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Theoretical model to describe magnetodynamics of a ferrogel, i.e., an assembly of ferromagnetic
nanoparticles embedded in a gel, is proposed. The reorientations of the particles are determined
by the in
uence of the elastic matrix and the rotational Brownian motion. The set of essential
parameters, on which the components of the dynamic magnetic susceptibility tensor depend, is
discussed. In the framework of the model, absorption of the energy of an ac �eld is studied. With
allowance for the interaction of elastic and Brownian forces, the e�ective relaxation times and
eigenfrequencies for the longitudinal and transverse components of the ferrogel magnetization are
evaluated.

I Introduction

Properties of complex magnetic 
uids|this is the name

for composite materials produced in result of embed-

ding magnetic nanoparticles in easily deformable sub-

stances (soft matter)|are interesting from numerous

viewpoints. On the one hand, magnetic particles by

integration in supramolecular structures can give birth

to new magnetically-controlled intellectual materials as,

e.g. ferroliquid crystals [1, 2, 3] or ferrogels[4, 5]. On the

other hand, having been admixed to the matrix in small

amounts, the same particles will work as magnetic-�eld

controlled micro-rotors that probe the rheology of the

carrier 
uid at the scale comparable with the particle

size, i.e., & 10nm [6]. Indeed, in single-domain particles

the speci�c magnetic moments are high, and accurate

measurements of their response to an ac �eld (it causes

rotational swings of the grains) are quite feasible. How-

ever, to rely on such magnetorheological intrascopy, be-

sides solving technical problems of measurement, one

faces the necessity to adequately interpret the collected

data. Therefore, a theory specializing in magnetic spec-

tra of soft ferrodispersions is required. A good partic-

ular example yield Refs. [7, 8, 9, 10], where the experi-

mental technique and theoretical treatment concerning

magnetic paints (ferrolaquers) are described. In the

systems studied the magnetic particles were aluminum-

covered iron needles about 150nm in length with the

aspect ratio about 1:8 suspended in a resin-containing


uid matrix subjected to subsequent crosslinking.

In a suÆciently diluted disperse system, the limit

that one has to consider if the attention is focused on

the properties of the matrix, the main contribution to

the system response goes from individual particles. Un-

like the case of coarse suspensions, in a nanodispersion

the orientational dynamics of the particles is always

an interplay between the force (applied �eld, elasticity

and viscosity of the environment) and noise (Brownian

di�usion) factors. For understanding of the magnetic

spectra of complex magnetic 
uids it is equally neces-

sary to account for both factors [6, 11].

In Ref. [12] the system under study was a weak fer-

rogel modeled by a dilute suspension of magnetically

hard nanoparticles in an elastic matrix. All the par-

ticles were assumed to be spherical and of equal size.

The coupling of an individual particle to its environ-

ment was described according to the following scheme:

{ the elastic component of interaction was chosen

in the form of a harmonic potential, i.e., a func-

tion that is quadratic with respect to the angular

deviation of the particle axis from a certain equi-

librium direction;

{ the dissipative part was taken in the Stokes ap-

proximation so that the friction force imposed by

the matrix is proportional to the product of the

particle velocity and the viscosity of the 
uid;

{ the equilibrium thermal 
uctuations were intro-

duced in the dynamic equations of the particle

as a white noise by means of the 
uctuation-

dissipation theorem.
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The afore-mentioned rotary (torsional) oscillator model

is well-known as one of the main theoretical tools in the

statistical mechanics of suspensions and in molecular

spectroscopy [13, 14, 15]. For example, in Ref. [13] it

was used to explain the details of the high-frequency ab-

sorption in polar liquids. The interpretation was based

on the calculation of the longitudinal (the subscript in-

dicates the orientation of the probing �eld with respect

to the equilibrium direction of the particle axis ) dy-

namic susceptibility in an assembly of electric dipoles

subjected to the Brownian rotary motion. Note that

due to some purposes (the results [13] are reproduced in

the book [14]) only the longitudinal, and not transverse,

susceptibility was taken into account. Meanwhile, as

is shown below, under strong elasticity the longitudi-

nal dynamic polarization \freezes" and becomes rather

small in comparison with the transverse one. Due to

that, in an elastic material with the chaotic distribu-

tion of the particle axes it is, �rst place, the transverse

component that plays the dominating rôle in formation

of the observed (macroscopic) susceptibility.

In Ref. [12] we adapted the model of a torsional os-

cillator surrounded by a Newtonian 
uid for the case

of ferrogel and determined the principal values of the

magnetic susceptibility tensor: �k and �?. As it was

expected, our results con�rmed that with the elastic-

ity growth the main part in the response signal belongs

to the transverse susceptibility. However, the most es-

sential result of the work [12] was the conclusion that

in the studied model within the whole physically rel-

evant material parameter range the magnetic as well

as orientational relaxation of ferrogel is monotonic. In

other words, the system is unable for oscillations and

no resonances could be excited in it.

In the present paper we modify the model [12] just

in one aspect. Namely, not changing the part concern-

ing the equilibrium elasticity, we assume that the dissi-

pative mechanism that couples a particle with the ma-

trix is viscoelasticity. This means that the time, dur-

ing which stress relaxation in the matrix takes place,

is admitted to be �nite. This property to a smaller or

greater extent is inherent to any 
uid [16]; the more

so|to soft systems like polymeric gels [17, 18]. As it

turned out, as soon as the matrix is taken to be not

just viscous but viscoelastic, the magnetic spectrum of

such a ferrogel changes drastically. In particular, os-

cillatory damping regimes become possible that means

that under external excitation the system is capable of

a resonance behavior.

It is noteworthy to recall in this connection the spec-

tra of magnetic nanosuspensions with viscoelastic but


uid matrices. As far as we know, the studies of this

type of complex 
uid suspensions were begun by the

works [19, 20], where the kinetic equations describing

the translational motion of the particles were derived

and the corresponding coordinate and velocity corre-

lation functions were found. In Refs. [6, 11] the said

approach was extended for the case of rotary Brownian

motion. In the studies of the dynamic magnetic sus-

ceptibility the possibility of a resonance behavior was

demonstrated. Since the system under discussion does

not possess an equilibrium elasticity so that the restor-

ing torque is solely due to the retarded stress in the

matrix, the found resonances turned out to be located

at suÆciently high frequencies.

II Model

Consider an assembly of single-domain particles sus-

pended in a gel. The particles are assumed to be mag-

netically hard so that inside each of them the mag-

netic moment � is completely \frozen-in" in the parti-

cle body. Incorporation of the particles in the structure

of the gel is modeled by an elastic harmonic potential.

By this, some preferred orientation of the particle axis

is imposed. If this direction is the same for all the par-

ticles (e.g. the oligomer matrix was crosslinked in the

presence of an external �eld), then the system is charac-

terized by the macroscopic longitudinal (�k) and trans-

verse (�?) susceptibilities, which take the form of the

sums of the corresponding contributions of individual

particles. If, on the contrary, the equilibrium direction

of the particle magnetic moment does exist only mi-

croscopically whilst the system as a whole is isotropic,

then the macroscopic susceptibility is determined as a

weighted average � = 1
3

�
�k + 2�?

�
, see [21], for exam-

ple. In this connection, note the above remark on the

dielectric susceptibility theory for polar 
uids given in

[13].

As the mechanism of the particle / matrix dis-

sipative interaction, here we employ the rheological

Maxwell model with a single relaxation time. This as-

sumption is similar to those of Refs. [6, 11, 22]. To sim-

plify the mathematical work, the particles are taken to

be 
at rotators so that each of them has just one degree

of freedom that is the angle # between its magnetic mo-

ment � and the direction of the equilibrium orientation.

Under those conditions, the equation of rotational mo-

tion for a particle with the moment of inertia I writes

I �# = �@U
@#

+Q(t): (1)

Here the �rst term in the right-hand side (rhs) has the

dynamic origin: the regular torque due to the elastic

environment of the particle and the external magnetic



368 Brazilian Journal of Physics, vol. 31, no. 3, September, 2001

�eld H. The second term is the friction torque ow-

ing to the dissipative interaction. Assuming the elastic

potential of the matrix to be harmonic, one has

U =
1

2
K#2 � �

�
Hk cos#+H? sin#

�
; (2)

where the subscripts that mark the �eld components

correspond to the directions # = 0 (longitudinal) and

# = �=2 (transverse) with respect to the symmetry

(easy) axis of the elastic potential.

In the Maxwell model of a viscoelastic 
uid, the

torque exerted by the matrix on the particle is charac-

terized by the reference stress retardation time �M and

is described by the equation

Q+ �M _Q = �� _#+ y(t) (3)

The �rst term in rhs of Eq. (3) renders the regular

component of the dissipative torque (the Stokes fric-

tion) while the second one is the random component,

i.e., the noise. The latter is associated with a thermal

bath at the temperature �; hereafter we set the Boltz-

mann constant to unity. It is the noise that induces

the Brownian motion of the particle. By the order of

magnitude we set the friction coeÆcient to be � = 6�V

that corresponds to a spherical particle of the volume

V embedded in a 
uid with the viscosity �. It is easy

to show, see [6, 11], that the random torque correlator

at equilibrium is

h y(t) y(t0) i = 2�� Æ(t� t0); (4)

so that the noise in Eq. (3) is white and the 
uctuation-

dissipation theorem holds.

Eliminating the dissipative torque Q(t) from Eq. (1)

with the aid of Eq. (3), at H = 0 we arrive at the

Langevin equation for a Brownian oscillator in a vis-

coelastic 
uid:

I
�
�M

���

# + �#
�
+K(�M _#+ #) + � _# = y(t): (5)

In the limit of a medium that is purely viscous

(�M ! 0) equation (5) reduces to the previously-

studied model of a torsional oscillator that is charac-

terized by three relaxation times: �I , �K and �D [12].

Let us recall their meanings. From comparison of the

inertial I �# and Stokes friction � _# torques there follows

the de�nition for the so-called inertial time

�I = I=�: (6)

that yields the reference time lapse, after which the

particle angular velocity equalizes with that of the sur-

rounding medium provided that the latter is viscous

with the viscosity coeÆcient �.

Since it is assumed that the carrier medium of the

suspension possesses also some equilibrium elasticity,

then in a natural way one introduces the reference fre-

quency !K of rotational swings of the particles and the

coupled to it (by means of �I ) orientational time:

!K =
p
K=I = 1=

p
�K�I ; �K = �=K = (�I!

2
K)

�1:

(7)

The interval �K having passed, the particle axis settles

to the equilibrium direction with respect to the elastic

potential U .

From the fact that the Brownian particle is in ther-

mal equilibrium with its environment (thermal bath)

follows the existence of one more time scale: the ther-

mal frequency !�. The latter (once again by means of

�I ) is linked to the well-known Debye time �D of ther-

mal orientational relaxation:

!� =
p
�=I = 1=

p
�D�I ; (8)

When passing to the case of a viscoelastic medium,

the set of reference times is extended by adding the

retardation time �M . As one can see from Eq. (5),

at �M 6= 0 the problem acquires one more reference

frequency that owes to the dynamic (non-equilibrium)

elasticity of the matrix:

!M = 1=
p
�M �I =

p
KM=I; KM = �=�M : (9)

It is worth a note that it is right this frequency that

determines the resonance behavior of the particle re-

sponse in a viscoelastic medium with zero equilibrium

elasticity present [6, 11].

Insofar we have found that the system under study

has four independent parameters with the dimensions

of time. In below we show that in a typical suspen-

sion they di�er considerably from one another. This

means that the system response to a probing �eld H(t)

strongly depends upon the relation between the �eld

period and the reference times of the problem. How-

ever, prior to get to analyzing the modes of the response

to a weak �eld, let us check the compatibility of our

model with the Stokes approximation. As known (see,

for example, Ref. [23])) the Stokes limit means that the

Reynolds number is small. When applied to a parti-

cle with the linear size a that rotates with the angular

velocity (frequency) !, this condition takes the form

Re � �fau=� � �pa
5!=� � !�I � 1; (10)

where we set that the 
uid and particle densities

(�f and �p, respectively) are of the same order of

magnitude. Substituting into Eq. (10) the reference

frequencies|elastic !K from Eq. (7), thermal !� from

Eq. (8) and Maxwellian !M from Eq. (9)|one �nds
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that the Stokes approximation (10) remains valid as

long as

�I � �K ; �D ; �M : (11)

In other words, the inertial time should be the shortest

of the reference times of the system.

It is convenient to introduce the dimensionless times

of the elastic, Debye (thermal) and Maxwellian relax-

ation de�ned through the scale �I as

TK = �K=�I = �2=KI;

TD = �D=�I = �2=�I;

TM = �M=�I ; (12)

so that condition (11) takes the form TK ; TD; TM � 1.

Estimation of TD for suspensions had been done many

times (see Refs. [6, 12]) and it may be written as

TD � a�2=�. Thence, condition TD � 1 at � . 103K

and � & 10�2P holds starting from a & 10�9 cm, i.e.,

always.

To make an assessment for the parameter TK , we

remark the following. The elasticity modulus E of a

polymeric gel is of the high-elasticity (entropy) origin

so that by the order of magnitude E � ��, where � is

the number of links in a unit volume. From dimension-

ality considerations, it follows that a particle embedded

in a polymeric network will arise an additional energy

K � EV � ��V . Therefore, the elastic constant by

the order of magnitude equals temperature times the

number of the gel links forced out by the particle. We

assume that the particle \senses" the matrix elasticity

if, when embedded, it ousts out at least one link. This

implies K & �, so that TK is of the same order as TD,

for which inequality (10) is valid virtually always. For

the particles of the size a � 10nm the condition �V � 1

yields E � 104Pa� 0:1 atm., so that the value of the

link concentration � � 1018 cm�3 occurs to be close to

the real threshold of gel formation in polymers [17].

III Angle Correlation Function

In the equilibrium state, the angle correlation function

depends only on the time lapse between the initial and

�nal moments and is determined by all the reference

times of the problem. In this section we shall derive

the general formula for the angle correlator but �rst let

us consider its limiting behavior at t! 0. For this case

the phase lag is given by

#t = #+ _#t+
1

2
�#t2; t=�I � 1; (13)

hereafter the starting moment is chosen at t = 0. We

multiply Eq. (13) by the initial value # = #(0) and

make the ensemble average. For ergodic systems it is

equivalent to the time average, so with allowance for

the equipartition theorem one has

h#2 i = �=K; h# _# i = �h _## i = 0;

h#�# i = �h _#2 i = ��=I: (14)

In result, for the short-time (ballistic) asymptotics of

the orientation correlator we �nd

h#t# i = h#2 i ��t2=2I; t! 0: (15)

To obtain the equilibrium angle correlator at ar-

bitrary times, one has to use the Langevin equation

(5). The general solution of the homogeneous linear

equation corresponding to Eq. (5), we seek in the form

# / exp(e�t). Substitution in Eq. (5) yields the charac-

teristic equation

I
�
�Me�3 + e�2�+K

�
�Me�+ 1

�
+ �e� = 0: (16)

In the previous works, the particular cases of this dis-

persion relation have been investigated to a detail: for

K = 0 (a free Brownian particle) in [6, 19], and for

�M = 0 (torsional oscillator in a viscous medium) in

[12, 13, 14].

For the analysis of the roots of the cubic equation

(16) it is convenient to cast it in a dimensionless form.

Scaling the decrements in the units of the Maxwell time,

i.e., denoting � = �Me�, we reduce Eq. (16) to
�3+�2+(1+m)TM �+mTM = 0; m � �M=�K : (17)

From here one clearly sees that for �M 6= 0 the eigenfre-

quencies and decrements of the system depend of two

dimensionless parameters: m and TM . Since all the co-

eÆcients of Eq. (17) are real, complex roots that corre-

spond to the case of oscillatory relaxation, may emerge

only in pairs, and the Vi�eta theorem takes the form

�1 + �2 + �3 = �1;

�1�2 + �1�3 + �2�3 = (1 +m)TM ;

�1�2�3 = �mTM : (18)

First we evaluate the real root of Eq. (17) that exists

at any values of the material parameters and describes

the monotonic relaxation regime; in below we call this

solution the r-branch. For that, we rewrite Eq. (17) in

the form

�+ r = � �2(�+ 1)

(1 +m)TM
; 0 � r � m

1 +m
� 1: (19)

As is noted above, the validity range of the model un-

der study is TM � 1. Thence the decrement of the
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r-branch follows immediately on iterating rhs of Eq.

(19). In the �rst order in 1=TM , it writes

�r � �1 = � m

1 +m

�
1 +

m

(1 +m)3 TM

�
; TM � 1:

(20)

Now we look for at the complex-conjugated roots

�q � �
 � i
q; (21)

of Eq. (17). Substituting Eq. (21) in Eq. (17) and set-

ting the real and imaginary parts of the emerging equa-

tion to zero gives


3 � 
2 + (1 +m)TM 
 �mTM � (3
 � 1)
2
q = 0; (22)


q

�
3
2 � 2
 + (1 +m)TM �
2

q

�
= 0:

From this set, once again, one sees that the real so-

lution (r-branch) is ever-existing whereas the complex

roots (q-branch) are possible only under condition


2
q = (1 +m)TM + 3
2 � 2
 � 0 : (23)

Let us demonstrate that at TM � 1 condition (23)

holds under any circumstances. Substitution of expres-

sion (23) into the �rst of Eqs. (22) transforms it to


 � q =
4
( 12 � 
)2

(1 +m)TM
; 0 � q � 1

2(m+ 1)
� 1

2
: (24)

The sought for solution is obtained on iterating the rhs

of Eq. (24), so that for the decrement of the oscillatory

mode one gets


q =
1

2(1 +m)

�
1� m2

(1 +m)3 TM

�
; TM � 1:

(25)

In turn, substitution of Eq. (25) in Eq. (23) yields the

frequency of a torsional oscillator embedded in a vis-

coelastic environment:

c


q '
p
(1 +m)TM

�
1� 1 + 4m

8(1 +m)3 TM

�
' �M

q
!2K + !2M = �M

p
(K +KM )=I; TM � 1: (26)

d
The last form of expression (26) clearly indicates

that both elastic mechanisms|the equilibrium and

dynamic|on equal basis contribute to the eigenfre-

quency. To avoid any confusion, we remind that in for-

mulas (17){(26) the decrements �, 
 and the frequency


q are dimensionless, scaled with �M .

Relations (25) and (26) establish that 
q � q < 1
2

and 
q=
q � (1 + m)3=2 T
1=2
M that entails that at

TM � 1 inequality (23) certainly holds. This leads, in

turn, to a fundamental conclusion that in the physically

relevant range of material parameters, in the spectrum

of the system under study, besides the monotonic mode,

there necessarily exists an oscillatory one with a fairly

high quality factor: 
q=
q � 1.

Now, having found the roots of the characteristic

equation, let us proceed to evaluation of the angle cor-

relator proper. We write the general solution of the

homogeneous equation (5) as

#t =

3X
i=1

Ci exp(�it): (27)

Taking into account the initial conditions, one arrives

at the set of linear algebraic equations

C1 + C2 + C3 = #(0);

�1C1 + �2C2 + �3C3 = _#(0);

�21C1 + �22C2 + �23C3 =
�#(0); (28)

with respect to the coeÆcients Ci. Solution by a stan-

dard method gives

c

#t = D�1

�
�32

h
#(0)�2�3 � _#(0)(�2 + �3) + �#(0)

i
e�1t (29)

+�13

h
#(0)�1�3 � _#(0)(�1 + �3) + �#(0)

i
e�2t

+�21

h
#(0)�1�2 � _#(0)(�1 + �2) + �#(0)

i
e�3t

�
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Here �kj � �k � �j and

D �
1 1 1
�1 �2 �3
�21 �22 �23

= �32

�
�21 � �1(�2 + �3) + �2�3

�
: (30)

By multiplying the phase evolution equation (29) by the initial value of the angle # and taking the equilibrium

ensemble average with allowance for Eqs. (14), one arrives at the expression

h#t# i = �

KD

�
�32

�
�2�3 � !2K

�
e�1t +�13

�
�1�3 � !2K

�
e�2t +�21

�
�1�2 � !2K

�
e�3t

�
: (31)

d

In the framework of the studied model this formula is

the exact result. It determines the angle correlation

function for arbitrary values of the material parame-

ters. For example, assuming t small and expanding Eq.

(31) in a series, after simple although tedious calcula-

tions one recovers the short-time limit (15).

As stated in above, for the physics of nanoparti-

cle dispersions in 
uids and gels the most interesting

time domain is TM ; TD; TK � 1. In this limit, rela-

tion (31) may be simpli�ed considerably. Let us �rst

transform it in such a way that the coeÆcient alongside

each eigenfunction would depend only on the respective

eigenvalue. For example, from Eq. (31) it follows that

the coeÆcient in front of exp(�1t) is the fraction

A1 =
�2�3 � !2k�

2
M

�21 � �1(�2 + �3) + �2�3
: (32)

Eliminating from it �2 and �3 with the aid of the Vi�eta

theorem (18), one gets

A1 =
TM + �1(�1 � 1)

(1 +m)TM + 3�21 + 2�1
: (33)

Since all the eigenvalues enter the correlator in a sym-

metrical way, with the aid of the scheme (33) it can be

presented in the form

c

h#t# i = h#2 i
3X

n=1

TM + �n(�n + 1)

(1 +m)TM + 3�2n + 2�n
exp(�nt): (34)

A merit of this expression is that it explicitly incorporates the large parameter TM . Expanding the correlator with

respect to 1=TM � 1 with allowance for relationships (20), (25) and (26) one �nds in the leading order:

h#t# i =
h#2 i
1 +m

�
e�
rt +

1

2
me�
qt

�
(1� i )ei
qt + c: c:

��
(35)

=
h#2 i
1 +m

�
e�
rt +me�
qt

cos(
qt�  )

cos 

�
:

Note that in Eq. (35) we have returned to the dimensional form so that


r =
1

�M

m

1 +m
=

1

�M + �K
; 
q =

1

2�M (1 +m)
; (36)


q =

r
K +KM

I
=

s
1

�I

�
1

�M
+

1

�K

�
; tan =

3
q

q

� 1:

d
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Formulas (35) shows clearly that the parameter that

controls the contribution of the oscillatory mechanism

in the orientational relaxation has the form of the ra-

tio of two reference times: m = �M=�K = K=KM . As

it should have been expected, in the case where the

viscoelasticity of the system is low (�M � �K) the ori-

entational relaxation of the particles is monotonic; this

process was studied to a detail in Ref. [12].

IV Equilibrium Distribution

Function. Static susceptibil-

ity

Generally speaking, to obtain the equilibrium orienta-

tional distribution of the particles in a viscoelastic envi-

ronment and in an arbitrary axially-symmetric poten-

tial U(#), one has to solve the corresponding kinetic

equation, see, for example, Refs. [11, 24]. However, for

the case of a harmonic potential, studied here, the re-

sult is easily achieved by the following procedure [19].

According to constitutive equations (1) and (3) of the

model, its natural phase variables are the angle #, angu-

lar velocity _# and torque Q. A reasonable assumption

is that the sought for distribution is the function of

all those quantities. Moreover, the angular part of the

equilibrium distribution function should be, of course,

determined by the Boltzmann formula

Ws(#) / exp[�U(#)=�]: (37)

The equilibrium correlators, i.e., the mean squares

of the angular variables are given by relations (14). Now

we need the cross-correlators between the angular vari-

ables and the torque. Multiplying Eq. (1) by 
 � d#=dt

we get

d

dt

�
1

2
I
2 + U

�
= 
Q:

After ensemble averaging and substitution of equilib-

rium correlators this yields

h
Q i = h _#Q i = �h# _Q i = 0: (38)

Multiplying Eq. (3) by # and, once again, averaging one

�nds

1

�M
h# (Q+ �
� y(t)) i = �h# _Q i = 0: (39)

Since the correlator h#y(t) i turns to zero due to Æ-

correlation of the noise y(t) and h#
 i vanishes because
of the equipartition theorem, Eq. (39) yields

h#Q i = 0: (40)

This relationship ends up the proof of the fact that in

equilibrium all the cross-correlations are zero, i.e., dif-

ferent phase variables are statistically independent.

Let us �nd the equilibrium 
uctuation of the torque

under assumption that there is no correlation between

Q and the orientational potential that is expressed by

an arbitrary angular function U(#). This hypothesis

�nds its justi�cation in the structure of Eq. (3) that

does not bear any sign of angular dependence. Multi-

plying Eq. (1) by Q and then using Eq. (3) and relations

(14 ), we get

c

hQ2 i = hQ
�
I _
 +

@U

@#

�
i = IhQ _
 i = �Ih
 _Q i = I

�M
h
 (Q+ �
� y(t)) i = ��

�M
: (41)

From the above given consideration it follows that the equilibrium distribution function is completely determined

by the second diagonal statistical moments of the phase variables 
 and Q. Adding this part to the Boltzmann

expression (37), one gets the equilibrium distribution [11, 24] in the form

Ws(#;
; Q) =
1

Z
exp

�
�I


2

2�
� �MQ

2

2��
� U(#)

�

�
; (42)

here Z is the partition function determined by the normalizing condition. It is seen clearly from Eq. (42) that for

the case of a Newtonian liquid (�M ! 0) Eq. (42) reduces to the classical Maxwell-Boltzmann distribution. Indeed,

the angle part of Ws according to the fundamental rules of the equilibrium statistical mechanics is determined only

by the form of the potential function and cannot depend on the dissipative characteristics of the system. This

means, in particular, that the expressions for the static susceptibilities

�k(0) = lim
Hk!0

ÆMk

Hk
=
n�2

�

�h cos2 # i � h cos# i2� ; �?(0) = lim
H?!0

ÆM?

H?
=
n�2

�
h sin2 # i; (43)
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found in Ref. [12] for a torsional oscillator in a viscous 
uid, equally hold for the considered here more general case:

a torsional oscillator in a viscoelastic 
uid.

The equilibrium moments entering Eq. (43) at H = 0 are calculated with the aid of the formula

h cosN# i =
r

K

2��

1Z
�1

d# exp

�
�K#

2

2�
+ iN#

�
= exp

�
�N

2�

2K

�
: (44)

d

In result, relations (43) transform to

�k(0) =
n�2

�
e��=K

�
cosh

�

K
� 1

�
;

�?(0) =
n�2

�
e��=K sinh

�

K
: (45)

For the limiting cases of weak and strong rigidity one

�nds, respectively,

�k(0) = �?(0) ' n�2

�
for K � �;

�k(0) '
n�2�

2K2
; �?(0) ' n�2

K
for K � �: (46)

V Dynamic Susceptibility

The dynamic susceptibility of the system with respect

to the probing �eld H(t) / exp(�i!t) is evaluated in

the framework of the linear response theory, see Ref.

[15], for example. The general expression is taken in

the normalized form

��(!)

��(0)
= 1 + i!

1Z
0

dt exp(i!t)G�(t); (47)

where the equilibrium correlation functions of the dipo-

lar moment are given by the relations

Gk =
h cos#t cos# i � h cos2 # i
h cos2 # i � h cos# i2 ;

G? =
h sin#t sin# i
h sin2 # i : (48)

We need these functions for the case H = 0. In this

limit, the dynamic equations (1) and (3) turn out to

be linear with respect to the angle variable #. Since in

Eq. (3) the term y(t) is a white noise, i.e., a Gaussian

random process, function # acquires the same statisti-

cal properties. This allows to transform formulas (48)

by means of the relationship

h exp(i#) i = h cos# i = exp

�
�1

2
h#2 i

�
; (49)

that holds for the functions of Gaussian variables. In

result, the dipolar correlation functions (48) assume the

form

Gk =
coshh#t# i � 1

coshh#2 i � 1
; G? =

sinhh#t# i
sinhh#2 i : (50)

Substituting the explicit angle correlation function

(35) in the dipolar correlators (50) and then the results

formulas into Eq. (47), we get the principal components

of the magnetic susceptibility as integral expressions.

Although those integrals cannot be taken exactly, it is

possible to present them in a form that is rather con-

venient for both analytical treatment and numeric cal-

culations of the functions ��(!).

Let us expand the transverse dipolar correlator (50)

in a Taylor series with respect to its angular argument:

G? =
sinhh#t# i
sinhh#2 i =

1

sinhh#2 i
1X
n=0

h#t# i2n+1
(2n+ 1)!

; (51)

and then twice use the binomial expansion: �rst for

the powers of the angle correlator (35) and then for the

powers of cosine. This gives

c

G? =
1

sinhh#2 i
1X
n=0

� h#2 i
1 +m

�2n+1 2n+1X
k=0

�
m

2 cos 

�k exp(�
?n;k) t
(2n� k + 1)!

kX
`=0

exp[i(k � 2`)�]

`! (k � `)!
; (52)

here we denote


?n;k = (2n� k + 1) 
r + k 
q ; � = 
qt�  : (53)



374 Brazilian Journal of Physics, vol. 31, no. 3, September, 2001

Substituting expansion (52) in Eq. (47) and integrating it term-by-term, we arrive at the series representation:

�?(!)

�?(0)
= 1 +

i!

sinh(�=K)

1X
n=0

�
(�=K)

1 +m

�2n+1 2n+1X
k=0

�
m

2 cos 

�k
1

(2n� k + 1)!
(54)

�
kX

`=0

exp[�i(k � 2`) ]

`! (k � `)! f
?n;k � i [! + (k � 2`) 
q]g
;

where formula (14) for the equilibrium angle 
uctuation is taken into account.

Repeating similar calculational procedure for the longitudinal susceptibility, we get

�k(!)

�k(0)
= 1 +

i!

cosh(�=K)� 1

1X
n=1

�
(�=K)

1 +m

�2n 2nX
k=0

�
m

2 cos 

�k
1

(2n� k)!
(55)

�
kX

`=0

exp[�i(k � 2`) ]

`! (k � `)! f
kn;k � i [! + (k � 2`) 
q]g
;

where we use the notation 

k
n;k = (2n� k) 
r + k 
q , cf. (53).

d
Formulas (54) and (55) are rather convenient to an-

alyze the functions ��(!) in the low-temperature limit

and as well for numerical calculations in a wide temper-

ature range. However, to reveal their dispersion struc-

ture, it is useful to regroup the series (54) and (55). We

make the rearrangement in such a way that each term

of a new series would incorporate all the contributions

to the susceptibility at the given frequency. For the

transverse case from Eq. (54) one �nds

c

�?(!)

�?(0)
= 1 +

2i!

sinh(�=K)

1X
p=0

2(n�`)+1�pX
`=0;n=0

�
m

2 cos 

�p+2`
1

`! (p+ `)! (2n� 2`� p+ 1)!
(56)

�
�

�

(1 +m)K

�2n+1 p
q sin(p ) + (
?n;p;` � i!) cos(p )

p2
2
q +

�

?n;p;`

�2
� !2 � 2i
?n;p;` !

;

where


?n;p;` = (2n� 2`� p+ 1) 
r + (2`+ p) 
q:

For the longitudinal case from formula (55) it follows

�k(!)

�k(0)
= 1 +

2i!

cosh(�=K)� 1

1X
p=0

2(n�`)�pX
`=0;n=1

�
m

2 cos 

�p+2`
1

`! (p+ `)! (2n� 2`� p)!
(57)

�
�

�

(1 +m)K

�2n p
q sin(p ) + (

k
n;p;` � i!) cos(p )

p2
2
q +

�


k
n;p;`

�2
� !2 � 2i


k
n;p;` !

;

with the notation



k
n;p;` = (2n� 2`� p) 
r + (2`+ p) 
q :

The quantities, which enter formulas (56), are expressed through the material parameters of the problem as


r =
1

�M + �K
; 
q =

1

2�M (1 +m)
; 
q =

q
��1I (��1M + ��1K ); tan = 3
q=
q: (58)
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So, the frequency dependence of the spectra is de-

termined by the dispersion factors that in formulas (56)

and (57) stand in the rear positions. Each susceptibil-

ity is presented as a set of equidistant resonance lines

(lorentzians) at the frequencies that are the multiples

of the basic eigenfrequency 
q .

VI Dynamic Susceptibility.

High-Rigidity Limit

Here we consider the case K > �, i.e., !K > !� that is

natural to term a high rigidity limit. According to the

above-given estimates, it corresponds to strong inter-

action between the embedded particle and the gel ma-

trix, i.e., a pronounced macroscopic anisotropy caused

by the elasticity of the molecular network. The approx-

imate formula for the transverse susceptibility follows

from summation of series (56) truncated at n = 1. This

leads to

c

�?(!)

�?(0)
' 1 +

i!

1 +m

(�
1


r � i!
+

1
2m


q � i(! �
q)

�"
1� 1

6

�
�

K

�2#
(59)

+

�
�

(1 +m)K

�2 1
6

3
r � i!
+

1
4m

2


r + 2
q � i!
+

1
4m

2
r + 
q � i(! �
q)
+

1
16m

3

3
q � i(! �
q)

+
1
8m

2


r + 2
q � i(! � 2
q)
+

1
48m

3

3
q � i(! � 3
q)

!)
;

with the notation
1


 � i(! � `
q)
� 1


 � i(! + `
q)
+

1


 � i(! � `
q)
: (60)

d

From formula (59) one sees that the absorption

spectrum (the imaginary part of the complex suscepti-

bility) of a relatively rigid gel incorporates both ather-

mic and temperature-dependent components. The for-

mer comprises a low-frequency relaxation line and a res-

onance one at the frequency 
q . The amplitude of the

relaxational line turns out to be (1 +m) times smaller

than that of a usual Debye one. The resonance line has

the width 
q and the maximum that reaches as high as

A1 ' m
q

2(1 +m)
q
' m

p
(1 +m)TM : (61)

This means that the oscillatory mode plays a consider-

able part in the relaxation of the transverse magnetiza-

tion of the system at m
p
TM > 1.

The presence of athermic lines implies that the cor-

responding contributions to the susceptibility can be

calculated directly from the dynamic equations, ther-

mal 
uctuations being completely neglected. For the

transverse probing �eld taking into account that the

angle deviations # are small, from Eqs. (1){(3) we get

c

���

# +
1

�M
�#+
2

q
_#+

!2K
�M

# =
�

I�M

�
1 + �M

d

dt

�
H?: (62)

Substituting in Eq. (62) a harmonic probing �eld, from the de�nition of a susceptibility one �nds

�?(!) =
n�2

I

1� i!�M

i!�M
�
!2 �
2

q

�
+ (!2K � !2)

: (63)
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This expression leads, in particular, to a correct form of the static susceptibility (46). With allowance for the

conditions �M ; �K � �I , one can split Eq. (63) into the relaxational (low-frequency) and resonance (high-frequency)

contributions and write

�?(!) =
n�2

K

�
1� i!�M

(1 +m)(
r � i!)�K
+

i!�M
2�K (1 +m) [
q � i(! � 
q)]

�
: (64)

d

Using de�nitions (36) for the decrements 
, one �nds

that formula (64) coincides with the �rst three (ather-

mic) terms of expansion (59), which presents the sus-

ceptibility �? in the high-rigidity limit.

All the other terms of the sum (59) incorporate the

coeÆcient (�=K)2 that is the sign of their thermo
uc-

tuational origin. We remark the frequency dependence

of those terms: there are present dispersion factors with

the second and third overtones of the basic frequency


q . The appearance of multiple frequencies in the spec-

trum of �?(!) is a fundamental feature in the dynamics

of systems with 
uctuations. Namely, in the presence of

a noise (thermal or whatever), the linear response of the

system is multi-frequency and comprises the eigenfre-

quency overtones. As it follows from Eq. (59), this e�ect

disappears tracelessly when one passes to the athermic

conditions, where the higher harmonics might be gen-

erated only in result of nonlinear mechanisms.

From (59) it follows that the absorption maximum

at the double frequency has the order

c

A2 '
�

�

2K

�2
m2
p
(1 +m)TM

(1 +m)3
=

�
�

2K

�2
m

(1 +m)3
A1; (65)

d

where the amplitude of the �rst peak is estimated by

formula (61). Therefore, in the high rigidity limit the

second absorption peak is much lower than the �rst one.

For the third harmonic peak from Eq. (59) one �nds

A3 '
�

�

2K

�2
m2

6(1 +m)2
A1: (66)

The comparison shows that at m < 2 the relation

A3 < A2 takes place so that the heights of the absorp-

tion peaks form a monotonically decreasing sequence.

The situation changes to the opposite as soon as

the factor m exceeds 2. Taking for estimates the case

m � 1, from Eq. (65) one �nds that the second har-

monic amplitude goes down to zero as A2 � m�2A1

whereas that of the third harmonic tends to a �nite

value A3 � (1 �m�1)A1. Hence, the relationship be-

tween the amplitudes is

(�=K)2A1 � A3 � A2; m� 1: (67)

It indicates an interesting e�ect: suppression of even

harmonics in the spectrum of the transverse suscep-

tibility with the growth of viscoelasticity of the sys-

tem. To get an explanation for this, one has to take

two circumstances into account. First, as formula (35)

shows, with the growth of the parameter m, the rôle

of the oscillatory mode in the angular correlator be-

comes more important. Second, the transverse dipo-

lar correlator (50) is an odd function of the angular

correlator h#t# i. Given that, the even harmonics ap-

pear in the relevant spectral expansion multiplied by a

small parameter � m�2, and the higher m the more

the odd ones dominate. However, in the high-rigidity

limit (!K > !�), this comb-like spectrum is enveloped

by a decreasing curve since at ! > !� the susceptibil-

ity tends to zero. This is the universal feature of the

linear-response theory. Indeed, in this approach one

assumes that the equilibrium of the system is not dis-

turbed, so that overpowering majority of the particles

in the system has the kinetic energy close to �. At

higher energies, the system becomes \transparent" to

the excitation due to the exponentially small popula-

tion of the corresponding states.

This behavior is illustrated by Figs. 1 and 2. In the

�rst one the stress retardation time �M changes (grows

top to bottom) whilst all the other reference times are

�xed. Therefore, the parameter m = �M=�K grows top

to bottom, equalling 2 in Fig. 1b, where A2 = A3. It

is to be compared to the situation A2 > A3 in Fig. 1a
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corresponding to m = 0:8 and to that in Fig. 1c, where

A2 < A3 at m = 4. In Fig. 2, the Maxwellian time is

�xed and we vary the elastic restoration time �K . From

top to bottom one has m � 3 (a), 2 (b) and 1 (c), and

the interplay of the second and third peaks is in full

agreement with the estimates (65){(67).

Figure 1. Imaginary part of the transverse susceptibility un-
der change of �M ; sub�gures (top to bottom) are plotted for
TD = 200 and TK = 50 at: TM = 40 (a), 100 (b), 200 (c).

Low-temperature behavior (the high-rigidity limit)

of the longitudinal susceptibility �k is essentially dif-

ferent from �? since there is no athermic limit for

�k. Indeed, under diminution of 
uctuations the mag-

netic material saturates, and its susceptibility along

the direction of its magnetization tends to zero as

�k(0) ' (�=K)(n�2=2K), see Eq. (46). For the dy-

namic susceptibility, in linear in �=K approximation,

from expansion (55) one �nds

Figure 2. Imaginary part of the transverse susceptibility un-
der change of �K ; sub�gures (top to bottom) are plotted for
TM = 100 and TD = 200 at: TK = 35 (a), 50 (b), 100 (c).

�k(!)

�k(0)
' 1 +

i!

(1 +m)2

�
1

2
r � i!
+

1
2m

2

2
q � i!
(68)

+
m


r + 
q � i(! �
q)
+

1
4m

2

2
q � i(! � 2
q)

�
:

The same result can be obtained more directly from the

general formula (47), if to substitute there the longitu-

dinal correlation function by the leading term

Gk(t) � h#t# i2=h#2 i2; �� K (69)

of its low-temperature expansion.

From Eq. (68) it follows that in a rigid gel the ab-

sorption spectrum for the probing �eld directed along

the particle orientation axis comprises a low-frequency

(relaxational) line and two resonance ones|at the ba-

sic and doubled frequencies. Performing the analysis



378 Brazilian Journal of Physics, vol. 31, no. 3, September, 2001

similar to that done for the transverse case, one �nds

that for the longitudinal spectra the critical value of

the parameter m is m� = (
p
33 � 1)=4 � 1:19. At

m < m� the energy is absorbed mostly at the basic fre-

quency 
q , whereas at m > m� the main rôle passes to

the second harmonic. In other words, in the longitudi-

nal absorption spectrum suppression of odd harmonics

takes place. The cause of this e�ect is, once again, the

presence of the oscillatory mode in the angular correla-

tor (35). This time, however, the longitudinal dipolar

correlator is even with respect to h#t# i, so that the

even harmonics are favored.

Figure 3. Imaginary part of the longitudinal susceptibility
under change of �M ; sub�gures (top to bottom) are plotted
for TD = 200 and TK = 50 at: TM = 40 (a), 60 (b), 70 (c).

Figure 4. Imaginary part of the longitudinal susceptibility
under change of �K ; sub�gures (top to bottom) are plotted
for TM = 50 and TD = 200 at: TK = 35 (a), 42 (b), 70 (c).

Figs. 3 and 4 make those qualitative considerations

more vivid. In Fig. 3 the stress retardation time �M
changes (grows top to bottom) whilst all the other ones

are �xed. This means that the parameter m = �M=�K
grows top to bottom, equalling � 1:19 in Fig.3b, where

A1 = A2. One can clearly see the di�erence between

Fig. 3a, where m = 0:8 and A1 > A2, and Fig. 3c,

where m = 1:4 thus ensuring A1 < A2. In Fig. 4, the

stress relaxation time is �xed and we change the elas-

tic restoration time �K . From top to bottom one has

m � 1:4 (a), 1.2 (b) and 0.7 (c). The data of Fig. 2 was

obtained numerically; they fall in full agreement with

the estimates of Eq. (68).

VII Conclusions

In the above-presented consideration, when considering

a ferrogel, we assume that the dissipative mechanism

that couples the nanoparticles and the matrix is of the
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viscoelastic type. This assumption seems to be more re-

alistic than formerly used hypothesis that presents the

said interaction as just a simple viscous friction.

The viscoelastic mechanism imparts novel essential

features to the dynamic magnetic response of a ferro-

gel. Unlike the purely viscous case, here the oscillatory

regime is possible that means that under appropriate

conditions the magnetic spectrum of a ferrogel com-

prises a number of equidistant resonance lines. To the

eigenfrequency both elastic forces|equilibrium and dy-

namic (Maxwell)|contribute on the equal basis. Due

to the inherent mesoscopic anisotropy of the gel system,

the spectra of response to the probing �eld directed ei-

ther along or across the easy axis of the particle orien-

tation, di�er considerably. There are two main aspects

of those di�erences. First, the transverse susceptibility

has a �nite zero-temperature (athermic) limit whereas

the longitudinal one turns to zero with temperature.

Second, due to the parity properties of the respective

dipolar correlators, in the spectrum of the linear re-

sponse signal there may occur a selective suppression

of the amplitudes of the higher harmonics. This ef-

fect takes place under suÆciently strong viscoelasticity.

Depending on the type of the signal that one analyzes,

either even (in the transverse response) or odd (in the

longitudinal one) higher harmonics are suppressed.
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