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We perform molecular dynamics simulations of directional growth of a binary alloy. We �x the
temperature gradient, pulling speed, impurity concentration and only vary the impurity segregation
coeÆcient. By changing the range of the Lennard Jones potential of impurity atoms as compared to
the range of the potential of solvent atoms, the elastic energy cost causes a decreases of solubility of
the impurity atoms into the matrix (solvent) solid phase and consequently a decrease in the impurity
segregation coeÆcient. Within certain range of segregation coeÆcients, the growing interface is
planar; below it, the interface becomes unstable and a cellular structure emerges.

I Introduction

Rapid growth of a solid-
uid interface under direc-

tional solidi�cation conditions is a common method

of investigating solidi�cation morphologies as well as

segregation during crystalization [1]. Morphological in-

stabilities in the solid-
uid interface have been studied

for a long time [2]. It is known that during growth, the

crystal-
uid (melt, vapor or solution) interface, is not

at thermodynamic equilibrium. The moving interface

is a dynamical system, that can display a variety of

dynamical instabilities and pattern formation [3, 4].

The rapid expansion of the use of high quality crys-

talline materials in optical and eletronic devices during

the last decades has stimulated research, both theoret-

ical and experimental, on dynamics of crystallization.

A better understanding on solidi�cation of metals and

eutectic �bers are of unquestionable technological inter-

est. Computer simulations have played an important

role on the development and understanding of recent

models of crystal growth [5-9]. A crystal can grow from

the adjacent 
uid (melt, vapor or solution) by di�erent

mechanisms, depending on the structure of the interface

(rough or smooth), material purity, growth rates, tem-

perature gradients and related factors. These require-

ments can be met in a controlled way in experiments

of directional growth, where a sample in an appropri-

ate furnace is submitted to a temperature gradient and

pulled with a �xed speed towards the colder region of

the furnace. For practical crystal growth, the sample

can be cast into a quartz tube with chosen diameter

and length. This is a 3-dimension Bridgman growth

arrangement. However, detailed studies about dynam-

ics of crystal growth have been conducted in very thin

transparent samples (sandwiched between glass slides),

such that the crystal-
uid interface can be visualized

and recorded with the use of videomicroscopy tech-

niques [10, 11]. The results of such experiments have

been comparared with results of two-dimensional mod-

els of crystal growth. Our computer simulations are also

carried out in two dimensions. With the use of molecu-

lar dynamics techniques we simulate the solidi�cation of

a two-component system consisting of solvent (atoms a)

and solute (atoms b) interacting via Lennard-Jones(LJ)

potentials : �a;a, �b;b and �a;b = �b;a which has been

shown to describe very well the directional growth of

a binary mixture [7, 8, 9]. the method is describe in

details in section III. By tuning the parameters of the

LJ potential, we can change the structure of the inter-

face and the segregation coeÆcient such that a planar

interface can go unstable.

In this paper, we simulate a binary system with a

rough crystal-
uid interface and with several values of

the LJ interaction potential as discussed below. This

work is organized as follow. In section II we brie
y

discuss the directional growth of binary mixtures. In

section III we discuss the simulation method we have
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used. In section IV we show our results and in section

V we present our conclusions.

II Directional Growth of Binary

Mixtures

A great deal of experimental observations in directional

growth have been done in thin samples of transpar-

ent materials, where presumably the third dimension

is not important, and the crystal-
uid interface can be

followed in time, by using videomicroscopy with digi-

tal image analysis. The growth furnace consists of two

metal blocks at controlled temperatures:one block with

temperature above the sample melting temperature and

the other below. A thin sample of the material to be

studied is sandwiched between glass slides with spacers,

whose thickness is in general of a few micra, to keep the

system as close as possible of a 2d geometry, and guar-

antee that the transport of mass is mainly di�usive with

no convection in the 
uid phase. The sample is then put

on top of the metal blocks, with good thermal contact.

A temperature gradient appears along of the sample

cell. The sample is then pulled towards the cold block

in a very precise and controlled way by a pulling sys-

tem and starts to solidify. After an initial transient the

system achieves a steady-state where the interface posi-

tion becomes �xed in the laboratory frame, the growth

speed is the same, but opposite, as the pulling speed

and the solute concentration pro�le becomes steady in

the laboratory frame. Morphological instabilities of the

planar interface are inhibited during directional growth

of pure materials. However, for binary systems, de-

pending on concentration of solute, temperature gradi-

ent and growth speed, morphological instabilities can

occur: The planar interface becomes cellular and even-

tually dendritic. This is the so called Mullins-Sekerka

instability (MS). In our simulations we are able to ob-

serve both regimes: planar and cellular interfaces. In

this work we will focus our attention on the evolution of

an interface where we clearly see segregation, transport

of solute at the interface and morphological instabili-

ties.

III Simulation

Our simulation is carried out using molecular dynamics

with all particles interacting through the potential.

�i;j(ri;j) = �i;j(ri;j)� �i;j(rc)
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The indexes i and j stands for particles in the positions

~ri and ~rj respectively, and 0 � i; j � N , where N is

the total number of particles and ~ri;j = j~ri�~rij. A cut-

o�, rc = 2:5�aa is introduced in the potential in order

to accelerate the simulation. If the force on a particle

is found by summing contributions from all particles

acting upon it, then this truncation limits the compu-

tational e�ort to an amount proportional to the total

number of particles N . Of course this truncation intro-

duces discontinuities both in the potential and force.

To smooth this discontinuity we introduce a constant

term �(rc). Another term (d�=dr)r=rc (r � rc) is in-

troduced to remove the force discontinuity. Particles

in our simulation move according the Newton's law,

that generate a set of 2N coupled equations of mo-

tion which are solved by increasing forward in time

the physical state of the system in small time-steps

of size �t = 0:02�aa(ma=�aa). The resulting equa-

tions are solved by using the Beeman's method of in-

tegration. In order to improve the method we use

a Verlet and a celular table. The Verlet table con-

sists of an address vector which contains the number

and position of each particle inside a circle of radius

rv = 3�aa. After some steps in time, the neighbor-

hood of each particle changes, so that, we have to re-

fresh the Verlet table. This refreshment process can

take a long time. In order to make it shorter we di-

vide the system in cells of size cx � cz = (3:5�aa)2,

such that in recalculating the Verlet table we have to

search only in neighbor cells. Inittialy we distribute

N = nx�nz = 162� 110 particles over the two dimen-

sional surface Lx �  Lz = 162� 21=6 � 110 � 21=6. We

assume periodic boundary conditions in the x direction.

In the z direction we divide the system in two distinct

regions, a solid and a 
uid one. In the solid region parti-

cles stand initially in their equilibrium position in a to-

tal of 162�30 particles. On the 
uid region the density

is initially �f = 0:5��2aa , giving a total of 162� 80 par-

ticles, randomly distributed in a triangular lattice and

slightly dislocated from their equilibrium position. We

impose a temperature gradient, G, along the z direction

using a velocity renormalization approach [7, 8, 9]. In

one side of the system de�ned by 170�aa � z � 151�aa,

temperature is �xed to T0 = 0. In another region

0 � z � 30�aa, temperature is �xed to Th = 0:7�aa=kB,

higher than the melting temperature Tf = 0:4�aa=kB
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of the pure material. The melting temperature was

measured independently as described below. We let

the system evolute for 1:2 � 105 steps in time of size

�t = 0:02 � �aa � (ma=�aa)1=2, which seems to be

enough to equilibrate the system. Once the equilibrium

is reached we start pulling the system in the +z direc-

tion, at a pulling velocity vp = 4 � 10�3(�aa=ma)1=2.

The z = 0 layer works as a source of particles, man-

taining a constant particle 
ow to the material.

In order to obtain an estimate for Tf we did an inde-

pendent simulation with 1:5 � 103 particles in a box

of �xed dimensions and density 7� 10�3�aa, below the

solid density. We obtained that Tf � 0:4��aa=kB . The

considered system consists of two di�erent types of par-

ticles. One is the solvent ( a particles) and the solute (b

particles). We de�ne three types of interactions, solute-

solute (b - b), solvent-solvent (a - a), solute-solvent (b

- a). The initial solute concentration c0 is 5%. This

concentration is de�ned as the ratio between the num-

ber of particles in the solute and the total number of

particles in the solvent. To calculate the density along

the growing crystal we use strips of size �z = 20�aa.

For simplicity, from now on we measure energy in units

of �aa, distance in units of �aa, mass in units of ma

so that temperature and time are measured in units of

kB=�aa and (ma�
2
aa=�aa)�1=2 respectively.

The simulation is carried out for �bb = 0:1 and �ab = 0:5.

Value of �ab are 1:00; 1:05; 1:15; 1:20. We always use

�aa = �bb. Typically, in our simulations of directional

growth, the solid phase density �s was 5:7 times larger

than the 
uid phase density �f . For a given pulling

speed the time for the system to achieve steady-state,

and consequently the simulation time, decreases as one

increases the ratio between the solid and 
uid densities.

The reason is that the typical time for reaching steady-

state is of the order of � D=v2f = D=v2p (�f=�s)
2
, where

D is the di�usion coeÆcient and vf is the velocity of the


uid phase. Since D increases approximately linearly

with decreasing density ratio, the computation time

goes approximately linear with (�f=�s). We checked

the velocity pro�le of the 
uid phase and determined

that solute transport is mainly di�usive for our simula-

tions, with D = 1:3�aa(�aa=ma)1=2

IV Results

We studied the evolution of cellular instabilities dur-

ing directional solidication for �xed temperature gradi-

ent G = 5 � 10�4(�aa=kB�aa) and �xed pulling speed

vp = 4 � 10�3(�aa=ma)1=2, but for di�erent values of

the segregation coeÆcient k. From Mullins-Sekerka

predictions [2], the interface is unstable if lT < lD,

where lT is the thermal length and lD is the di�usion

length. lT �
kBTf

2

LG
c0(1�k)

2

k and lD � D�s
vp�f

� 60�aa.

Since L � 0:59�aa (latent heat) [7], one obtains that

lT � 27 (1�k)2

k �aa. Therefore the interface is stable for

k > 0:25. By decreasing k one can trigger the cellular

instability. The value of k estimated from Fig. 1 is

about 0:3. The interface is stable as predicted above.

By increasing the value of �ab as compared to �aa, the

impurity to be able to incorporate into the crystal has

to deform its lattice. The high elastic energy cost causes

a decrease of the impurity solubility into the crystal

phase, resulting in a smaller k. From Figs. 2 and 3

we estimate k � 0:22 for �ab = 1:05�aa; k � 0:04 for

�ab = 1:15�aa and k � 0:01 for �ab = 1:20�aa, all val-

ues are in the unstable region. As k gets smaller, the

crystal becomes cleaner and impurities concentrate into

the grooves of the cellular structure.
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Figure 1. Final con�guration of the simulated crystal after
8�104 time steps for �ab = 1:0. Grey and black circles rep-
resent solvent and solute atoms respectively. The solvent
(grey) crystaline structure is hexagonal as expected for a
Lennard-Jones solid. Pulling direction is along Z. Morpho-
logical instability is not observed. There is solute segrega-
tion at the solid-
uid interface, with k � 0:3.
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Figure 2. From top to botton the plots show the surface's
time evolution for �ab = 1:05. The sequence starts at
t = 1:6� 104 following in time steps of size �t = 4:0� 104.
Symbols are the same as in �gure 1. The estimated k � 0:22
indicates that the interface is in the unstable region as ob-
served.

Figure 3. Final con�guration of the simulated crystal after
8 � 104 time steps. From top to botton �ab = 1:05; 1:15
and 1:20. Symbols are the same as in �gure 1. As �ab in-
creases, segragation increases (k decreases) facilitating the
appearence of cellular instabilities.
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V Conclusions

Our computer simulations of directional growth of a bi-
nary mixture clearly show: (1) The e�ect of impurity
segregation during growth; (2) Segregation increases (k
decreases) as �ab becomes larger than �aa; (3) For k
smaller than 0:25 the cellular instability is triggered for
the values of G, vp and c0 used. The impurities segre-
gated at the interface concentrate into the grooves of
the cellular structure resulting in impurity inclusions
that cause large defects in the crystal matrix.
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