stuart model and the "universal" conductivity in rubidium and cesium silicate glasses

An analysis and brief discussion of experimental ionic conductivity sigma and activation energy E A in the binary rubidium and cesium silicate systems is presented, exemplified on 23 and 30 glasses respectively, in a wide composition range (5-45 Rb2O and Cs2O mole%). The Anderson and Stuart model has been considered to describe the variation of activation energy E A with alkali concentration in both alkali-silica systems. In this analysis were considered experimental parameters, like shear modulus G and relative dielectric permittivity epsilon. An "universal" finding is obtained using logsigma× E A/kB T in 51 of 53 glasses considering both alkali systems, where E A is the activation energy for conduction, kB is the Boltzmann constant and T is the absolute temperature. This strong correlation by more than 13 (Rb-based glasses) and 15 (Cs-based glasses) orders of magnitude means that sigma is governed mainly by E A. An explanation for this behavior links ionic conductivity and microscopic structure.


Sociedade Brasileira de Física Caixa Postal 66328, 05315-970 São Paulo SP - Brazil, Tel.: +55 11 3091-6922, Fax: (55 11) 3816-2063 - São Paulo - SP - Brazil
E-mail: sbfisica@sbfisica.org.br