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It is suggested a general mechanism through which a �-type behavior is produced in the speci�c
heat of a Bose gas near the critical temperature Tc. It is essential that the quasiparticle spectra
have a gap proportional to the condensate. It works for a general class of quasiparticle spectra, and
in particular, for the weakly interacting Bose gas. The introduction of a chemical potential in the
theory is brie
y discussed.

I Introduction

In his book on Statistical Mechanics, [1] Feynman refers

to the � point behavior and expresses his view that per-

haps part of the explanation of the � transition involves

Bose condensation. One interesting model of the � be-

havior is the one presented by Ceperley [2], but in it

the boson system is simulated by means of Monte Carlo

techniques using path integrals. However, although the

analytic behavior of the speci�c heat in a neighborhood

of the critical temperature is provided by renormaliza-

tion group methods, which gives an accurate descrip-

tion of the � behavior (see i.e. [3]), we are not aware

of any model exhibiting the mechanism through which

the condensate induces the divergence of the speci�c

heat cv at Tc. There are two phenomena which are ex-

pected to be explained by a satisfactory model of the

weakly interacting bose gas: 1) the existence of a gap-

less mode, which is more manifest at T = 0 , and 2) the

� behavior, which would appear at �nite temperatures.

In our opinion both phenomena must be manifest even

at the one-loop level, as it is in the relativistic mod-

els we mention below, but which is not the case in the

usual non-relativistic model, i.e., the � behavior cannot

be found by using the Bogoliubov's spectrum [4] for the

weakly interacting Bose gas near T = 0 by taking it as

valid at temperatures near the critical point.

Our aim is to show that if the bosonic quasiparti-

cle spectra has a gap proportional to the condensate, a

divergence in cv appears at the transition temperature,

and that this is the case for the weakly interacting Bose

gas near the critical temperature.

First of all, we wish to remind the simple model of

the temperature self-interacting scalar one-component

�eld � with Z2 symmetry breaking � = h �i in relativis-
tic quantum statistics [5]. Here the symmetry breaking

parameter plays the role of a �eld condensate. The ef-

fective potential is V (�; T ) =
�2
1
�4

4 � a2�2

2 + V1(T; �),

where �21 is the coupling constant, �a2 is the negative
mass term and V1(T; �) is the sum of T -dependent tad-

pole diagrams. On the mass shell V (�c; T ) = 
 is the

thermodynamical potential, �c being the extremum of

V (�; T ), where the spectrum is �(p) = c
p
p2 +M2c2,

M = 2�1�c.

In the high temperature limit one has V1(T; �) =

�21T
2�2=8, the extremum of V (�; T ) leading for

T < Tc to a temperature-dependent mass M(T ) =

�1
p
T 2
c � T 2, Tc = 4a2=�21 being the critical temper-

ature for symmetry restoration. The infrared contri-

bution to the thermodynamical potential in the limit

T � M(T ) is �
 ' c3M3T
12�~3 . One obtains then a spe-

ci�c heat �cv = �T @2

@T 2 ' c3�31

T 4

2�h3
p
T 2
c�T 2

which di-

verges as t�1=2, t = j1� T=Tcj, for T ! Tc, showing a

�-type behavior. This expression shows that the diver-

gence appears already at the one-loop approximation of

cv , although it is quantitatively satisfactory for t� �1
[6], since in the region closer to Tc, the contribution

from higher loops must be considered. In that region,
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renormalization group techniques gives an universal ex-

pression for the divergence as t��, where � < 1=2.

In the two component scalar �eld case, having

U(1) symmetry, two modes appear after the symme-

try breaking, the massive �1(p) = c
p
p2 +M2c2, M =

2�1�c, and the massless �2(p) = pc. The contribution

to the thermodynamic potential infrared term is the

same as in the previous case (the massless term does

not contribute), and cv diverges as t�1=2.
Actually, both in the relativistic and non-relativistic

cases, with spectra �r = c
p
p2 +�, and �n = p2=2m+

�, respectively. By taking some characteristic small

momentum p0 and introducing x = cp=T , calling � =

cp0=T , it is easy to see that there is a common infrared

contribution to 
 � �AT 5=2
R �
0
x4dx=[x2 + �T�1] �

A0T�3=2, where the mass (gap) � � b[1 � (T=Tc)

 ],


 > 1, and A;A0; b being constants. Then one can state
as a theorem that for T ! Tc, the one-loop thermody-

namic potential obtained from such spectra leads to a

divergent cv behavior as � ��1=2.
In the relativistic limit this comes from (A contains

a factor ~�3):

c


 = AT

Z 1

0

p2dp ln(1� e��r�) = �Ac
2

3

Z 1

0

p4dp

�r(e�r� � 1)
(1)

The the infrared limit of the last expression is

� �AT
5=2

3

Z �

0

x4dx

x2 +�T�1
� �AT

5=2(�T�1)2

3

Z �

0

dx

x2 +�T�1
+O(�T�1�) (2)

This means that near Tc


 � �AT
5=2(�T�1)3=2

3
Arc tan

�p
�T�1

= �AT�
3=2�

6
: (3)

From cV = �T @2

@T 2 ; we get that cV diverges as ��1=2:

In the non-relativistic case we have a similar formula, by taking x = p=
p
2mT , since


 = AT

Z 1

0

p2dp ln(1� e��n�) = �A
3

Z 1

0

p4dp

m(e�n� � 1)
� �A(2mT )

5=2

3m

Z �

0

x4dx

x2 +�T�1
: (4)

from which we get the same behavior near Tc:

d

It is expected that any system having a spectrum

of similar infrared properties than the previous ones,

would have also a speci�c heat having an in�nite be-

havior at the critical point. We would like to show that

such is the case of the Bogoliubov model of the weakly

interacting Bose gas near the critical point. It contains

a gap due to the condensate, which leads to a diver-

gence in the speci�c heat (in the region T=Tc < 1),

already at the one-loop approximation.

II Bogoliubov Hamiltonian near

the critical point

We will start from the quantized Hamiltonian for a

weakly interacting Bose gas expanded in terms of the

elementary creation and annihilation operators for spin-

less boson �elds, we shall assume momentum conser-

vation in the interactions and call U(r) the repul-

sive potential of the two body interaction, U
p0

1;p
0

2
p1;p2 =R R

d3re
ip�r

~ U(r). For p = 0 (zero momentum transfer

in the collision) Uo =
R
d3rU(r). In the temperature

interval we are considering the momenta are very small

and we can assume that the momentum transfer in each

collision is almost zero, p ' 0. For that reason it is pos-

sible to express approximately the matrix elements by

using Uo. The scattering length can be written then as

a = m
4�~2U0, and a > 0 since the potential is repulsive.

We shall assume the conditions a=� � 1 and

�a3 � 1 where � is the thermal de Broglie wave-

length and � = N=V the particle density. Then, by

starting from the fact that the occupation number of

the ground state n0 is a large number, we will write

ao =
p
n0e

i�, a+o =
p
n0e

�i�. From this we would get

an in�nite set of (non-equivalent) representations as a

consequence of breaking the �rst order gauge symmetry
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[7]  (x) ! ei� (x) ( (x) = V �1=2
P
eikxak), and we

take the physical representation as the one with � = 0

which leads to,

Ĥ =
Uo
2V

(n2o � no) +
X
p 6=0

p
2

2m
a+pap (5)

+
Uono
2V

X
p6=0

fa+pa+�p + apa�p + 4a+papg

+
Uo
2V

X
pi 6=0;p0

i 6=0

a+p0

1

a+p0

2

ap2ap1

We assume conservation of the total number of particles

N and then
P

p a
+
pap + n0 = N . The usual procedure

for T ! 0, by following Bogoliubov [8] [9] (see also [10]),

assuming that
P
a+pap =

P
np � N , is to substitute

in (5) n20 by [N �Pa+pap]
2 in the �rst and n0 by N in

the third term, which leads to the cancellation of a term
U0n0
V

P
a+pap in the last term in curly brackets of (5).

This means to neglect one term of second order in
P
np,

the number of excited particles. But if
P
np � N ,

one cannot neglect the term (
P
np)

2 =
P
a+papa

+
p0ap0 .

This is the case for temperatures near and below the

transition point, and even for very low temperatures;

e.g., as in the case n0 ' N=2,
P
np ' N=2. Thus,

we keep n0(T ) explicit in our formulae as a quantity

decreasing with increasing temperature. We conclude

that Bogoliubov' gapless spectrum is an approximation

valid actually for T = 0 , for almost all the system in

the condensate.

In our present approach the last term in (5) accounts

for the energy due to the interactions of particles with

momenta p 6= 0. Since we are considering an inter-

val of temperatures very near (but below) the transi-

tion temperature, we assume that such term is approx-

imately constant and take it as EN = O(U0N
2=2V ).

Then the problem we are left with is the diagonal-

ization of the sum of the second and third terms in

(5). Our assumptions are valid for a wide range of

values of n0 (if N ' 1023 our approximation is good

up to, say, n0 ' 1021). Thus, we keep our calcula-

tions in the one-loop approximation and in terms of

n0 and when compared with the standard Bogoliubov's

model [8] it di�ers in the coeÆcient of the last term

in curly brackets, which is changed from 2 to 4. The

next step is to make the usual Bogoliubov's canoni-

cal transformation ap = (bp � �pb
+
�p)=

q
1� �2p and

a+p = (b+p � �pb�p)=
q
1� �2p as a result of which we

obtain the diagonalized Hamiltonian,

Ĥ = Eo +EN +
X
p6=0

"(p)b+p bp; (6)

where Eo = Uo
2V [n

2
o � no] � Uono

2V

P
p 6=0

�p and �p =

V
Uono

[4Uono2V + p
2

2m�"(p)], and if we denote byK = Uon0
2V ,

then

"(p) =

r
12K2 + 8K

p2

2m
+ (

p2

2m
)2; (7)

is the spectrum of the new Bose quasiparticles repre-

senting the elementary excitations of the system, where

b+p ; bp are their creation and annihilation operators.

The limit T ! 0 does not lead to Bogoliubov's spec-

trum, in which the gap term 2
p
3K is absent, since both

models correspond to di�erent approximations. Actu-

ally, having only one mode, the present model bears in

this respect more resemblance with the Z2 case than

with the U(1) one. In our model the long wavelength

limit is obviously not linear in p, as it is usually. We

may argue that our limit is not T ! 0 and also that

its small value probably makes diÆcult to identify it

among the experimental errors for p! 0 near Tc. Actu-

ally, asK � kT is very small (for n0 ' 1020;K ' 10�12

eV) it can be usually neglected, but it is able to pro-

duce the macroscopic e�ect of a typical �-type diver-

gent speci�c heat near Tc. As limp!0 "(p) = 2
p
3K,

the gap parameter K formally behaves as the analog of

a rest energy in relativistic dynamics. This gap has the

property that it decreases with temperature and goes

to zero, as well as E0; �p, for T ! Tc:

Below we will calculate the thermodynamic poten-

tial by taking the chemical potential � = 0 by assuming

that the number of quasiparticles nq =
P

p b
+
p bp is not

conserved (See, however, next section).

The term K is proportional to n0, the eigenvalue

of a0 with regard to the coherent ground state. In

our present approximation, the quasi-particles are ac-

tually massive since their e�ective mass is m� =

[@2"(p)=@p2]�1jp=0 =
p
3m=4. An explicit computation

of cv showing the divergent behavior close to the critical

temperature is easily done by doing �rst the tempera-

ture expansion of the thermodynamic potential of the

quasiparticles by taking the spectrum (7).

Due to the interaction term, the ground state energy

E0 is di�erent from zero,
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Eo =
2�~2an2o
mV

(
1 +

16

15

r
6a3no
�V

"
7E

 
1;

r
2

3

!
� 2F

 
1;

r
2

3

!#)
; (8)

where E, F are the usual elliptic integrals.

d

III The speci�c heat

We will calculate the thermodynamical potential of

the quasiparticles 
 . The total energy is then U =

E0 + EN � T (@
=@T ) + 
. We will do also the

asymptotic expansion of 
 close to Tc for T < Tc.

By changing to the variable x =
q

�
2mp it reads


 = 2(2m)3=2V
�5=2~3

1R
0

dxx2 ln[1� e�
p
12M2+8Mx2+x4 ], where

M = K� � 1 and we obtain an expansion in terms of

it, in the same way done in the case of the e�ective po-

tential in the temperature scalar model [5]. After some

calculations which we outline in the appendix (these

are given in detail in [11]), the perturbative expansion

of 
 in powers of K is obtained, and from it the speci�c

heat is given by cv =
@E0

@T � T @2

@T 2 as,

c

cv = [n0 +
8

3

q
2�a3n30(7E(1;

r
2

3
)� 2F (1;

r
2

3
))]
@K

@T
+

(2m)3=2

~3(2�)2
f 5

2
�(

5

2
)�(

5

2
)k5=2T 3=2 � 3�(

3

2
)�(

3

2
)k3=2T 1=2K (9)

+4kT [2��K1=2 � 3�(
3

2
)�(

3

2
)k1=2T 1=2]

@K

@T
� 4kT 2[�(

3

2
)�(

3

2
)k1=2T 1=2 � ��K1=2]

@2K

@T 2

+�2�kT 2

�
@K

@T

�2

K�1=2
)
;

d

Here � = ( 54 +
p
3
2 )(

p
6 � p

2). The last term

diverges at Tc. We shall write no = Nf(T ) where

f(T ) = (1 � Ne=N) and Ne is the density of parti-
cles not in the ground state. By starting from Np =

nq(1 + �2p)=(1 � �2p) + �2p=1 � �2p, [12] the expression

for Ne = ~
�3 R d3pNpis given in the Appendix as an ex-

pansion similar to the one for 
. Under the assumption
K� � 1, the leading terms are

Ne = Ne0 + CT; (10)

where Ne0 = AT 3=2 and A = (2�mk=h2)3=2�(3=2),

C = �1=2(
p
6 +

p
2)AK1=2=k1=2�(3=2). This equation

for Ne is to be solved by iteration, by taking in M as

a �rst approximation f(T ) = [1�Ne0=N ]. It must be

observed that as T decreases, the rate of condensation

in (10) is stronger than for the ideal gas. We will take

N = AT
3=2
c . By evaluating (9) with helium parameters

and taking the scattering length as a = 10�10 cm, the
curve for cv(T ) de�ned in the region T � Tc is depicted
in Fig. 1. Then an in�nite �-type behavior of cv(T )

similar to the scalar �eld case results. Such a behav-

ior cannot be obtained by using the usual Bogoliubov's

spectrum [4].

The more exact part of the cv curve lies in the re-

gion near and below Tc since we assumed EN constant

and K� � 1. But the last condition is valid even for

very low T and EN decreases to small values as T ! 0.

Thus, the cv curve drawn is approximately valid even
in that region. The behavior of cv for T > Tc is beyond

the scope of the present letter. Such problem must be

investigated by starting from an adequate model of im-

perfect gas in the region T � Tc[13].
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Figure 1: cv=Nk-curve obtained from our model, where the � shape is shown. For T > Tc the ideal gas curve has

been drawn for comparison.

IV The introduction of a chemi-

cal potential

The absence of a second (gapless) Goldstone mode does

not mean an incompleteness of our model, since al-

though we are dealing with a two-dimensional prob-

lem, the present representation behaves as similar to

the one-dimensional scalar case seen in the Introduc-

tion, whose spectrum bears a gap. On the other hand,

an investigation of the Bose gas by using the Green's

function method made by Beliaev [14] leads to the usual

Bogoliubov spectrum in terms of n0 at strictly T = 0.

However, this is made by introducing a chemical poten-

tial �, which loses its usual meaning, since the calcula-

tion of the Green functions by starting from a density

matrix, demands commutation between the Hamilto-

nian H and the number N of excited particles, which is

not the case since the quasiparticle number is not con-

served. If � = 0 in [14] our spectrum is reproduced, and

the gap cannot be erased in higher loop calculations.

The papers [14] were written before the formulation

of Goldstone theorem [15], which lead to a better under-

standing of the theory of spontaneous symmetry break-

ing. Actually, Beliaev results are based in the same op-

erator algebra representation used by Bogoliubov, and

describe the existence of only one mode, which is gap-

less. It misses a second mode having a gap, which is ex-

pected to appear in usual U(1) gauge invariant models

with spontaneous symmetry breaking, as was pointed

out in the Introduction. If the chemical potential is

understood not in the usual sense, but as a parameter

introduced before the breaking of the symmetry, one

�nds that the representation used by Beliaev is not the

unique one: there is a set of in�nite unequivalent ones,

which is typical of the spontaneously broken symmetry

case [7]. One of these is being investigated by two of

the present authors (D.O. and H.P.R.) for the tempera-

ture case. In it, as in the U(1) scalar relativistic model

considered in the introduction, a two mode spectrum is

found. One of them is a gapless Goldstone mode and

the other one has a gap, the later producing a lambda

behavior in the speci�c heat. Work in this problem is

in progress.

V Conclusions

In relativistic models of a scalar bose gas with symme-

try breaking, it is found a divergent behavior of the spe-

ci�c heat at the one loop level of the thermodynamic po-

tential, which comes from the temperature dependent

mass (gap) in the spectrum, which is consistent qual-

itatively with renormalization group predictions. By

analogy, we consider the usual Bogoliubov model near

the critical temperature for the phase transition, and

a gap is shown to be present, leading to a divergence

in the speci�c heat. We discussed brie
y the introduc-

tion of a chemical potential in the model, as done in

Beliaev procedure [14], and the absence of a Goldstone

mode. We conclude that the model we have discussed,

although not being perhaps the �nal one, is an step

towards it, since it is able to describe the property of

lambda behavior in the non-ideal Bose gas.
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VI Appendix

To make an asymptotic expansion of 
 in terms of

M = K�, we write 
 = 
(0) + @

@M jM=0M + R(M)

, where we stop our expansion in the �rst-order term

and R(M) is certain function of M which we are going

to �nd out by using R(M) = 
(M)�
(0)� @

@M jM=0M

and @R
@M = @


@M � @

@M jM=0. Then

c

@


@M
=

(2m)3=2V

�5=2~3(2�)2

1Z
0

dxx2[24M + 8x2]p
12M2 + 8Mx2 + x4[exp(

p
12M2 + 8Mx2 + x4)� 1]

;

from which @

@M jM=0 = 4(2m)3=2V �(3=2)�(3=2)=�5=2~3(2�)2) The R(M) function is obtained by calculating @R=@M

from these expressions, by using the Matsubara sum 1
"[exp(")�1] =

1P
�1

1
"2+4�n2 � 1

2" , and performing the adequate

regularizations, we get �nally (see also [11]),


 =
1

4�3�1=2

��2
3
�(

5

2
)�(

5

2
)kT + 4�(

3

2
)�(

3

2
)K � �

8�

3
(kT )�1=2K3=2

� (kT )�3=2
4
p
2�

15
K5=2 + �(

3

2
)(kT )�1

O(K3)

12
p
�3
g

(11)

By a similar procedure,we get,

Ne =
1

�3
f �(3

2
)� �1=2(

p
6 +

p
2)M1=2 � 6

�
�(3=2)M2 +O(M3) g (12)

d
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