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Effects of Noise on Entanglement Dynamics in Atom-Field Interactions
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The entanglement dynamics in a system of the interaction of an atom with a single-mode cavity field in the
presence of noise is studied by the Jaynes-Cummings model. Random phase telegraph noise is considered as the
noise in the interaction and an exact solution to the model under this noise is obtained. The obtained solution is
used to investigate the entanglement dynamics of the atom-field interaction. The mutual entropy is adopted for
the quantification of the entanglement in the interaction. It is found that the entanglement is a non monotonic
function of the intensity of the noise. The degree of the entanglement decreases to a minimum value for an
optimal intensity of the noise and then increases for a sufficiently large intensity.
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1. INTRODUCTION

Entanglement can display nonlocal correlations between
quantum systems that have no classical counterpart. As a
physical resource it plays a key role in Quantum Information
Processing (QIP) [1-3]. Its preparation is thus a primary goal
of this field. Real quantum systems will unavoidably inter-
act with their surrounding environments. The main problem
that must be overcome in QIP is decoherence, an effect that
results from the coupling of the system to its surroundings or
noise described by the stochastic processes associated with the
system. The influence of noise (jump-type) on the atom-field
interactions was first introduced by Burshtein [4, 5] in quan-
tum optics. The simplest model of such jump-like processes is
the two-state random telegraph. Eberly et al [6, 7] discussed
laser-atom interactions that are subjected to two-state random
(phase and frequency) telegraph noise.

The interaction of a two-level atom with a single-mode field
which makes a single-photon transitions in an ideal cavity is
described by the Jaynes-Cummings model (JCM) [8]. An em-
ployment of noise into the JCM was studied by Joshi et al [9-
12]. In these works, the authors have treated the incorpora-
tion of noise into the JCM as the stochastic fluctuations in
the atom-field coupling parameter (that is assumed to fluctu-
ate in phase or in amplitude) with following possible physical
reasons: The stochastic fluctuations associated with the cou-
pling parameter in the cavity quantum electrodynamics may
presumably be inherited from several reasons such as due to
the source of the single-mode coherent cavity field or due to
any variation in the mechanism of the production of Rydberg
atom because of the instability in the atomic vapour produc-
tion. Or, the motion of an ion in a harmonic trap interacting
with a standing wave or a traveling wave may introduce an-
other possibility for introducing the JCM with the stochastic
fluctuations. Because, under a particular approximation [13],
the equation of the motion for the ion in the trap may reduce
to a similar form with the JCM. In this case, the fluctuations in
the coupling coefficient can be considered both in the ampli-
tude and the phase of the standing wave. Another possibility
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for introducing the stochastic fluctuations in the JCM is that
the fluctuations of vacuum Rabi frequency or the atom-field
coupling coefficient are known to wash out the trapping states
in the micromaser system. Such fluctuations are possible in
the case of an electric field generated by rubidium deposits
at the cavity coupling holes or the electric field between the
adjacent crystal domains in the cavity walls made of niobium.

In this paper, the interaction of a two-level atom with a
single-mode field is studied in the environment of the ran-
dom phase telegraph noise (RPTN) by the JCM [12]. By the
method introduced in this reference, an exact solution to the
JCM under this noise is obtained. The obtained solution is
used to investigate the entanglement dynamics of the atom-
field interaction. The mutual entropy is adopted for the quan-
tification of the entanglement in the interaction.

The organization of the paper is as follows; In section 2,
the formulation of the problem is obtained. The JCM with the
RPTN is introduced and an exact solution to the model under
this noise is presented. In section 3, the results and discussions
are given. The solution obtained in the previous section is ap-
plied to a system in which the atom is initially taken in a pure
state and the field initially in a thermal state. The entangle-
ment properties of the system under the RPTN are explored.
Finally, in section 4, the conclusions are presented.

2. THE FORMULATION OF THE PROBLEM
2.1. The Model and Solution

It is considered the interaction of a two-level atom de-
scribed by spin-1/2 operators Si,S,; with a single-mode of
quantized radiation field described by the annihilation and the
creation operators a,a’ . For the sake of the simplicity, it is as-
sumed that the field is in resonance with the atomic transition
frequency myp. In this case, the Hamiltonian of the system un-
der the rotating wave approximation takes the form of (& = 1)

H =S, +woa’a+(g°(1)S a+g(t)S_a’) (1)

in which the interaction part is

Hiy = (g (1)S a+g(1)S_a) 2
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where g(¢) is the coupling coefficient between the atom and
the field and is time-dependent. In order to employ the RPTN
into the problem, the nature of g(¢) is considered to be com-
pletely stochastic which is defined as

g(r) = goe™®”) 3)

where g is a positive real constant for the amplitude and ¢(7)
is a stochastic variable which fluctuates between different ar-
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bitrary phases in a manner of jumps. The jumps are separated
by the time intervals called the mean dwell time. It is con-
sidered that ¢(¢)’s in the neighbouring intervals are not cor-
related. Then, the probability for finding ¢ remains at any
instant is the same. Therefore, ¢(¢) is undergoing random
continuous change of Markov type which allows to take the
average over the stochastic fluctuations.

An exact solution of the system is obtained by the method
introduced by Joshi [12]

~H(0:5,0)d0(0)

b [exnl / U@:s0p(0)U " (0T51)dQ(0)dr @)
where dQ(0) = and To is the mean dwell time. The mean dwell is the only factor which determines the strength/insensity of
the noise. The shorter the mean dwell time means the stronger/the more intense noise. In this integral equation, the statistical
average is taken over the stochastic variable ¢(¢). So, p(¢) is the noise-averaged density matrix of the system. The most general
solution of Eq. (4) for the atom-field interactions with RPTN may be obtained as follows;

One can obtain the unitary transformation in atomic bases |e¢) and |g) in the interaction picture as

U cos(VaaTgor)  —i="H ) gexp( i) )
- .sin(Va'a .
—z%cﬂ exp(id) cos(\/aTagot)
The most general expression of the atom-field state at + = O can be written as
= Y. P (0)me)(ne| + pryy (0)mg) (ng| + Py (0)|me) (ng| + Py (0)|mg) (el } (6)
m,n=0
During the interaction, this state will evolve in time into the state
= Y P (0)lme)(ne| +py,, (1)lmg) (ngl + ppy (£)lme) (ngl + pruyt (¢)Imsg) (nel} ©)
m,n=0
where the diagonal elements are
Pon (1) = (melp(t)|ne)
Pn (1) = (mglp(t)|ng) ©)

and the off-diagonal elements are

P (1) = (melp(t)|ng)
P (t) = (mg|p(t)|ne) )

From these terms, one may obtain the integral expressions for these elements as

P (T)exp(t/T0) = Pyt (0)COS 0y TCOS 0T+ P, 7, (0) Sin 0L, TSIN GG, T

T
+i/ dtexp(t /%) {p,f (t
To JO

Pt 1np1 (1) SIN0G, (T—1)sinoy, (T—1)}

) coS 04y (T —1) cosa, (T—1) (10)
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Pn (T)exp(T/T0) = P (0)cosPpTcos B,,’H—p;fln_l(O) sin B, Tsin B, T
+Ti / *drexp(t/%0) {pres ()08 (T — 1) cos B (T — 1)
0 J0

+p:;ir1”71 (t) sin Bm sin Bn (T - t)}

p(t)exp(t/19) = p;h, (0)cosa,,TcosB,T

b [ drexpls/50) (o (1) cosam(z 1) cosBa(c— )
To Jo

P (T)exp(t/19) = P, (0)cosB,Tcoso,T

+% /0T dtexp(t/T0){py (t) cos By (T —1) cos oy, (T—1)}

where, 0;—1 = B, = gov/m.

By using the Laplace transformation technique, the following expressions from the above equations can be obtained as

(s+ I/T)P%z+ (0)[(s + I/T)z +‘QrJrrm] F Pt 1nt1 (0)Conn

p;:(@::s4+3§/T+{ZQ$n+3/T2ﬁ2+(1/T3+(3Q$n—rﬁ@/7)s+Amn
() = (5+1/T){Ppun 0)[(s+1/T)* + O8]+ Py 1,1 (0)Ama}
P 8) = G 33 T 4 (205 +3/T2)52 + (1/T3 + (3051 — Avn) /)5 + Bom
() = (s+1/T)phn (0)[(s+1/T)* +X1,]
Pn {5 s 383 T+ (205 +3/T2)s2 4+ (1/T3 +3Y 5, /T)s 4 Coun
Dt (s) = (s+1/T)pmn (O)[(s+1/T)* + ;1]

st 4383 T 4 (200 +3/T2)s2 4+ (1/T3 + 3Y,5/T)s + Dy
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12)

13)

(14)

15)

(16)

a7

where T = 19, QF, = 02, 02, Ty = 204,04, O, = B2, £ B2, Apn = 2B Py, and Y, = o2, = B2 and [T, = B2 + 2. And also

Amn = (@, /T* =T /T> +Q,,,)
Bun = (©3,/T% = A/ T* +6,,,)
Con = (Y;n/T_(Y;;n)Z/T)
Dyy = (IL},/T —(11,,,)*/T)

The inverse Laplace transformation gives an exact solution to the atom-field system as

ot (1) = i A+ 1/T) [P 0) (A + 1/T)2 + ] + P s (0) T

©exp(it
= [Tz j (A — M) p(hy)

& NP O+ 1T 408, ]+t 1 (0) A
P (1) = /:Zl [Tt (A — M)

exp(Ajt)

where the A s are the roots of the equations

(18)

19)
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4 3 2\ 2 3
A+ 303 /T + (298, +3/THA + (1/T% + (395, — Ton) /T)Aj + A = 0 (20)

and

N +303/T + (20,5, +3 /TN + (1/T° + (30}, — Apn) /T)Aj + By = 0 1)

respectively.
And the other two terms are

o (1) = i A+ 1/T)pr (O)[(A+1/T)* + X5,

]
exp(At (22)
)y T~ ) Pt
& N+ 1/T)ppt (O)[(Aj+1/T)* +11;,]
mn () = & = ! " exp(At (23)
where the A s are the roots of equations
4 3 2y 2 3
A} 430 /T + (205, +3/T°)N5 + (1/T° 43X, /T)Aj + Con = 0 (24)
and
4 3 2192 3
A} + 30 /T + (210, +3/T*)A: 4 (1/T° + 3113, /T)Aj + Dy = 0 (25)
respectively.

(

Eqgs. (18), (19), (22) and (23) describe the dynamics of the where A is the atomic state distribution with 0 < |A| < 1 and
atom-field interactions that are subjected to the random phase the field is initially taken in a thermal state

telegraph noise.
pr(0) =} Paln)(n 27)
n=0

3. RESULTS AND DISCUSSION .
where the thermal field at some temperature of the cavity Te

) ) with the probability distribution P, in the number states |n)
The exact solution given by Egs. (18), (19), (22) and (23)

) - . being given by,
for the RPTN is now used to investigate the entanglement
properties of the system. For this, the atom is initially taken 1 no,
in a pure state as by = (1+ﬁ)(1+ﬁ) (28)

where /i = {P® — 1}~ is the initial mean photon number in
the cavity, B = 1 /kgTe and kg is Boltzmann’s constant. In this

[Wa(0)) = (Ae) +1/1—|A%|g)) (26)  case, the initial atom-field state at = 0 becomes
J
P (0) = Y, Pu{[Al*|ne)(ne| + (1 — [A*)|ng) (ng|Ay/ 1 — |2 |ne) (ng| + A%/ 1= A2 |ng) (nel} (29)
n=0

From Eq. (29), it is clear that p\.* (0) = P,|A|%,p,, (0) = P, (1 — [A|?),p;5(0) = PA/1 — A2, p,7 (0) = P /1 —|AJ2.
With these initial conditions, one can obtain the solution of the system. In this case, the atom-field system will evolve in time
into the state

p/ (1) = ;){P,Trf (1) Ine) (nel +p,, (1)Ing) (ng| + Py (t)ne)(ngl+py," (1)|ng) (nel} (30)

(

The dimension of the system described by Eq. (30) is 2 ®co. tify such systems. For the quantification of the entanglement
In fact, there is no known an entanglement measure to quan-
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in the system, it is adopted the mutual entropy of the system
S(A: F) which is defined as S(A : F) = S(A) +S(F) — S(AF).
Here, S(A) and S(F) are the entropies of the atom and the
field, respectively and S(AF) is the entropy of the atom-field
system. In order to calculate the entropies, the dimension of
the system ng;,, is taken in such a way that the probability dis-
tribution of the field reaches to unity approximately, that is,
Yol p, 2 1 [14].
The entropy of a system is defined as

S=—Y Ailogh; (31)

pe(r) = ;)P,Ti(t)ld (e + ZOP;{ (8) (gl + X Pan (e} (gl + X P’ (1)]8)(e]

And the time-dependent elements of the density matrix of the
field becomes

L) = ot (1) + P (1) (33)

The effects of the RPTN on the entanglement dynamics of
the atom-field interaction are depicted in Figs. (1)-(4).
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FIG. 1: The mutual entropy as the function of the time ggt and the
mean dwell time T (in the unit of 1/go) for the large values of the
mean dwell time. A = 1/+/2 and 7 = 0.1.

In Figs. (1) and (2), the mutual entropy S(A : F) of the sys-
tem is plotted as the function of time got and the mean dwell
time 7. In Fig. (1), it is clear that the entanglement between
the atom and the field reaches its maximum value then de-
cays and eventually will disappear in a finite time interval that
depends on the strength/intensity of the noise determined by
the mean dwell time. As the value of mean dwell time 7 in-
creases, the strength and the lifetime of the entanglement in-
creases. Because, as T increases, the effects of the noise on
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where A;s are the non-zero eigenvalues of the density matrix
of the system. The density matrix of the atom (and the field)
can be found by tracing out the joint density matrix of the
system described by Eq. (30) over the degree of freedom of
the field (and the atom). So, the time evolution of the density
matrix of the atom becomes

(32)
n=0 n=0
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FIG. 2: The mutual entropy as the function of the time ggt and the
mean dwell time 7 (in the unit of 1/go) for the small values of the
mean dwell time. A = 1/+v/2 and 7 = 0.1.

the interaction weakens. Since the intensity/strength of the
noise is determined by the mean dwell time, the decoherence
mechanism becomes faster as the mean dwell time is shorter.
So, it seems that there is a monotonous relation between the
strength of the noise (the mean dwell time) and the degree of
the entanglement. But, for the sufficiently small values of the
mean dwell time, the decrease in the mean dwell time (the in-
crease in the strength of the noise) does not induce a decrease
in the degree of the entanglement, instead causes an increase
in the degree as shown by Fig. (2). This may be explained
as; when the changes in the phase (jump-like) are very fast,
the system can not follow all the phase changes and can not
respond them completely. So, it only feels the averages of the
phase changes. In this case, the entanglement becomes more
robust against the noise. Thus, the entanglement is a non-
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monotonic function of the intensity of the noise. The degree
of the entanglement decreases to a minimum value for an opti-
mal intensity of the noise and then increases for a sufficiently
large intensity. This situation resembles the stochastic reso-
nance in which the response of a non-linear system to a weak
periodic driving can be enhanced when supplemented with a
noisy field of certain optimal intensity [15].

In addition, as also shown by Fig. (3), as T — oo, the effect
of the noise disappears and one reaches the entanglement dy-
namics in the usual JCM [16], in which the entanglement is
present at all times and never goes to zero due to the interac-
tion, except at t = 0.

0.3

0.25

0.2

S(A:F)

0.1

0.05

gt

FIG. 3: The mutual entropy as the function of the time got. A =
1/v2,i=0.1and T — oo.

As to the influence of the parameters of the system on the
entanglement dynamics, Fig. (4) shows the effects of these
parameters, atomic state distribution A and the average pho-
ton number 71, on the entanglement dynamics in the presence
of the RPTN. The entanglement is obviously the most power-
ful when the atom is initially in the excited state (A = 1) and
is the weakest when the atom is initially in the ground state
(A = 0), as expected. As the value of A increases, the entan-
glement becomes stronger. In addition, as the value of 7 in-
creases, equivalently the temperature of the cavity increases,
the system acts much like a classical statistical system. So,
the strength of the entanglement falls down. But, unlike the
non-noisy case, the entanglement of the system will disappear
at any temperature of the cavity field no matter what, provided
that the monotonous relation between the strength of the noise
and the degree of the entanglement. So, the entanglement is
very sensitive to the system parameters. The initial conditions
of the system play important role on the entanglement dynam-
ics for its strength and for its lifetime to die out.

In the interaction, there is a dephasing mechanism that ac-
counts for the decay of the entanglement. This mechanism
arises from the stochastic phase fluctuations of the atom-field
coupling parameter. In the mechanism, the phase fluctuations
affect only the dipole or the transverse relaxation mechanism
of the system. There is not any type of dissipation in the en-

Hiinkar Kayhan

\\\\\\\\\\\\\\\\\\\\\\\\\Q"o,

Lot

\\\\\\\\\‘

0%\

(b)

FIG. 4: The mutual entropy as the function of the time go¢ and (a) the
atomic state distribution A. 77 = 0.1. (b) the average photon number
i, A=1/+/2. T =1 for both.

ergy of the system. So, this dephasing mechanism is different
from the usual dissipation mechanisms (such as cavity field
damping and spontaneous spontaneous emission decay or ra-
diative damping of the system) which affects both the energy
and the coherence of the system. So, RPTN causes another
type of intrinsic decoherence in the JCM, in result the decay
of quantum coherences. Milburn [17] proposed a model for
intrinsic decoherence. In this model, intrinsic decoherence
gives rise the destruction of the quantum coherence in the
case that the physical properties of the system approaching a
macroscopic level. In this type of dephasing mechanism, the
constants of the motion remain constants of the motion and
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hence stationary states remain stationary states. So, the de-
phasing mechanisms in these two cases display similar physi-
cal features (no energy dissipation and the decay of quantum
coherences) but do not have the same origin. Jian et.al [18]
used Milburn’s model to investigate the effects of the intrin-
sic decoherence on the entanglement properties of the same
relevant system. The exact solution in their work reveals that
there is an obvious monotonous relation between intrinsic de-
coherence coefficient ¥ and the degree of the entanglement.
For the small values of the coefficient Y — 0, no entanglement
emerges and for its large values Y — oo, the entanglement in
usual JCM is obtained. Therefore, as though the dephasing
mechanisms in these both cases display similar physical fea-
tures (no energy dissipation and the decay of quantum coher-
ences), the entanglement dynamicsses do not. The random
phase telegraph noise induces a very special featured entan-
glement dynamics. Moreover, the noise considered in this
study arises in a non-controllable manner. It is completely
due to the stochastic behavior of the system itself, not due to
an environment effect. There are some works devoted to the
environmental noise. For example, one is about preventing
or minimizing the influence of environmental noise in quan-
tum information processing [19]. But, instead of attempting
to shield the system from the environmental noise, Plenio and
Huelge used a white noise to generate a controllable entan-
glement by incoherent sources [20]. The entanglement dy-
namics in their work displays a similar character with that of
this work. The noise plays a constructive role in quantum in-
formation processing but the entanglement arises from a con-
trollable situation. Similar aspects have also been considered
elsewhere [21, 22]. In this paper, the revealed properties of the
entanglement of the system under the random phase telegraph
noise are uncontrollable and unaffected by the surrounding
environment. Since the fluctuations in the system are quite
random, the entanglement equivalently the information in the
system fluctuates randomly.
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4. CONCLUSION

In this paper, the interaction of a two-level atom with a
single-mode field is studied in the environment of the random
phase telegraph noise analytically by the Jaynes-Cummings
model. Random phase telegraph noise is considered as the
noise which arises from the system itself not from its sur-
rounding environment. It is quite due to the stochastic phase
fluctuations in the atom-field coupling of the system. It causes
another type of intrinsic decoherence in the JCM in a non-
controllable manner. An exact solution to the model under
this noise is obtained. The entanglement dynamics between
the atom and the cavity field is explored by calculating the
mutual entropy of the system. The noise manifests itself as
a decay factor in the degree of entanglement in time due to a
kind of dephasing mechanism which is different from the ra-
diative damping of the atom. This dephasing mechanism af-
fects only the dipole or the transverse relaxation mechanism of
the system. The mean dwell time predominantly determines
the strength as well as the lifetime of the entanglement. The
entanglement is a non monotonic function of the intensity of
the noise determined by the mean dwell time. The degree of
the entanglement decreases to a minimum value for an opti-
mal intensity of the noise and then increases for a sufficiently
large intensity. In addition, the entanglement dynamics is very
sensitive to the system parameters. The initial conditions of
the system play important role on the entanglement dynam-
ics for its strength and for its lifetime to die out. Unlike the
non-noisy case, the entanglement of the system will disappear
at any temperature of the cavity field no matter what provided
that the monotonous relation between the intensity of the noise
and the degree of the entanglement.
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