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The phase diagram of a magnetic colloid in a Hele-Shaw cell is calculated. As a function of the
magnetic field strength, of the concentration and of the layer thickness the magnetic colloid can
find itself in a stripe phase, the hexagonal phase or in an unmodulated state. Those results allow
to interpret experiments observing the transformation of a labyrinthine pattern into a hexagonal
structure. This possibility is confirmed directly by the numerical simulation presented here and
showing the transformation of the labyrinthine pattern into the hexagonal structure.

I Introduction

The wonderful labyrinthine patterns formed by the
magnetic liquids in the Hele-Shaw cells [1] have drawn
attention from different points of view [2]. Investiga-
tions carried out so far show that the labyrinthine pat-
terns formed by the monophasic liquids conserves their
topology and does not break up into a set of separate
droplets [1, 3, 4] as could be expected due to the mu-
tual repulsion of the dipoles. Although it is illustrated
in the frame of the linear theory that the magnetic lig-
uid stripes are unstable with respect to the overexten-
sions [5] nevertheless in [6] it is found numerically that
this instability is stabilized at the nonlinear stage by
the vertex splitting instability. Thus some controversy
still remains with the experimental results shown in the
review paper [7] where it was found a transformation
of a labyrinthine pattern formed by the concentrated
phase of a magnetic colloid into a hexagonal structure.
In the present paper, analytical and numerical results
are given which show that this transition can be ex-
plained by the peculiarities of the phase diagram of the

magnetic colloid in the Hele-Shaw cell. They show that
depending on the values of the physical parameters the
different phases - the stripe phase, the hexagonal phase
and the unmodulated phase can exist. Thus the trans-
formation of the labyrinthine pattern into the hexago-
nal one in the frame of the present model is connected
with a transition between those phases. That is illus-
trated here by the corresponding numerical simulation
results.

II Phase diagram of the mag-
netic colloid in the Hele-Shaw
cell

The phase diagram of a similar system - the polar am-
phiphile monolayer - has been calculated in [8, 9]. From
the point of view of our system that corresponds to the
vanishing thickness of the Hele-Shaw cell. The calcu-
lation of the phase diagram for the finite thickness is
carried out on the basis of the free energy proposed in
[10]. It in dimensionless variables reads
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where the following scales have been introduced (o =
%275\2/[ (H-H.),v= %%): length - | = /f3/a, the con-
centration on -1/a/~, the volume density of the free en-
ergy o?/v. p,f - are the dimensionless radius-vectors
of the points on the boundary of the Hele-Shaw cell, h
- a thickness of the cell, ¢ - a dimensionless concentra-
tion, the magnetic Bond number is defined according

2
to the relation (M) A

The expression (1) for the

on lo”
free energy corresponds to the usual Landau expansion
near the critical point of the demixing with account
for the energy term due to the nonhomogenity of the
concentration

g /(V&n)2dV

and long-range interactions. Allowing the respective
spatial modulation around ¢ for the concentration dis-
tribution ¢ in the stripe and the hexagonal phases

¢ = ¢o + ¢4 cosqx
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the respective free energies f; and f5 of the two phases
3

can be obtained (A; = Ay = A3z = A), g; = 0. The
j=1
results are
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the wave number ¢ of the energetically optimal config-
uration is given by the relation

1/3
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whatever the pattern. Minimizing the expression (2)
and (3) with respect to ¢, and A the dependencies of
the free energies of the stripe and hexagonal phases
on the average concentration in the Hele-Shaw cell can
be found. The free energies calculated are shown in
Fig. 1 and Fig. 2 for the stripe and the hexagonal

phases correspondingly. Concerning Fig. 1 it is neces-
sary to remark that the dependence is shown for Bm

A. Cebers

value less than the value Bm, corresponding to the tri-
critical point of the transition between the stripe and
unmodulated phases found in [11]. The value of Bm,
can be found from the equation

B 2/3
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At Bm > Bm, transition between the unmodulated
and the stripe phases is continuous. From Fig. 1 and
Fig. 2 it is clear that a range of concentrations exists
where, for the system, it is thermodynamically advan-
tageous to phase separate into the two distinct phases
- modulated and unmodulated. The concentrations of
the phases at equilibrium are found from the double
tangent construction
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where f;, ¢i(i = s, h) are respectively the values of the
free energy and the concentrations of the modulated
phases, and f,¢ are the corresponding values for the
unmodulated phase. It is important to remark that
the actual equilibrium between the stripe and the un-
modulated phases, in the frame of the present model,
takes place at quite small Bm values. For values of Bm
large enough in the intermediate concentration region,
a stable hexagonal phase exists and the equilibrium be-
tween the stripe and and the hexagonal phases must
be considered. The concentrations of those phases at
equilibrium can be found from the construction similar
to the one shown in Fig. 1 and Fig. 2. The resulting
phase diagram is calculated and is shown in Fig. 3. It
is then easy to see that, according to the present model
and depending on the values of the physical parame-
ters the system can find itself either in the stripe, the
hexagonal or the unmodulated phases. Since the mean
concentration ¢q is here associated to a distance from
the colloidal critical point it depends on the magnetic
field strength [12]. Then a variation of the external
magnetic field allows to go from the region correspond-
ing to one phase to the region corresponding to another
one. Thus in the frame of the present model it is possi-
ble to give a quite natural interpretation to the obser-
vation in [7] of the transformation of the labyrinthine
pattern to the hexagonal one. Namely due to the de-
pendence of the critical concentration on the magnetic
field strength a field increase shifts the system to the
region of the phase space where the hexagonal phase
is stable and as a result the transition from the stripe
phase to the hexagonal one takes place. This possibility
is illustrated by the results of the numerical simulation
given in the next part.
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Figure 1. Free energy of the magnetic colloid below the tri-
critical point of the stripe-liquid transition. (22 = 0.25 <
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Figure 2. Free energies of the hexagonal and liquid phases
(£ =0.25 and 2 = 10). Concentrations of the phases in
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the simulation of the concentration dynamics accord-
ing to the equation (4) is based on the pseudospec-
tral technique [13]. If the initial values of the physical
parameters, associated to a labyrinth, are changed for
those associated to a stable hexagonal pattern, then
the transformation of the labyrinthine pattern to the
hexagonal takes place. This is shown in Fig4. It
should be noted that the process shown in Fig. 4 is
in good agreement with the phase diagram shown in
Fig. 3 since at the values of the physical parameters
chosen (Bm/Bm,. = 0.78,h/l = 10, ¢ = 0.2) the sys-
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the equilibrium are found by the double tangent construc-
tion.
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Figure 3. Phase diagram of the magnetic colloid in the Hele-

Shaw cell. % =10.

IIT The results of numerical sim-
ulation of the magnetic field
induced phase transforma-
tion

The equation describing the concentration dynamics at

the magnetic field induced phase transformation in a

Hele-Shaw cell is derived in [13]. If put in a dimension-
less form it reads

/ I 7, oas’) =0 (4)

tem founds itself in the region of the phase space where
the hexagonal phase is stable. The transitions between
the hexagonal and the stripe phases are reversible. It is
shown in Fig. 5 for the values of the physical parame-
ters (Bm/Bm. = 0.78, h/l = 5, ¢y = 0.05): the stripes
form from the hexagonal structure initially obtained at
(Bm/Bm. = 0.78,h/l = 5,¢9 = 0.2). Finally we can
remark that if initial values of the physical parameters
is chosen in the intermediate region between the stripe
and the hexagonal phases, pattern containing a mixture
of dumbbells and single droplets can be obtained, as it
is shown in Fig. 6.
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Figure 6. Mixed intermediate state of the magnetic colloid (g—rzlc =0.3,% =10, ¢o = 0.075).

IV  Conclusion

The calculated phase diagram of magnetic colloids in
a Hele-Shaw cell shows the existence of stripe, hexago-
nal and unmodulated phases. The transitions between
those phases can be caused by the variation of an ex-
ternal parameter: the magnetic field strength or the
layer thickness. Those results allow to explain the
experimental observation of the labyrinthine pattern
transformation into an hexagonal structure of separated
droplets by only the shifting the point in the phase
space associated to the new magnetic field strength.
An interesting issue about the character of the topolog-
ical transformation taking place at the transformation
of the stripe pattern to the structure of the separate
droplets remains to be investigated.
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