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We consider a local, renormalizable, BRST-invariant action for QCD in Coulomb gauge that contains aux-
iliary bose and fermi ghost fields. It possess a non-perturbative vacuum that spontaneously breaks BRST-
invariance. The vacuum condition leads to a gap equation that introduces a mass scale. Calculations are done
to one-loop order in a perturbative expansion about this vacuum. They are free of the finite-T infrared diver-
gences found by Lindé and which occur in the order g6 corrections to the Stefan-Boltzmann equation of state.
We obtain a finite result for these corrections. Renormalization and renormalization-group flow are described.
We calculate the ghost propagator and color-Coulomb potential to one-loop and find that they are long range,
whereas the 3-dimensionally transverse would-be physical gluon propagator is suppressed like k2 at small |k|.
These one-loop results accord with the Gribov scenario in Coulomb gauge and with recent numerical determina-
tions of these quantities. When the auxiliary fields are integrated out, one obtains the standard Coulomb gauge
action with a cut-off at the Gribov horizon.
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I. INTRODUCTION

A. Overview

There exists a well articulated scenario for confinement
in Coulomb gauge that was originally developed by Gribov
[1], and which has been confirmed by recent numerical stud-
ies that are reviewed below. In the present article we shall
show that this scenario may be derived from a local renormal-
izable, BRST-invariant action. This action possesses a non-
perturbative vacuum, and the features of the gluon and ghost
propagators foreseen by Gribov are obtained in zeroth and first
order of a systematic perturbative expansion in g about this
vacuum.

The local, renormalizable, BRST-invariant action differs
from the standard action in Coulomb gauge in that it contains
auxiliary fermi and bose ghost fields. This action possesses a
non-perturbative vacuum that is obtained by a c-number shift
of the bose ghost fields which then mix with the gluon field,
and the vacuum is determined by a gap equation that intro-
duces a mass into the theory. This is in close analogy to
electro-weak theory in which a shift of the Higgs field gives
the W and Z bosons a mass. However in electroweak the-
ory the vacuum spontaneously breaks global gauge invariance,
whereas in the present case it is BRST invariance that is spon-
taneously broken. Another difference is that, in electroweak
theory, global gauge symmetry is restored at high temperature
whereas, in the present approach, the spontaneous breaking of
BRST invariance occurs at all temperatures. This allows us to
calculate finite corrections to the Stefan-Boltzmann equation
of state at high temperature.

In 1980 Lindé [2] showed that standard finite-temperature
perturbation theory suffers from infrared divergences. Since
then no solution has been found, although the infrared diver-
gences may be avoided by introducing a magnetic mass for
the gluon in an ad hoc manner. Some time ago it was sug-
gested that these divergences arise because the suppression
of infrared gluons by the proximity of the Gribov horizon in
infrared directions is neglected in standard perturbation the-

ory [3]. It appears that the infrared divergences do not arise
in the expansion in g presented here, because the free prop-
agator (in the non-perturbative vacuum) of 3-dimensionally
transverse, would-be physical gluons is strongly suppressed
in the infrared.

Calculations are done in a perturbative expansion in g about
the non-perturbative vacuum. Results for the ghost and gluon
propagator in zero- and one-loop calculations are in accord
with the numerical results described below, and with the Gri-
bov scenario. The issue of Gribov copies is not raised for
this action. However when the auxiliary fields are integrated
out, one obtains a non-local action and a gap equation that,
remarkably, had been obtained previously from the standard
Coulomb-gauge action by imposing a cut-off at the Gribov
horizon [4].

In general the present review follows [5] closely, but the
discussion of renormalization and renormalization-group flow
have not been presented before.

B. Confinement scenario in Coulomb gauge and recent
numerical results

One would like to explain the presence of a long-range
force that confines colored objects. At the same time one
is faced by the apparently contradictory requirement that the
massless gluons that are supposed to transmit this force are
absent from the physical spectrum.

This seeming paradox is addressed in a scenario in
Coulomb gauge that was originally developed by Gribov [1].
It relies on the fact that manifest Lorentz invariance does not
hold in Coulomb gauge, so space-space and time-time com-
ponents of the gluon propagator are independent. In this
scenario, the 3-dimensionally transverse, would-be physical
gluon propagator, DAiA j(k,k0), is suppressed at small k be-
cause of the proximity of the Gribov horizon in infrared direc-
tions, so physical gluons are absent from the physical spec-
trum. At tree level in the non-perturbative vacuum, the 3-
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dimensionally transverse propagator is found to be

DAiA j(k,k0) =
k2

(k2
0 +k2)k2 +m4

, (1)

which has poles at

−k2
0 = E2(k) ≡ k2 +

m4

k2 , (2)

in agreement with the Coulomb-gauge energy obtained by
Gribov. This propagator is strongly suppressed in the infrared,
vanishing like k2. On the other hand confinement of quarks,
or any colored object, is explained by the long range of the in-
stantaneous part, Vcoul(R), of the time-time component of the
gluon propagator,

g2DA0A0(x, t) = Vcoul(|x|)δ(t)+P(x, t), (3)

that couples universally to color charge. Here P(x, t) is a
non-instantaneous vacuum polarization term that is screen-
ing, whereas the color-Coulomb potential, Vcoul(R), is anti-
screening [6]. Gribov found that the concentration of proba-
bility at the Gribov horizon causes Vcoul(R) to have the long-
range, confining property limR→∞ Vcoul(R) = ∞. The local,
renormalizable theory presented here yields results in agree-
ment with Gribov’s predictions to zeroth or first order in an
expansion in g about the non-perturbative vacuum.

Numerical studies provide a valuable laboratory for test-
ing various confinement scenarios. In accord with the Gri-
bov scenario, it was found [7] that the equal-time would-be
physical gluon propagator DAiA j(k)|t=0 is indeed suppressed
at small k, while the fourier transform Ṽcoul(k) is enhanced
at small k. This enhancement corresponds to a long-range,
color-Coulomb potential Vcoul(R). It was subsequently found
numerically [8] that the long-distance behavior of the color-
Coulomb potential is consistent with a linear increase at large
R,

Vcoul(R) ∼ σcoulR, (4)

with the Coulomb string tension given approximately by
σcoul ∼ 3σ. Here σ is the physical string tension between
a pair of external quarks as determined from a large Wilson
loop. Other studies provided additional support for the con-
finement scenario in Coulomb gauge, including in particular
the consistency of Coulomb-gauge and center-vortex scenar-
ios [9, 10]. These numerical studies were certainly encourag-
ing for the confinement scenario in Coulomb gauge.

However, as in the old tale of the sorcerer’s apprentice, it
was unexpectedly discovered that this “confinement scenario”
works also in the deconfined phase. Indeed it was found nu-
merically that the long-distance behavior of Vcoul(R) is consis-
tent with a linear increase, σcoul > 0, at temperatures T above
the phase transition, T > Tc, where the physical string tension
vanishes, σ = 0 [9]. Investigation of the temperature depen-
dence of σcoul revealed that at high T in the deconfined phase,
the Coulomb string tension increases with T , consistent with
a magnetic mass [11],

σ1/2
coul(T ) ∼ c g2(T ) T. (5)

Thus, from the numerical evidence, what has been called the
Gribov “confinement” scenario works as well in the decon-
fined phase of QCD as in the confined phase.

Although this came as a surprise, it was a surprise that could
have been predicted. Recall that temperature determines the
extent, β = T−1, of Euclidean space-time in the time direction,
0 ≤ t ≤ β. On the other hand the Coulomb gauge condition,

3

∑
i=1

∂iAi(x, t) = 0, (6)

holds at each time t, and gauge fixing to the minimal Coulomb
gauge is done at each time t, independently of the extent
β = T−1 in the time direction. [For each t, one minimizes the
3-dimensional norm-square

∫
d3x |gA(x, t)|2 of the 3-vector

potential, A(x, t), with respect to 3-dimensional gauge trans-
formations gt(x) = g(x, t), where gAi = g−1Aig+g−1∂ig. The
minimal Coulomb gauge leaves unfixed space-independent
but time-dependent gauge transformations g(t).] Likewise the
cut-off at the Gribov horizon is applied to 3-dimensional con-
figurations A(x, t) at each time, t, independently of the extent
β in the time direction. So the arguments which lead to these
propagators should, and apparently do, apply for all temper-
atures T , including in the deconfined phase. We shall in fact
obtain the temperature dependence (5), and the propagators
(1) and (4), modulo a logarithm, at all temperatures T , from a
local, renormalizable action with a non-perturbative vacuum.

It thus appears, from both numerical and analytic evidence,
that what originated as a scenario for confinement provides a
more general framework for QCD that holds both in the con-
fined and deconfined phases. Although this is surprising at
first, there is no paradox. For the unbounded increase of the
color-Coulomb potential, limR→∞ Vcoul(R) = ∞, is a necessary
condition for confinement, but it is not a sufficient condition
[12]. Indeed at large R, Vcoul(R) provides an upper bound on
the physical, gauge-invariant potential V (R) between a pair of
external quarks,

V (R) ≤Vcoul(R); R → ∞, (7)

provided that V (R) is confining, limR→∞ V (R) = ∞. Thus
there is no confinement without Coulomb confinement.

But the converse is false. To see why this is so, it is suffi-
cient to consider the case of QED, which is simpler than QCD,
but manifests screening of the electric field by the plasma. In
QED the free energy V (x) of a pair of static electric charges,
at a temperature T = β−1 and separation x, is obtained from

Z = exp[−βV (x)]

= exp[−
∫ β

0
dt1

∫ β

0
dt2 e2DA0A0(x, t2 − t1)]. (8)

By periodicity DA0A0(x, t + β) = DA0A0(x, t), we find that the
free energy is given by

V (x) =
∫ β

0
dt e2DA0A0(x, t). (9)

The point is that this is the zero-frequency part of e2D00(x, t),
which is not the same as the instantaneous part Vcoul(|x|) of
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e2D00(x, t), defined in (3). Indeed, in QED the instantaneous
part is given by Vcoul(R) = e2

R , which is of infinite range,
whereas the free energy is given by the screened potential,

V (x) = e2 exp(−mel |x|)
|x| , (10)

where [13], and [14] p. 93,

m2
el =

1
3

e2T 2. (11)

This QED example provides an instance where the bound
V (R) ≤Vcoul(R) holds for all R.

C. Relation to other approaches

Equal-time correlators in Coulomb gauge may be calcu-
lated using the Schwinger-Dyson equations of the Hamil-
tonian formulation [15–19]. The gluon energy obtained by
variational calculation accords at both high and low momen-
tum with the Gribov energy (2), provided that the Faddeev-
Popov determinant is properly accounted for [17, 18]. Indeed
the Faddev-Popov determinant dominates the low-energy dy-
namics. The same Gribov energy (2) will be obtained here
by a quite different method. A systematic study of the in-
frared limits of propagators and vertices has been reported re-
cently in [19], which includes earlier results [20, 21]. The
gluon and ghost propagators obtained in the present article
from low-order perturbation theory about the non-perturbative
vacuum are in qualitative agreement with those of [19] al-
though the infrared critical exponents are not identical. We
note that the Schwinger-Dyson equations in Coulomb and
Landau gauge should be quite reliable in the infrared limit
because the weight in the infrared limit is precisely given by
the Faddeev-Popov determinant, det(−Di∂i) with negligible
contribution from the gluon wave-functional or action [22],
a phenomenon known as ghost dominance [23, 24]. This
is used to advantage with the horizon condition and non-
renormalization of ghost-gluon vertices. As a result the in-
frared limit of the Schwinger-Dyson equations in Coulomb
and Landau gauges decouples from finite-momentum correla-
tors. Moreover errors from truncation of 3-vertices have been
controlled [19, 25, 26]. Thus it would appear that the infrared
exponents at zero temperature reported in [19] are more ac-
curate than those reported in the present article that are ob-
tained by an expansion in g about the non-perturbative vac-
uum to one-loop order. Nevertheless both methods have their
advantages. In particular the field-theoretic method described
here also gives the correlators in Coulomb gauge at unequal
times and finite temperature, and does not rely on a variational
Ansatz for the wave-functional that would be needed to go be-
yond the infrared limit. It relies on the familiar methods of
local, renormalizable perturbation theory.

The instantaneous color-Coulomb potential has recently
been used in Dyson-Schwinger and Bethe-Salpeter equations
to find solutions for pseudoscalar and vector mesons [27].
Cancellation of the energy divergences of Coulomb gauge has

been demonstrated at the two-loop level [28], and renormal-
ization and cancellation of energy divergences to all orders
in perturbation theory in Coulomb gauge has been elucidated
recently, [29, 30].

Equivalence of a cut-off at the Gribov horizon to a modi-
fied local action with auxiliary fields was first established in
Landau gauge some time ago [31]. It was then shown that
the horizon condition renormalizes consistently, and that the
ghost propagator in Landau gauge has a 1

(k2)2 or dipole sin-
gularity [32]. The symmetries of the local theory in Landau
gauge were exhibited and algebraic renormalizability estab-
lished [33, 34], and it was shown that the horizon condition
coincides with the defining condition for a non-perturbative
vacuum that spontaneously breaks the BRST symmetry of a
local, renormalizable, BRST-invariant Landau-gauge action
[33]. More recently, using this local action in Landau gauge,
the gap equation was determined to two-loop order, and it was
verified at the two-loop level that the ghost propagator has a
dipole singularity in the infrared [35]. It has also been found
to one-loop order that the gluon propagator in Landau gauge
vanishes like k2, and that the renormalization-group invariant
coupling αs(k) appropriate to the Landau gauge is finite at
k = 0 [36]. Thus the elements of Gribov’s scenario in Lan-
dau gauge [1] have been derived from a local, renormalizable,
BRST-invariant action. The Landau gauge case has been re-
viewed in [37].

The Coulomb gauge provides a more straightforward con-
finement scenario than the Landau gauge (but see [38]), and
for this reason Gribov and others turned to the Coulomb
gauge. The Coulomb gauge is also well suited to finite-
temperature calculations because the heat-bath provides a pre-
ferred Lorentz frame, so symmetries of the Coulomb gauge,
which breaks manifest Lorentz invariance, are the physical
symmetries of the system. Unitarity and Lorentz invariance
in the present approach are discussed in the concluding sec-
tion and the Appendices. In the Appendices we show that,
if one integrates out the unphysical degrees of freedom, one
obtains a canonical Hamiltonian system and as such is it for-
mally unitary. Note also that, because the Coulomb gauge
condition holds at a fixed time, it is the same in both Euclidean
and Minkowski formulations, unlike the Landau gauge condi-
tion. In the Appendices we also show the equivalence of the
local renormalizable, BRST-invariant action containing auxil-
iary fermi and bose ghost fields to the usual Coulomb-gauge
action with a cut-off at the Gribov horizon.

D. Organization of paper

The local, renormalizable, BRST-invariant action is intro-
duced in sec. II. The nonperturbative vacuum is found in sec.
III by a translation of the auxiliary bose fields. The free prop-
agators of the non-perturbative vacuum are found in sec. IV.
The gap equation is calculated to one-loop approximation in
sec. V. Renormalization and renormalization-group flow are
described in sec. VI. The one-loop gap equation is solved in
sec. VII. The free energy is derived in sec. VIII, and the cor-
rection to the equation of state due to the non-perturbative
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vacuum is evaluated at high temperature in sec. IX. The ghost
propagator is evaluated to one-loop in sec. X. A softly bro-
ken Slavnov-Taylor identity is derived in sec. XI that is used
in sec. XII to find the color-Coulomb potential to one-loop.
Unitarity and Lorentz invariance are briefly discussed in the
concluding sec. XIII. The auxiliary fields are integrated out
in Appendix A, and the action is expressed in terms of the
“horizon function” that is non-local in space but local in time.
In Appendix B the partition function is expressed in canoni-
cal Hamiltonian form in Coulomb gauge, with a cut-off at the
Gribov horizon.

II. LOCAL BRST-INVARIANT ACTION IN COULOMB
GAUGE

We shall be interested in pure SU(N) gauge theory at tem-
perature T . Finite T is described by a Euclidean action which,
for pure SU(N) gauge theory is of the form

S = SY M + sΞ (12)

where SY M =
∫

dDx LY M , with

LY M =
1
4

F2
µν, (13)

is the Yang-Mills action, and

Fµν = ∂µAν −∂νAµ +gAµ ×Aν. (14)

Here g is the coupling constant, and we use the notation for the
Lie bracket (A×B)a ≡ f abcAbBc, where f abc are the fully anti-
symmetric structure constants of the SU(N) group. The color
index is taken in the adjoint representation, a = 1, ...,N2 − 1.
We shall generally suppress the color index, and leave sum-
mation over it implicit. Configurations are periodic in x0,

Aµ(xi,x0) = Aµ(xi,x0 +β), (15)

with period β = 1/T , where T is the temperature. The integral
over x0 always extends over one cycle,

∫
dx0 ≡ ∫ β

0 dx0. We
are in D Euclidean dimensions. Lower case Latin indices take
values, i = 1,2, ...,D−1, while lower case Greek indices take
values µ = 0,1, ...,D−1.

In the BRST formulation there are, in addition to Aµ, a pair
of Faddeev-Popov ghost fields c and c̄ and a Lagrange multi-
plier field, b, on which the BRST operator acts according to

sAµ = Dµc; sc = −(g/2)c× c
sc̄ = ib; sb = 0. (16)

It is nil-potent, s2 = 0. Here Dµ is the gauge-covariant deriva-
tive in the adjoint representation, Dµc ≡ ∂µc+gAµ × c.

The choice of Ξ is the choice of gauge. Physics is inde-
pendent of Ξ, provided that it provides a well-defined calcula-
tional scheme. For finite T , this is a crucial proviso, because
the standard gauge choice leads to infrared divergences [2].
The standard Coulomb gauge is defined by the choice

sΞcoul = s
∫

dDx ∂ic̄Ai

=
∫

dDx (i∂ibAi −∂ic̄Dic). (17)

Here the Lagrange-multiplier field b imposes the Coulomb
gauge condition ∂iAi = 0. To avoid the infrared divergences of
the standard gauge choice we shall modify this gauge choice
by adding an s-exact term in the action that involves auxiliary
ghost fields.

Recall that observables O are in the cohomology of s
(namely s-invariant operators sO = 0, modulo s-exact oper-
ators, O ∼ O+ sX .) One may introduce additional quartets of
auxiliary ghost fields on which s acts trivially, because such
fields cannot appear in the cohomology of s. We introduce
them in the form

sφab
µ = ωab

µ ; sωab
µ = 0

sω̄ab
µ = φ̄ab

µ ; sφ̄ab
µ = 0, (18)

The fields φab
µ and φ̄ab

µ are a pair of bose ghosts, while ωab
µ and

ω̄ab
µ are fermi ghost and anti-ghost. The indices a and b label

components in the adjoint representation of the global gauge
group, a,b = 1, ...,N2 −1, and µ is a Lorentz index.

The BRST method insures that physics is unchanged if we
add to the action the s-exact term

sΞaux = s
∫

dDx ∂iω̄ab
µ (Diφµ)ab, (19)

where we stipulate that the gauge covariant derivative acts on
the first color index only,

(Diφµ)ab = ∂iφab
µ +g f acdAc

i φdb
µ , (20)

etc. [More generally we may take the gauge-fixing term
to be s

∫
dDx ∂κc̄ ακλ Aλ and the auxiliary action to be

s
∫

dDx ∂κω̄ab
µ ακλ (Dλφµ)ab, where ακλ is a positive symmet-

ric matrix that may be chosen to be diagonal.] So far, the pair
of indices B ≡ (b,µ) is mute, where b is the second color in-
dex and µ is the Lorentz index, and B could run over any index
set. We take for the gauge-fixing term

sΞ = s
∫

dDx ξ, (21)

where

ξ = ξcoul +ξaux = ∂ic̄aAa
i +∂iω̄ab

µ (Diφµ)ab. (22)

The complete action and Lagrangian density are given by

S =
∫

dDx L

L = LY M + sξ. (23)

Introduction of the auxiliary ghost fields and of the auxiliary
s-exact action (19) is legitimate in the BRST approach [39],
although the reason for doing so is not yet apparent.

III. NON-PERTURBATIVE VACUUM

A. Maggiore-Schaden shift

We make a change of variable whereby the bose ghosts
are translated by a c-number term linear in the spatial coor-
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dinate xµ [33],

φab
µ (x) = ϕab

µ (x)− γ1/2 δab xµ

φ̄ab
µ (x) = ϕ̄ab

µ (x)+ γ1/2 δab xµ. (24)

Note that φ and ϕ designate distinct fields. [The shift term x0
is not periodic with finite period β = T−1. We shall require
periodicity only for the new fields ϕab

0 and ϕ̄ab
0 . The same re-

mark applies for quantization in a periodic spatial box.] Here
γ is a parameter with dimensions of (mass)4 that will be deter-
mined by the condition ∂W

∂γ = 0, where W is the free energy.
We also translate b and c̄ by compensating terms,

c̄d = c̄�d + γ1/2g f adbxµω̄ab
µ

bc = b�c − iγ1/2g f acbxµϕ̄ab
µ , (25)

which are chosen to cancel explicit x-dependence in the new
action. The BRST operator s acts on the new variables ac-
cording to

sϕab
µ = ωab

µ

sω̄ab
µ = ϕ̄ab

µ + γ1/2 δab xµ

sc̄�d = ib�d ; sb�d = 0. (26)

Despite the x-dependent shift, remarkably, neither the
gauge-density (22) nor the Lagrangian density acquire any ex-
plicit x-dependence when expressed in terms of the new vari-
ables. Indeed from (22) we obtain

ξ = ξ1 +ξ2 +ξ3, (27)

where

ξ1 = ∂ic̄�aAa
i

ξ2 = ∂iω̄ab
µ (Diϕµ)ab

ξ3 = −γ1/2 (Diω̄i)aa. (28)

As before, it is understood that the gauge-covariant derivative
acts on the first index only, (Diω̄µ)ab = ∂iω̄ab

µ +g f acdAc
i ω̄db

µ .
After the shift, the complete action is given by

S =
∫

dDx L , (29)

where the Lagrangian density has the explicit form

L = LY M +L1 +L2 +L3 (30)

where Li = sξi,

L1 = i∂ib�aAa
i −∂ic̄�a(Dic)a (31)

L2 = ∂iϕ̄ab
µ (Diϕµ)ab + γ1/2 (Diϕi)aa

−∂iω̄ab
µ [ (Diωµ)ab +(gDic×ϕµ)ab ] (32)

L3 = −γ1/2 [ (Diϕ̄i)aa +(gDic× ω̄i)aa ]

−γ (N2 −1)(D−1), (33)

and (Dic×ϕµ)ab ≡ f acd(Dic)cϕdb acts on the first color index,
etc. For purposes of expansion in powers of g we shall change
independent parameter from γ to m according to

γ1/2 ≡ m2

(2N)1/2g
, (34)

where m has dimensions of mass, and m is taken to be of order
g0.

B. Gap equation

Henceforth we shall be concerned with the action S, re-
garded as a function of the new fields. The partition function
is given by

Z =
∫

dΦexp(−S), (35)

where dΦ represents integration over all fields, and Φ ≡
(Aµ,c, c̄,b,ϕ, ϕ̄,ω, ω̄) is the set of all (new) fields. We have
made the substitutions c̄� → c̄ and b� → b. The field ϕab

µ is
real while ϕ̄ab

µ is pure imaginary. The classical vacuum occurs
where all these fields vanish

Φ ≡ (Aµ,c, c̄,b,ϕ, ϕ̄,ω, ω̄) = 0. (36)

Finally the value of γ is determined by the condition that the
free energy W = lnZ be stationary,

∂W
∂γ1/2 = 0, (37)

or 〈 ∂S
∂γ1/2

〉
= 0. (38)

There is a non-perturbative vacuum if this equation has a so-
lution with γ �= 0. We do not require that W be a maximum
because there are non-physical fields present. By (30) to (33)
the last equation reads

〈Di(ϕi − ϕ̄i)aa − (gDic× ω̄i)aa〉 = 2γ1/2(N2 −1)(D−1).
(39)

The second term vanishes,

〈(gDic× ω̄i)aa〉 = 0, (40)

because there is no c̄ω term in the action. Moreover the new
action (30) to (33) is invariant under space-time translation of
the new fields, Φ(x) → Φ(x + a), and the vacuum just found,
at Φ = 0, is also. [This vacuum is not invariant under space-
time translation of the old fields, φab

µ and φ̄ab
µ , because of the

explicit xµ dependence in the shift (24).] Translation invari-
ance implies that the terms ∂iϕ and ∂iϕ̄ do not contribute to
(39), and we obtain

1
(2N)1/2 〈 f abcAb

i (ϕ− ϕ̄)ca
i 〉 =

m2

Ng2 (D−1)(N2 −1). (41)

This gap equation determines m = m(g,T ). Invariance under
scale transformation is spontaneously broken for m �= 0.
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C. Spontaneous breaking of BRST symmetry

The gap equation expresses the condition ∂W
∂m = 0. Here

m is the analog of the vacuum expectation-value v of the
Higgs field Φ that appears in spontaneous symmetry break-
ing of global gauge invariance. For in the Higgs mechanism
one makes the translation Φa = Φ�a + vδa

3, and the vacuum
expectation-value v is determined by the condition that the
free-energy be stationary with respect to v, ∂W/∂v = 0. In the
present case, BRST invariance is spontaneously broken rather
than global gauge invariance, because the expectation-value
of s-exact quantities is non-zero, for example

〈 sω̄ab
µ 〉 = 〈 ϕ̄ab

µ + γ1/2δab xµ 〉
= γ1/2δab xµ �= 0. (42)

As in the Higgs case, the spontaneously broken theory in-
herits renormalizability from the unbroken theory. But (42)
shows that we cannot identify observables with equivalence
classes of s-invariant objects, modulo s-exact quantities, as
in the standard BRST approach. However, as shown in the
Appendices, the present method is formally equivalent to the
canonical formulation of Coulomb gauge, with a cut-off at the
Gribov horizon. This allows us to identify observables, such
as the energy-momentum tensor Tµν, with the corresponding
quantities in the canonical formulation so, for example,

Tµν = FµλFλ
ν − 1

4
gµνFκλFκλ. (43)

D. Automatic cut-off at Gribov horizon

Recall that b is a Lagrange multiplier field, and integra-
tion over b produces a functional δ-function that imposes the
gauge constraint ∂iAi = 0. Suppose this integration is done, so
Ai is identically transverse. The auxiliary field φ̄ac

µ , which is
pure imaginary, is also a Lagrange multiplier. Integration over
φ̄ac

j yields a functional δ-function that imposes the constraint

−∂iDab
i φbc

j − γ1/2g f cbaAb
j = 0. (44)

Suppose that quantization is done in a periodic box of finite
spatial volume V . Integration of the last equation over V at
fixed t kills the first term, which is a divergence, and yields a
new constraint satisfied by Ai,∫

V
d3x f cbaAb

j = 0, (45)

namely that the zero-momentum component of Ai vanishes.
This is an additional gauge condition that expresses a confin-
ing property: it is impossible to have a gluon with zero mo-
mentum. In accordance with this condition, the propagator,
DAiA j(k,k0), vanishes with k2, as we shall see.

The last equation results from the trivial zero-eigenvalue of
the Faddeev-Popov operator M(A) ≡ −∂iDi(A) = −Di(A)∂i,
with eigenfunction satisfying ∂iu = 0. By definition, the in-
terior of the Gribov region Ω is the set of all 3-dimensionally

transverse configurations Ai(x) such that all non-trivial eigen-
values of M(A) are strictly positive. The boundary ∂Ω con-
sists of those configurations A such that the lowest non-trivial
eigenvalue λ0 = λ0(A) vanishes,

Mab(A)ub
0 = λ0ua

0 = 0; A ∈ ∂Ω. (46)

Here it is stipulated that u0(x) �= const., to assure that this is
not the trivial zero eigenvalue. Now, for fixed t, let Ai(x, t) ∈
∂Ω be a point on the boundary of the Gribov region. Upon
contraction of (44) with the corresponding non-trivial eigen-
function ua

0(x), we obtain a new constraint (one for each j and
c) that should hold at every boundary point Ai(x, t),∫

d3x ua
0(x) f abcAb

j(x, t) = 0; Ai(x, t) ∈ ∂Ω. (47)

However this additional condition is not satisfied at a generic
point on ∂Ω. This implies that the functional integral automat-
ically cuts off at the boundary ∂Ω. Indeed, after the auxiliary
fields are integrated out, the functional weight contains the
factor ∼ exp(c/λ0), where the lowest eigenvalue λ0 = λ0(A)
vanishes as A approaches the boundary (see Appendix A).
This cut off is non-analytic in λ0. If now we expand about
the interior point A = 0, the expansion is determined by the
interior of the Gribov region only.

IV. FREE PROPAGATORS

We now develop a perturbative expansion about the new
(non-perturbative) vacuum. For this purpose we treat m as
an independent parameter of order g0, and calculate pertur-
batively all quantities, including the gap equation, to a given
order in g. Then m = m(g,T ) is determined by solving the the
gap equation (41) non-perturbatively.

The first step is to expand the action (29) in powers of g,

S = S−2 +S0 + ... . (48)

The leading term is of order g−2,

S−2 ≡− m4

2Ng2 (N2 −1)(D−1)L3β, (49)

where the spatial quantization volume is V = L3, and the time
extent β = T−1. Although this term is independent of the
fields, it should not be ignored because, when the gap equation
is solved for m = m(T ), it gives a T -dependent contribution to
the free energy. The terms in the action of order g0,

S0 = S0,Y M +S0,1 +S0,2 +S0,3, (50)

are all quadratic in the fields and determine the “free” propa-
gators,

S0,Y M ≡
∫

dDx
1
4
(∂µAa

ν −∂νAa
µ)

2 (51)

S0,1 ≡
∫

dDx (i∂ibaAa
i −∂ic̄a∂ica) (52)
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S0,2 ≡
∫

dDx (∂iϕ̄ab
µ ∂iϕab

µ −∂iω̄ab
µ ∂iωab

µ ) (53)

S0,3 ≡
∫

dDx
m2

(2N)1/2 f abcAb
i (ϕi − ϕ̄i)ca. (54)

The term S0,3 causes a mixing of the zero-order transverse
gluon and bose-ghost propagators.

To calculate the free propagators, we define the field that
mixes with Ab

i ,

ψb
j ≡

i
(2N)1/2 f abc(ϕca

j − ϕ̄ca
j ). (55)

The orthogonal component 1
(2N)1/2 f abc(ϕca

j + ϕ̄ca
j ) and other

components of ϕ and ϕ̄ do not mix with Ai. Moreover be-
cause of the Lagrange-multiplier term i∂ jbA j, only the 3-
dimensionally transverse part AT

j of A j contributes to prop-
agators, and it mixes only with the transverse part ψT

j of ψ j.
Consequently, the free propagators of the fields A j and ψ j are
determined by the mixed action

S0(A,ψ) ≡
∫

dDx
(

(1/2)[(ȦT
j )

2 +(∂iAT
j )

2 +(∂iψT
j )

2]

−im2AT
j ψT

j

)
, (56)

which corresponds to the matrix in momentum space,(
k2 + k2

0 −im2

−im2 k2

)
,

with determinant

∆1 = (k2 + k2
0)k

2 +m4. (57)

The free propagators are given by

DAiA j(x− y) =
∫ dD−1k

(2π)D−1 T ∑
k0

exp[ik · (x− y)]

×Pi j(k)
k2

(k2 + k2
0)k2 +m4

(58)

DAiψ j(x− y) =
∫ dD−1k

(2π)D−1 T ∑
k0

exp[ik · (x− y)]

×Pi j(k)
im2

(k2 + k2
0)k2 +m4

(59)

Dψiψ j(x− y) =
∫ dD−1k

(2π)D−1 T ∑
k0

exp[ik · (x− y)]

×Pi j(k)
k2 + k2

0

(k2 + k2
0)k2 +m4 . (60)

Here k0 = 2πn/β are the Matsubara frequencies, where n is
any integer, and T = 1/β. The transverse projector is given
by Pi j(k) = δi j− k̂ik̂ j, and we have suppressed the trivial color
factor δbc. In terms of the variable ψa

j , the gap equation (41)
reads

−i 〈Ac
j(0)ψc

j(0)〉 =
m2

Ng2 (D−1)(N2 −1). (61)

V. GAP EQUATION IN ONE-LOOP APPROXIMATION

When the left-hand side of the gap equation is evaluated to
zeroth order in g, using the mixed propagator (59), it reads

∫ dD−1k
(2π)D−1 T ∑

k0

D−2
(k2 + k2

0)k2 +m4
=

D−1
Ng2 , (62)

where we used Pii(k) = D−2.
To evaluate the sum over Matsubara frequencies,

Q ≡ T ∑
k0

1
(k2 + k2

0)k2 +m4

=
1

E2k2β ∑
n=0,±1...

1
1+(2πn/βE)2 , (63)

where E ≡ (k2 + m4

k2 )1/2, we use the identity

sinhθ = θ
∞

∏
n=1

[1+(θ/nπ)2] (64)

or

lnsinhθ = lnθ+
∞

∑
n=1

ln[1+(θ/nπ)2]. (65)

This gives upon differentiation

coshθ
sinhθ

=
1
θ

+
2
θ

∞

∑
n=1

1
1+(nπ/θ)2 . (66)

We thus obtain for the sum over Matsubara frequencies

Q =
1

2k2E
cosh(βE/2)
sinh(βE/2)

=
1

2k2E

(
1+

2
exp(βE)−1

)
. (67)

The first term in parentheses gives the value of Q at T = 0
and, with β = 1/T , the second term is a Planck-type finite-
temperature correction. This gives for the gap equation

∫ dD−1k
(2π)D−1

(D−2)
2k2E

(
1+

2
exp(βE)−1

)
=

D−1
Ng2 , (68)

which holds in D Euclidean space-time dimensions.
For D < 4 the integral is convergent. We take the limit D →

4. The first term one the left, which is the zero-temperature
contribution, has the limiting form

∫ dD−1k
(2π)D−1

(D−2)
2k2E

→ 1
4π2

[1
ε

+ ln
( µ2

m2

)]
(69)

where ε ≡ (4 − D)/2, and µ = µ(T ) is, in general, a
temperature-dependent renormalization mass. There is a pole
at D = 4 which results from the familiar ultraviolet diver-
gences of quantum field theory. The second term in (68),
which is the finite-temperature contribution, is finite at D = 4.
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We subtract the pole term, as will be discussed shortly, and
the gap equation reads

1
2

ln
( µ

m

)
+

∫ ∞

0

dx
u

1
exp(mβu)−1

=
3π2

Ng2(µ)
, (70)

where u ≡ (x2 + 1
x2 )1/2. The left-hand side is a function of the

single variable mβ = m
T .

VI. RENORMALIZATION

A. Exact properties

We present a brief sketch of the salient features of the renor-
malization of the present local theory in Coulomb gauge with
auxiliary ghosts. This is done following the method used in
Landau gauge [32–34].

We consider the local action defined in eq. (30) and be-
low. Renormalization is done perturbatively in g, with m an
arbitrary parameter. The gap equation for m is imposed after
renormalization. The action has obvious symmetries and (and
supersymmetries at m = 0) that act on the indices (µ,b) of ωab

µ

and ω̄ab
µ , and of ϕab

µ and ϕ̄ab
µ . A less obvious symmetry trans-

formation of the action (30), introduced in [33], is defined, for
fixed µ and b by

δωab
µ = εca; δc̄ = −εω̄ab

µ , (71)

all other fields being invariant. As a consequence of this sym-
metry, the auxiliary fermi ghosts have the same propagator as
the Faddeev-Popov ghosts,

〈ωab
µ (x)ω̄db

µ (y)〉 = 〈ca(x)c̄d(y)〉, (72)

where µ and b are fixed.
Because of the symmetries, all bose and fermi ghosts renor-

malize the same way. The number of independent renormal-
ization constants is the same as in the theory at m = 0 (and at
T = 0), and they may be evaluated at m = 0 in the Coulomb-
gauge theory without auxiliary ghosts. Thus we have

A = ZAAr; A0 = ZA0 A0,r

c = Zccr; c̄ = Zc̄c̄r

ω = Zωωr; ω̄ = Zω̄ω̄r

ϕ = Zϕϕr; ϕ̄ = Zϕ̄ϕ̄r

g = Zggr; m = Zmmr, (73)

where the subscript r designates renormalized quantities. In
Coulomb gauge, the space components Ai of the connection
renormalize differently from the time component A0. Because
of the symmetries we have

ZcZc̄ = ZωZω̄ = ZϕZϕ̄. (74)

Moreover, in Coulomb gauge, the quantum effective action
depends on the combination Ki − ∂ic̄, where Ki is the source
for sAi = Dic, and ZK = Z−1

A , so it is convenient to choose

Zc̄ = Z−1
A . (75)

With this choice, we have in Coulomb (and in Landau) gauge

ZcZg = 1. (76)

This follows from the non-renormalization of the ghost-gluon
vertex which implies ZgZAZc̄Zc = 1. An important property
in Coulomb gauge is the identity [40]

ZA0 Zg = 1, (77)

which implies that gA0 = grA0,r is a renormalization-group
invariant, as is g2D00 where D00 is the time-time component
of the gluon propagator. It is convenient to choose

Zω = Zω̄ = Zϕ = Zϕ̄ (78)

The mixed term m2Ai(ϕi − ϕ̄i) in the action (30) does not
introduce any new divergence, so so there is no subtractive
renormalization of m, and Zm satisfies

Z2
mZAZϕ = 1. (79)

Because of these identities, there remain only two indepen-
dent renormalization constants, which may be chosen to be
ZA and Zg.

The gap equation holds for both renormalized and un-
renormalized quantities. Indeed, the free energy is a
renormalization-group invariant W = Wr, and we have m =
Zmmr, which gives

∂Wr

∂mr
= Zm

∂W
∂m

= 0. (80)

As noted, all renormalization constants Zi are calculated at
m = 0. They depend only on the variables

Zi = Zi(g0,Λ/µ), (81)

where g0 = g0(Λ/ΛQCD). Here Λ is the ultraviolet cut-off, and
ΛQCD is a physical QCD mass scale. The coupling constant
satisfies the familiar RG equation

µ
∂gr

∂µ
= β(gr), (82)

with solution gr = gr(µ/ΛQCD), where ΛQCD is a constant of
integration. Likewise, the renormalized mass parameter satis-
fies

µ
∂mr

∂µ
= γm(gr)mr, (83)

where

γm(gr) = −µ
∂ lnZm

∂µ
= c0g2

r +O(g4
r ). (84)

is a power series in gr. We change independent variable to t ≡
ln(µ/ΛQCD), and write γm(t) ≡ γm[gr(t)], so the RG equation
for mr reads

∂ lnmr

∂t
= γm(t), (85)
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with solution

mr = M exp[
∫ ln(µ/ΛQCD)

1
dt ′γm(t ′)]. (86)

This gives the dependence of mr on the renormalization
mass µ. Here M is a constant of integration, whose value is
determined by the gap equation. In general M is temperature
dependent M = M(T ). At T = 0 we have M(0) = cΛQCD,
where the dimensionless constant c is is determined by the
gap equation at T = 0.

The Callan-Symanzik equation,

(
µ

∂
∂µ

+β
∂

∂g
+ γmm

∂
∂m

+ γi

)
Γi(p,g,m,µ) = 0, (87)

gives the dependence of all one-particle irreducible correla-
tors Γi on the renormalization mass µ. Here and below we
suppress the index r that designates renormalized quantities.
By virtue of (80), the gap equation holds for any value of µ,
and the Callan-Symanzik equation assures that the solution
M(T ) of the gap equation is independent of µ. However for
approximate correlators there will generally be a dependence
of M on µ. One makes an optimal choice of µ to minimize
higher corrections which will, in general, be temperature de-
pendent, µ = µ(T ). For example, at high T it is convenient to
choose µ = 2πT .

B. One-loop calculation

The above equations give for Zm,

Zm = (ZAZϕ)−1/2 = [ZAZ1/2
c Z1/2

c̄ ]−1/2 = Z−1/4
A Z−1/4

c . (88)

As noted, the renormalization constants are calculated at m =
0, where the correlators have the same value as in the ordi-
nary Coulomb gauge without the auxiliary ghosts. From Ap-
pendix B of [40], we have, in Coulomb gauge, to one-loop
order

ZA = 1+
1
2

λ0

ε
; Zc = 1+

11
6

λ0

ε
, (89)

where

λ0 ≡ Ng2

8π2 ;
1
ε

=
1

4−D
→ ln

(Λ
µ

)
, (90)

and µ is a renormalization mass. This gives

Zm = 1− 7Ng2

96π2 ln
(Λ

µ

)
, (91)

and, to one-loop order,

γm = −µ
∂ lnZm

∂µ
= − 7Ng2

r

96π2 . (92)

To this order we also have g2
r = 24π2/(11Nt), where t =

ln(µ/ΛQCD), so γm(t) = −7/(44t). Thus the dependence of

mr on the renormalization mass µ = µ(T ) is given to one-loop
order by,

mr(µ) = M(T )exp[−(7/44)
∫ ln(µ/ΛQCD)

1
dt ′/t ′]

= M(T ) [ ln(µ/ΛQCD) ]−7/44. (93)

VII. SOLUTION OF ONE-LOOP GAP EQUATION

To solve the gap equation (70) we change unknown from m
to m∗ ≡ m/T so it takes the form

f (m∗) = R(T ) ≡ 3π2

Ng2(µ)
+

1
2

ln
(T

µ

)
, (94)

where µ = µ(T ), and

f (m∗) ≡ 1
2

ln
( 1

m∗
)

+
∫ ∞

0

dx
u

1
exp(m∗u)−1

(95)

is a function of a single variable. The function f (m∗) de-
creases monotonically, f ′(m∗) < 0, with f (0) = ∞ and f (∞) =
−∞, so this equation for m∗ always has a unique solution

m∗ =
m
T

= h(R), (96)

where R = R(T ). Moreover, by the inverse function theorem,
h(R) is analytic, so in this approximation there is no phase
transition, provided that R(T ) is analytic.

For each temperature T there is a unique a solution of the
one-loop gap equation that defines a non-perturbative vacuum.

We now specialize to high temperature T , and take the
renormalization mass to be µ = 2πT . This simplifies the high-
T case because of asymptotic freedom. The running coupling
is given approximately by

1
g2(T )

=
11 N
24 π2 ln

( 2πT
ΛQCD

)
, (97)

where ΛQCD is the physical MS mass scale, so at high tem-
perature, g(T ) is small, and the one-loop gap equation should
be a good approximation. According to (94) and (95), high T
implies small m∗, and for small m∗ we have∫ ∞

0

dx
u

1
exp(m∗u)−1

→ 1
m∗

∫ ∞

0
dx

x2

x4 +1
=

π
23/2 m∗ , (98)

so the gap equation at high T simplifies to

1
2

ln
( 2π

m∗
)

+
π

23/2 m∗ =
3 π2

N g2(T )
. (99)

To leading order at high T or small m∗, the first term on the
left is negligible compared to the second, and we obtain, with
m∗ = m

T ,

m(T,g) =
N

23/2 3 π
g2(T ) T T → ∞. (100)

Thus, in the high-temperature limit, m(T ) is proportional to
a standard magnetic mass g2(T )T . [This calculation replaces
the assumption made in [41] that m is temperature indepen-
dent.]
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VIII. FREE ENERGY

To order g0, the free energy W = lnZ is given by

expW =
∫

dΦexp(−S−2 −S0), (101)

where S−2, given in (49), is field-independent and of order
g−2, while S0, given in (50), is quadratic in the fields. We
obtain

W = W−2 +W0 (102)

where, for D−1 = 3,

W−2 = −S−2 =
3m4

2Ng2 (N2 −1)L3β, (103)

and

expW0 =
∫

dΦexp(−S0). (104)

To evaluate W0 we observe first that the Faddeev-Popov
ghost pair contributes a factor k2 which is cancelled by the
two factors of |k|−1 that come from the A0 and b integrations.
Moreover all auxiliary bose and fermi ghost pairs with the
same action give contributions to W 0 that cancel. Each sin-
gle 4-momentum mode of the action S0(A,ψ), eq. (56), con-
tributes ∆−1/2

1 to expW0, where, by (57), ∆1 = (k2 + k2
0)k

2 +
m4. Corresponding to the bose ghost ψb

j that mixes with Ab
j is

an otherwise unpaired fermi ghost mode that contributes ∆1/2
2 ,

where ∆2 = k2. The net result is that for each 4-momentum
mode of the Ab

i field we obtain a contribution (∆1/∆2)−1/2,
where ∆1/∆2 = k2

0 + E2, and E = (k2 + m4

k2 )1/2. There is an
infinite product over all frequencies k0 for each 3-momentum
mode of the Ai field. For each 3-momentum k of the Ab

i field
the result of this infinite product is the Planck partition func-
tion for a single mode

exp[W0(k)] =
∞

∑
n=0

exp(−nEβ)

=
1

1− exp(−Eβ)
, (105)

so

W0(k) = − ln[1− exp(−Eβ)]. (106)

The sum over the N2 −1 color modes, the 2 degrees of trans-
verse polarization, and over all 3-momentum modes k yields,
with ∑k →V

∫ d3k
(2π)3 ,

W0 = −2(N2 −1)V
∫ d3k

(2π)3 ln[1− exp(−Eβ)]

= − (N2 −1)V
π2

∫ ∞

0
dk k2 ln[1− exp(−Eβ)]

=
(N2 −1)V β

3π2

∫ ∞

0

dk (k4 −m4)
E [exp(Eβ)−1]

, (107)

where E = E(k) = (k2 + m4

k2 )1/2. We add the term W−2 and
obtain to order g0 the free energy per unit volume, w = W/V ,

w = (N2 −1) β
( 3 m4

2Ng2 +
1

3π2

∫ ∞

0

dk (k4 −m4)
E [exp(Eβ)−1]

)
. (108)

The free energy and the equation of state in the non-
perturbative vacuum are obtained by substituting into this ex-
pression the solution

m = m(T,g) (109)

of the gap equation.

IX. EQUATION OF STATE AT HIGH TEMPERATURE

We now evaluate w in the high-temperature limit, where
g(T ) is small, and our expansion should be reliable. This
will give the leading contribution that comes from the non-
perturbative vacuum, namely non-zero m.

From (100) we obtain

w = (N2 −1)
(N3 g6(T )

27 33 π4 +
1

3π2 K(η)
)

T 3, (110)

where

K(η) ≡
∫ ∞

0

dy (y4 −η)
u (expu−1)

, (111)

u ≡ (y2 +
η
y2 )1/2, (112)

and

η ≡
(m

T

)4
=

(N g2(T )
23/2 3 π

)4
(113)

is a small parameter.
The lowest-order expression for K(η) at small η is obtained

by setting η = 0,

K(0) =
∫ ∞

0

dy y3

expy−1

=
π4

15
, (114)

which gives the Stefan-Boltzmann free energy. To evaluate
the leading correction from K(η), we use

∂K
∂η

= −
∫ ∞

0
dy

( 1
u (expu−1)

+
y4 −η

2 u3 y2 (expu−1)

+
(y4 −η) expu

2 u2 y2 (expu−1)2

)
. (115)

We pose y = η1/4x and obtain

∂K
∂η

= −
∫ ∞

0
dx

( 1
v [exp(η1/4v)−1]

+
x4 −1

2 v3 x2 [exp(η1/4v)−1]

+
η1/4 (x4 −1) exp(η1/4v)
2 v2 x2 [exp(η1/4v)−1]2

)
, (116)
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where v ≡ (x2 + 1
x2 )1/2. To leading order in η this gives

∂K
∂η

=
−1
η1/4

∫ ∞

0
dx

( 1
v2 +

x4 −1
v4 x2

)
=

−3 π
4 ·21/2 ·η1/4 . (117)

From K = K(0)+
∫ η

0 dη ∂K
∂η , we obtain the leading correction

to K(0),

K(η) =
π4

15
− π η3/4

21/2 . (118)

We substitute this into (110) and obtain

w = (N2 −1)
( N3 g6

27 33 π4 +
π2

45
− N3 g6

25 34 π4

)
T 3,

= (N2 −1)
(π2

45
− N3

10,368 π4 g6(T )
)

T 3, (119)

which gives the leading correction to the Stefan-Boltzmann
limit from the non-perturbative vacuum. It is of order m3(T )

T 3 .
The equation of state of the gluon plasma follows from the

thermodynamic formulas for the energy per unit volume and
pressure,

e = −∂w
∂β

; p =
w
β

, (120)

and entropy per unit volume, s = e+p
T . To calculate the energy

density, we use −β ∂g
∂β = T ∂g

∂T = β-function = O(g3), which
is of higher order. We thus obtain for the energy density and
pressure at high temperature,

e = 3p = (N2 −1)
( π2

15
− N3

3,456 π4 g6(T )
)

T 4, (121)

with s = 4e
3T .

This is the leading contribution that comes from the non-
perturbative vacuum. Numerically it is a small correction,
whereas the correction of order g6 is divergent when cal-
culated with the perturbative vacuum [2]. To this must be
added the perturbative contributions, including resumations,
that have been calculated at m = 0, and that are of lower or-
der in g [14]. Since standard, resummed perturbation theory
diverges at order g6, which is precisely the order of the cor-
rection we have found, the result obtained here is consistent
with standard perturbative calculations.

This completes the calculation of the equation of state at
high temperature to one loop, and we turn now to the propa-
gators.

X. (ALMOST) LINEARLY RISING GHOST PROPAGATOR

The complete propagator of the Faddeev-Popov
ghost D′

cc̄(x − y) = 〈c(x)c̄(y)〉, is instantaneous,

D′
cc̄(x) = D′

cc̄(x)δ(t), and in momentum space it is inde-
pendent of p0, D′

cc̄(p, p0) = D′
cc̄(p). This is easily seen

because one may follow the ghost line continuously through
any graph, and one may route the external ghost momentum
p through this line. The free ghost propagator Dcc̄(p) = 1

p2 , is
independent of p0, so every graph is independent of p0.

We now show that for all finite temperature T , in Euclid-
ean dimension 2 < D < 4, and to one-loop order, the ghost
propagator behaves for small p like

Dcc̄(p) ∼ 1
|p|S+1 , (122)

where S ≡ D− 1 is the number of spatial dimensions. This
corresponds to a propagator in position space that is linear
rising at large separation,

Dcc̄(x) ∼ |x|. (123)

At D = 4 space-time dimensions there is a logarithmic cor-
rection given below. In Landau gauge it has been established
to one- and two-loop order by explicit calculation [36] that
the ghost propagator is more singular than 1

k2 , and it has been
shown that this is true to every order in g [32]. It is expected
in Coulomb gauge also, that the one-loop result, namely that
the ghost propagator Dcc̄(p) is more singular than 1/p2, holds
to all orders.

To one-loop order, the inverse ghost propagator is given by

Γcc̄(p) = p2 − Ng2

(2π)D−1

∫
dD−1k (124)

×T ∑
k0

piDAiA j(k)p jDcc̄(p+k),

where Dcc̄(p+k) = 1
(p+k)2 is the free fermi-ghost propaga-

tor, and DAiA j(k) is the zero-order gluon propagator (58). The
trivial color factor δbc has been removed. We are interested in
the large x, small p, behavior. For this purpose it is convenient
to separate out the p = 0 part of the ghost propagator using the
identity,

1
(p+k)2 =

1
k2 − p2 +2p ·k

k2 (p+k)2 . (125)

Corresponding to this separation we have

Γcc̄ = Γq
cc̄ +Γh

cc̄ (126)

where

Γq
cc̄(p) = p2 − Ng2

(2π)D−1

∫
dD−1k T ∑

k0

piDAiA j(k)p j
1
k2

(127)
is quadratic in p, and

Γh
cc̄(p) = Ng2

∫ dD−1k
(2π)D−1 T ∑

k0

piDAiA j(k)p j
p2 +2p ·k
k2 (p+k)2

(128)
is of higher order in p.



138 Daniel Zwanziger

We first evaluate Γq
cc̄(p). By rotational invariance we make

the replacement in (127),

DAiA j(k) →
δi j

D−1 ∑
l

DAlAl (k). (129)

This gives

Γq
cc̄(p) = p2

(
1− Ng2

(2π)D−1

∫ dD−1k
(D−1)

(130)

×T ∑
k0

(D−2)
(k2 + k2

0)k2 +m4

)
,

where we have used (58). According to the gap equation (62),
this vanishes and we obtain for the quadratic term

Γq
cc̄(p) = 0. (131)

Thus, when the gap equation is satisfied, the quadratic part
of the one-loop term precisely cancels the tree-level term p2.
This gives a maximal enhancement of the ghost propagator,
which may be called “maximal anti-screening” of the ghost
propagator.

Only the term which is higher-order in p and g survives,
Γcc̄(p) = Γh

cc̄(p), where Γh
cc̄(p) is given in (128). The sum

over Matsubara frequencies in (128) is done in (63) to (67),
with the result

Γcc̄(p) = Ng2 ∫ dD−1k
(2π)D−1 [p2k2 − (p ·k)2] Q

× p2 +2p ·k
k2 (p+k)2 , (132)

where

Q =
1

2k2(k2 + m4

k2

)1/2

×
(

1+
2

exp[(k2 + m4

k2 )1/2 1
T ]−1

)
. (133)

To evaluate this integral for small p, we rescale the integra-
tion variable ki according to ki = |p|qi, and observe that, for
Euclidean dimension D in the interval 2 < D < 4, the inte-
gral remains convergent after this rescaling if p is neglected
compared to other quantities. It is not necessary to actually do
the rescaling explicitly, because the same result is obtained by
neglecting |k| compared to m. Thus we make the substitutions

(
k2 +

m4

k2

)1/2 → m2

|k| (134)

exp
[(

k2 +
m4

k2

)1/2 1
T

]
→ exp

( m2

|k|T
)
→ ∞, (135)

and obtain

Q → 1
2|k|m2 . (136)

Consequently, for 2 < D < 4 and for all finite T , the asymp-
totic limit of Γcc̄ at low p is given by

Γas
cc̄ =

Ng2

2m2

∫ dD−1k
(2π)D−1 [p2k2 − (p ·k)2]

p2 +2p ·k
|k|3 (p+k)2 ,

= C(D) Ng2 |p|D
m2 ; 2 < D < 4, (137)

where

C(D) =
Ng2 (D−2)

2 (4π)D/2

Γ[(D−1)/2]
Γ(D−1/2)

π
sin[π(4−D)/2]

. (138)

This gives the asymptotic ghost propagator at small p,

Das
cc̄(p,T ) =

1
C(D) Ng2(T )

m2(T )
|p|D ; 2 < D < 4. (139)

With D = S + 1, where S is the number of space dimensions,
one sees that this corresponds to a ghost propagator that rises
linearly in position space, Das

cc̄(x)∼ |x|, for 2 < D < 4, asymp-
totically at large |x|.

The replacement E(k) = (k2 + m4

k2 )1/2 → m2

|k| gave the cor-
rect low-momentum asymptotic behavior for 2 < D < 4, but
it introduces a spurious ultraviolet divergence at D = 4 which
manifests itself by a pole term 1

4−D in the coefficient C(D).
Indeed for small values of ε ≡ 4−D we have

Γas
cc̄(p) ≈ Ng2|p|4

30 π2 m2
|p|−(4−D)

(4−D)
. (140)

In a more accurate evaluation of (132), the divergence gets re-
placed by a cut-off at |k| = O(m). As is familiar from dimen-
sional regularization of real ultraviolet divergences, we may
obtain the leading small p behavior, without actually doing
the more accurate evaluation, by expanding the last expres-
sion in powers of ε = 4−D, which gives

Γas
cc̄(p) = − Ng2|p|4

30 π2 m2 ln
(c|p|

m

)
; D = 4, (141)

where c is a dimensionless constant. We have replaced the
spurious divergent constant 1

4−D , which is a consequence of
the incorrect evaluation at D = 4, by a finite constant. The
argument of the logarithm contains the mass m, because that
would be the order of the ultraviolet cut-off in a more accu-
rate evaluation at small p. This gives the asymptotic ghost
propagator at small p,

Das
cc̄(p,T ) = − 30 π2

N g2(T )
m2(T )

|p|4 ln( c|p|
m(T ) )

; D = 4. (142)

In position space this is Das
cc̄(x) ∼ x

ln |x| for D = 4, which is
weaker than linear by a logarithmic power.

XI. SOFTLY BROKEN SLAVNOV-TAYLOR IDENTITY

We wish to also calculate the color-Coulomb potential
Vcoul(R) to this order. However instead of calculating it di-
rectly, it is simpler to derive a softly broken BRST identity
that relates Vcoul(R) to the ghost propagator just calculated.
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The action (26) of the BRST operator on the shifted fields
contains an explicit linear dependence on the spatial coordi-
nate xµ. Consequently the Slavnov-Taylor identity that ex-
presses the s-symmetry of the shifted fields breaks manifest
invariance under space-time translation. To avoid this incon-
venience we introduce instead an operator ŝ that coincides
with s, except for the term that breaks translation invariance,

ŝAµ = Dµc; ŝc = −(g/2)c× c
ŝc̄ = ib; ŝb = 0

ŝϕab
µ = ωab

µ ; ŝωab
µ = 0

ŝω̄ab
µ = ϕ̄ab

µ ; ŝϕ̄ab
µ = 0. (143)

Although ŝ is not a symmetry, its breaking is soft. It is nil-
potent, ŝ2 = 0, and acts on the Lagrangian density L according
to

ŝL = ŝL2 = γ1/2[ (Diωi)aa +g(Dic×ϕi)aa ]. (144)

This gives

ŝS = B, (145)

where the ŝ-breaking term,

B ≡ m2

(2N)1/2

∫
dDx [ (Ai ×ωi)aa +(Dic×ϕi)aa ]. (146)

It is soft, being proportional to m2.
To obtain a Ward identity, it is convenient to define an ex-

tended action,

Σ ≡ S +
∫

dDx [ (KµDµc+L(−g/2)(c× c) ]−χB, (147)

which includes a term, −χB, proportional to the ŝ-breaking
term, with a global Grassmannian parameter χ that has ghost
number −1. Here Kµ and L are the familiar sources for the
ŝ-transforms of Aµ and c that are non-linear in the fields. This
extended action is useful because, by ŝ2 = 0, it satisfies the
identity

ŝΣ = −∂Σ
∂χ

, (148)

which reads

∫
dDx

( δΣ
δKµ

δΣ
δAµ

+
δΣ
δL

δΣ
δc

+b
δΣ
δc̄

+ω
δΣ
δϕ

+ ϕ̄
δΣ
δω̄

)

+
∂Σ
∂χ

= 0. (149)

The extended action is used to define an (extended) parti-
tion function

Z =
∫

dΦ exp[−Σ+(J,Φ)]. (150)

where Φ represents the set of all fields, and J the correspond-
ing sources. The quantum effective action Γ(Φ,K,L,χ) is ob-
tained from the free energy W (J,K,L,χ) = lnZ by Legen-
dre transformation. In addition to the usual arguments,

Γ(Φ,K,L,χ) depends on the parameter χ. The quantum ef-
fective action Γ satisfies the Slavnov-Taylor identity

S(Γ) = 0, (151)

where S(Γ) is the functional

S(Γ) ≡ ∫
dDx

( δΓ
δKµ

δΓ
δAµ

+
δΓ
δL

δΓ
δc

+b
δΓ
δc̄

+ω
δΓ
δϕ

+ ϕ̄
δΓ
δω̄

)
+

∂Γ
∂χ

. (152)

This has the same form as the identity (149) satisfied by the
local extended action Σ.

XII. LONG-RANGE COLOR-COULOMB POTENTIAL

We now use the last identity to calculate the color-Coulomb
potential, Vcoul(R), defined in (3). In practice, correlators are
calculated in momentum space, and we would like to separate
out the instantaneous part Vcoul(R) δ(t) directly in momentum
space. With reference to (3), we note that the instantaneous
term corresponds to a term in momentum space that is in-
dependent of p0, whereas the non-instantaneous part, P(x, t),
that is more regular in t, vanishes in momentum space at large
p0, so

Vcoul(p) = lim
p0→±∞

g2D′
A0A0

(p, p0), (153)

(We use the same symbol for a correlator and its Fourier trans-
form.) More generally, the instantaneous part, D′

inst(p), of a
generic correlator in momentum space, D′(p, p0), may be sep-
arated out by

D′
inst(p) = lim

p0→±∞
D′(p, p0). (154)

The same relation,

Γinst(p) = lim
p0→±∞

Γ(p, p0), (155)

holds for the inverse propagators,

Γ(p, p0) =
1

D′(p, p0)
; Γinst(p, p0) =

1
D′

inst(p)
. (156)

Thus the color-Coulomb potential in momentum space is
given by

Vcoul(p) =
g2

ΓA0A0inst(p)
. (157)

We now use the Slavnov-Taylor identity, S(Γ) = 0, to ex-
press ΓA0A0(p) in terms of Γcc̄(p). This functional identity
implies

δ
δc(x)

δ
δA0(z)

S(Γ)
∣∣∣
0
= 0, (158)
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where all sources are set to 0 after differentiation. By (152)
this gives

∫
dDy

δ2Γ
δc(x)δKµ(y)

δ2Γ
δAµ(y)δA0(z)

+
δ

δc(x)
δ

δA0(z)
∂Γ
∂χ

= 0, (159)

or, in momentum space,

ΓcK0(p) ΓA0A0(p)+ΓcKi(p) ΓAiA0(p)+ΓcA0χ(p) = 0. (160)

We have separated the contributions from µ = 0 and µ = i.
By rotational invariance we have

ΓcKi(p) = pi f (p), (161)

for some function f (p). Moreover in Coulomb gauge the
quantum effective action satisfies the identity,

δΓ
δc̄

= ∂i
δΓ
δKi

. (162)

(The analogous identity is well known in Landau gauge.) By
applying δ

δc to this equation we obtain

Γcc̄(p) = −ipiΓcKi(p),

= −ip2 f (p), (163)

which yields

ΓcKi(p) = i
pi

p2 Γcc̄(p). (164)

This term is purely instantaneous.
In Coulomb gauge ΓcK0 is not subject to radiative correc-

tions,

ΓcK0 = ip0. (165)

Indeed, K0 appears in the local action Σ only in the term
K0D0c = K0∂0c + gK0A0 × c, so radiative corrections to
ΓcK0(p) correspond to graphs where the external K0 line en-
ters the vertex gK0A0 × c. One may continuously follow the
ghost cc̄ line through the graph from this vertex to its exit
point. We route the external momentum p through this ghost
line, which consists of instantaneous propagators Dcc̄�(p+k).
With this routing, the graph is independent of p0. On the other
hand by time reversal the amplitude ΓcK0(p) is proportional to
p0. Thus, apart from the tree-level term, every graph that con-
tributes to ΓcK0(p) vanishes.

Finally we note that the quantity ΓAiA0(p) is a longitudinal-
scalar transition amplitude. It is of the form

ΓAiA0(p) = −pi p0 L(p), (166)

where

L(p) = 1+O(g2). (167)

Putting these results together, we obtain

ip0 ΓA0A0(p)− ip0 L(p) Γcc̄�(p)+ΓcA0χ(p) = 0. (168)

To obtain an identity satisfied by the instantaneous parts, we
divide the last equation by p0 and take the limit p0 → ∞. The
last term, ΓcA0χ(p) is also proportional to p0. However the
limit,

lim
p0→∞

ΓcA0χ(p)
p0

= 0, (169)

holds to one-loop order at least, because the diagrams which
contribute to this term, which contains an insertion of B given
in (146), contain two transverse propagators which each be-
have like 1

k2
0

at large k0, so the diagram vanishes at large p0.

This gives the identity,

ΓA0A0inst(p) = Linst(p) Γcc̄(p). (170)

To lowest order Linst(p) = 1, which is sufficient for our pur-
poses since, as we have seen, Γcc̄(p) is of order g2. To one-
loop order this gives

ΓA0A0inst(p) = Γcc̄(p), (171)

and from (157) we obtain,

Vcoul(p) = g2 Dcc̄(p). (172)

The maximal anti-screening of the ghost propagator is trans-
ferred to the color-Coulomb potential.

We now use (139) and (142) for Dcc̄(p) at low momentum.
The coupling g2 nicely cancels and we obtain to lowest order
at small p,

V as
coul(p,T ) =

1
C(D) N

m2(T )
|p|D 2 < D < 4

= − 30 π2

N
m2(T )

|p|4 ln( c|p|
m(T ) )

D = 4, (173)

where C(D) is given in (138).
In Coulomb gauge, g2D00, and thus also Vcoul(R), are

renormalization-group invariants [40]. It follows that Vcoul
at T = 0 has the functional dependence indicated by Vcoul =
F(p,ΛQCD). In D = 4 dimensions, m has a renormalization-
group flow, but to lowest order in g, m = c1Λ2

QCD, where ΛQCD
is a finite physical mass of the order of the QCD mass scale.
Comparison with the previous expression which is valid for
finite T gives m(0) = c1ΛQCD, and we obtain, for D = 4 at
T = 0,

V as
coul(p) = −30 π2 c2

1
N

Λ2
QCD

|p|4 ln( c|p|
c1ΛQCD

)
(174)

In position space this gives, asymtotically at large |x|,
V as

coul(x) ∼ |x| 2 < D < 4

∼ Λ2
QCD |x|

ln(c′ΛQCD|x|) D = 4. (175)

The inequality, V (R) ≤ Vcoul(R), holds asymptotically at
large R, provided that V (R) is confining, limR→∞ V (R) = ∞,
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where V (R) is the physical gauge-invariant interaction energy
of an external quark pair [12]. In this case, if the one-loop
expression for Vcoul(R) were exact, then inequality

V (R) ≤ c Λ2
QCD

|x|
ln(c′ΛQCD|x|) , (176)

would hold asymptotically at large R for some constant c, and
the growth of the external quark-pair potential V (R) at large R
would have to be slightly weaker than linear.

XIII. DISCUSSION

We started from a local, renormalizable, BRST-invariant
action that contains auxiliary fermi and bose ghost fields.
This action possesses a non-perturbative vacuum obtained by
a translation of the bose ghost fields. This is in close analogy
to the Higgs mechanism in electro-weak theory, although in
the present case it is BRST invariance that is spontaneously
broken rather than global gauge invariance.

We have calculated the leading correction to the Stefan-
Boltzmann equation of state of the gluon plasma at high T that
comes from the non-perturbative vacuum, and found it to be
of order g6. However we have not attempted to systematically
calculate all corrections to the Stefan-Boltzmann law to this
order. Indeed there are corrections of lower order than g6(T )
that have been obtained from ordinary perturbation theory and
resummation of ordinary perturbation theory [14]. Signifi-
cantly, g6(T ) is precisely the order at which resummation of
ordinary perturbation theory fails due to infrared divergences,
as was first shown by Lindé [2]. Thus our calculation does not
contradict the finite results from ordinary perturbation theory
and its resummation, but instead gives a finite result precisely
where ordinary perturbation theory breaks down.

We also expanded in a power series in g about the non-
perturbative vacuum, and calculated the gluon and ghost prop-
agators to low order in g. They have the behavior foreseen by
Gribov [1], and which accords with numerical studies, as dis-
cussed in the Introduction. This happens because, when the
local action is expanded about the non-perturbative vacuum,
it provides an automatic cut-off at the Gribov horizon.

The non-perturbative vacuum found here spontaneously
breaks both BRST symmetry and (since it is in Coulomb
gauge) manifest Lorentz invariance, and one should establish
unitarity and Lorentz invariance in the physical sector. One
would like to do this within the framework of local, renor-
malizable quantum field theory that we adopted here, but we
are unable to do so at this time. However one may formally
establish these properties by integrating out the non-physical
degrees of freedom, which yields the canonical Coulomb-
gauge Hamiltonian [42], with a cut-off at the Gribov horizon
(see Appendices A and B). This Hamiltonian system is uni-
tary and moreover the Coulomb-gauge Hamiltonian admits
a representation of the Lorentz group [43]. Consistency of
Lorentz invariance and a boundary of the physical configura-
tion space at the Gribov horizon appears to follow in the op-
erator formalism from the fact that Lorentz and gauge trans-
formations commute (see Appendix B). The present approach

in Coulomb gauge yields gluon energies (2) that are real and
consistent with a unitary spectral representation, whereas in
Landau gauge the Gribov propagator k2

(k2)2+m4 has poles at the

unphysical points k2 = ±im2.
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APPENDIX A: ACTION IN TERMS OF HORIZON
FUNCTION

In this Appendix we shall formally integrate out auxiliary
fields to express the action in terms of the non-local “horizon
function” that effects the cut-off at the Gribov horizon. It is
non-local in space, but local in time.

We start with the action defined in (29) and below. There
are cross terms that involve ω̄ but none with ω. These cross
terms are cancelled by an appropriate shift of ω. We next
integrate out the quartet ωab

0 , ω̄ab
0 ,ϕab

0 , ϕ̄ab
0 that appears in the

action in the expression

I0 =
∫

dDx (ϕ̄ac
0 Mabϕbc

0 − ω̄ac
0 Mabωbc

0 ), (A1)

where Mab = −∂iDab
i is the Faddeev-Popov operator. This

gives ∫
dω0dω̄0dϕ0dϕ̄0 exp(−I0) = 1, (A2)

because from the fermi ghost pairs ωab
0 , ω̄ab

0 , we get
(detM)N2−1 and from the bose ghost pairs ϕab

0 , ϕ̄ab
0 we get

1/(detM)N2−1, and these cancel. (This shows that the aux-
iliary quartet ϕ0,ω0, ω̄0, ϕ̄0 plays no role and could have been
omitted from the action.)

We now integrate over the remaining auxiliary fermi ghost
pairs and obtain∫

dωab
j dω̄ab

j exp(ω̄ac
j ,Mabωbc

j ) = (detM)(N
2−1)(D−1). (A3)

The remaining auxiliary bose ghost pairs appear only in the
action

Sϕ̄,ϕ =
∫

dDx [ϕ̄ac
j Mabϕbc

j + γ1/2g f abcAb
j(ϕ

ca
j − ϕ̄ca

j )], (A4)

where we have integrated by parts. The integral over these
ghosts is done by completing the square with the result∫

dϕab
j dϕ̄ab

j exp(−Sϕ̄,ϕ) (A5)

= (detM)−(N2−1)(D−1) exp(−γ Sh1),
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where

Sh1 ≡
∫

dDx g f abcAb
i (M−1)ad g f decAe

i . (A6)

The powers of detM from the fermi- and bose-ghost integra-
tions cancel, so the net result from integrating over all the aux-
iliary ghost pairs is simply exp(−γ Sh1).

The only remaining dependence on γ occurs in the constant
term in L3. We combine Sh1 with the constant term and obtain

Sh ≡ ∫
dDx [ g f abcAb

i (M−1)ad g f decAe
i

− (N2 −1)(D−1) ]. (A7)

The integal over the Faddeev-Popov ghosts, c and c̄, gives
detM as usual, and the integral over the Nakanishi-Lautrup
field gives Coulomb gauge condition, δ(∂iAi). We thus obtain
for the partition function

Z =
∫

dAidA0 detM δ(∂iAi) exp(−SY M − γ Sh). (A8)

We recognize this as the Faddeev-Popov weight for Coulomb
gauge modified by exp(−γ Sh). The vacuum condition that
the free energy W = lnZ be stationary with respect to γ now
gives

∂W
∂γ

= −〈Sh〉 = 0. (A9)

The modified action SY M + γSh and the condition 〈Sh〉 = 0
were originally obtained by imposing a cut-off at the Gribov
horizon appropriate to the minimal Coulomb gauge [4]. The
quantity Sh was called the “horizon function” and the last con-
dition was called the “horizon condition”. It is remarkable that
it also results from a BRST-invariant local action.

APPENDIX B: CANONICAL COULOMB-GAUGE
HAMILTONIAN

In this Appendix we express the action in terms of the 3-
dimensionally transverse field AT

i and its canonical momen-
tum πT

i .
Note that although Sh is non-local in space, it is local in

time, because the 3-dimensional Faddeev-Popov operator M,
and thus also its inverse M−1, is local in time. Moreover Sh
depends only on Ai but not on its time derivative Ȧi. The latter
appears only in SY M =

∫
dDx 1

4 F2
µν where F2

µν = 2F2
0i +F2

i j and
F0i = Ȧi −DiA0. This allows us to introduce canonical mo-
menta, which are the color-electric fields πa

i , by the Gaussian
identity

exp(−SY M) =
∫

dπi exp
(
−

∫
dDx [

1
2

π2
i (B1)

+iπi(Ȧi −DiA0)+
1
4

F2
i j ]

)
,

Integration over A0 imposes Gauss’s law in the form δ(Diπi),
which gives

Z =
∫

dAidπi detM δ(Diπi) δ(∂iAi) (B2)

×exp
(
−

∫
dDx [

1
2

π2
i + iπiȦi +

1
4

F2
i j ]− γ Sh

)
,

We now separate transverse and longitudinal parts, Ai = AT
i −

∂iσ and πi = πT
i − ∂iU , where ∂iAT

i = ∂iπT
i = 0, and U is the

color-Coulomb field. This gives∫
dAidπi detM δ(Diπi) δ(∂iAi)

=
∫

dAT dπT dU detM δ(Diπi), (B3)

where we have used
∫

dσ δ(∂2
i σ) = const. To satisfy Gauss’s

law we write

Diπi = Di(AT )(πT
i −∂iU)

= gAT
i ×πT

i +M(AT )U, (B4)

where M(AT ) = −Di(AT )∂i is the 3-dimensional Faddeev-
Popov operator. The Faddeev-Popov determinant now gets
absorbed by the identity

detM
∫

dU δ(gAT
i ×πT

i +MU) = 1, (B5)

where the last δ-function that expresses Gauss’s law fixes the
color-Coulomb potential to its physical value

U = Uphys ≡ M−1ρ. (B6)

Here ρ ≡ −gAT
i × πT

i is the color-charge density of the dy-
namical degrees of freedom. This gives the partition function
in canonical form

Z =
∫

dAT dπT exp
(
−

∫
dDx [

1
2

π2
i + iπT

i ȦT
i

+
1
4

F2
i j(A

T ) ]− γ Sh(AT )
)
, (B7)

where πi ≡ πT
i −∂iUphys. This is a canonical system, and thus

unitary, for all real γ, and stable for γ > 0.
The functional measure

∫
dAT exp(−γSh), supplemented by

the horizon condition (A9) that fixes γ = γphys, were derived
in [31] as a representation of the functional integral restricted
to the Gribov region,∫

dAT exp(−γphysSh) =
∫

Ω
dAT . (B8)

This yields the partition function in terms of the standard
Coulomb-gauge first-order action

Z =
∫

Ω
dAT dπT exp

(
−

∫
dDx [

1
2

π2
i + iπT

i ȦT
i

+
1
4

F2
i j(A

T ) ]
)
, (B9)

where πi ≡ πT
i −∂iUphys, and the integral over AT is restricted

to the Gribov region Ω.
We comment briefly on Lorentz invariance. The boundary

∂Ω of the Gribov region consists of points where the gauge
orbit is tangent to the gauge fixing surface. This provides
the boundary condition on wave functionals that holds on the
boundary ∂Ω namely, gauge invariance of the wave function-
als in these tangent directions. In the operator formalism in
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Coulomb gauge [42], the generators of the Poincaré algebra,
including the generators of Lorentz transformations, are rep-
resented by gauge-invariant operators [43]. As such they com-
mute with the generator of gauge transformations. Thus it ap-
pears that the cut-off at the Gribov horizon in Coulomb gauge
is consistent with Lorentz invariance. These considerations
indicate that unitarity holds for all positive γ, whereas Lorentz
invariance is regained only for γ = γphys.

The Gribov region, Ω, is the set of local minima with re-

spect to gauge transformations g(x) of the functional FA[g] ≡
||gA||2. Here ||A|| is the Hilbert norm of A, and gA is the gauge
transform of A. The set of relative minima, Ω, is larger than
the set of absolute minima, Λ, known as the fundamental mod-
ular region. The latter provides a true gauge-fixing. However
it has been argued [44] that integration over Ω and over Λ
give the same expectation-value for all n-point functions with
finite n.
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