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A strict proof of equivalence between DuÆn-Kemmer-Petiau (DKP) and Klein-Gordon (KG) the-
ories is presented for physical S-matrix elements in the case of charged scalar particles interacting
in minimal way with an external or quantized electromagnetic �eld. First, Hamiltonian canonical
approach to DKP theory is developed in matrix form. The theory is then quantized through the
construction of the generating functional for Green functions (GF) and the physical matrix elements
of S-matrix are proved to be relativistic invariants. The equivalence between both theories is then
proved using the connection between GF and the elements of S-matrix in reduction formulas of
Lehmann, Symanzik, Zimmermann.

I Introduction

More than 60 years ago G. Petiau [1], R DuÆn [2] and

N. Kemmer [3] proposed the �rst order equation (DKP

equation) for description of spin 0 and 1 particles. This

period of time is conventionally divided in three peri-

ods: the �rst one from 1939 until, approximately 1970;

the second from 1970 to 1980 and the last one from1980

on. During the �rst period the majority of the papers

about DKP equation was devoted to the development

of DKP formalism and to the investigation of DKP

charged particles interaction with electromagnetic �eld

(EM �eld). For many classes of processes (such as QE

of spin 0 mesons, meso-atom and others) calculations

based on DKP and KG equations yield identical results

[5], including one-loop corrections [4, 5, 6] 1.

The second period can be characterized as by some

disappointments and hesitations. By this time two

great discoveries had been made: parity violation and

creation of uni�ed theory of electro-weak interaction

(Weinberg-Salam theory or Standard Model). The

question about the equivalence of both DKP and KG

theories arises again at the attempts to describe new

processes. Many works (see references in [8]) have been

made applying DKP formalism to decays of K and

other unstable mesons and to strong interaction. The

conclusion presented in reference [8] was not optimistic:

DKP formalism in some cases yield di�erent results

from a second order formalism2. The third period goes

under the sign of uncertainness: are both DKP and

KG equivalent or not? Not so many papers have been

published on this theme. In our opinion one of main

reasons for the decrease of interest in DKP formalism

in the last period is the conclusion about nonequiva-

lence between DKP and KG theories3. We believe that

the equivalence between these theories in the case of

nonstable particles can be proved as well as for all pro-

cesses which are described by renormalizable theories.

This question, however, goes beyond the scope of this

paper. As we know there are no strict proof of the

equivalence between DKP and KG theories in Quan-

tum Electrodynamics of spin 0 particles, too. Coinci-

dent results have been obtained for many processes in

�rst order pertubation theory, one loop corrections and

the infrared approximation [5, 6, 7]. The main goal of

�Permanent address: P. N. Lebedev Institute of Physics, Moscow, Russia.
1A rich list of references with historical comments can be found in reference [8]. Unfortunately in this work there are no references

to the works by I. Gelfand and A. Yaglom, who obtained the �rst order equation for particles with �xed arbitrary spin. For references
to these and others works see [9].

2Moreover, in work [10] it is aÆrmed that DKP theory gives for K meson decay qualitatively di�erent results when compared to
KG-formalism

3See section V; Conclusion, point 5.
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this paper is to give a strict proof of the equivalence

of DKP and KG theories for charged scalar particles

interacting with an external or quantized EM �eld in

minimal way for physical matrix elements in any or-

der of pertubation theory. In section II Hamiltonian

canonical approach to DKP theory is developed in ma-

trix form. The construction of generating functional of

Green function (GF) of DKP theory is used for quanti-

zation of the theory and the physical matrix elements

of S-matrix are proved to be relativistic invariants. In

section III the equivalence of DKP and KG theories is

proved for physical matrix elements utilizing the con-

nection between GF and the elements of S-matrix, in-

cluding the case of many photons states. For the proof

we use the reduction formulas of Lehmann, Symanzik,

Zimmermann [11].

In section IV we shortly discuss the basic results and

questions about construction of renormalizable DKP

theory for spin 0 particles.

II Canonical Quantization

II.1 Hamiltonian approach in matrix
form

Our aim is to construct the Hamiltonian for DKP

theory which is one with constraints due to degenera-

tion of � matrices. The Lagrangian density is

L =  (i��D
� �m) ; (1)

where D� = @� � ieA�; @� = @
@x�

; g�� =

diag f1;�1;�1;�1g. Primarily one considers A� as an

external EM �eld. We choose the �� matrices in the

following form:

�0 =

����������
0 i 0 0 0
�i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

����������
;

�1 =

����������
0 0 �i 0 0
0 0 0 0 0
�i 0 0 0 0
0 0 0 0 0
0 0 0 0 0

����������
�2 =

����������
0 0 0 �i 0
0 0 0 0 0
0 0 0 0 0
�i 0 0 0 0
0 0 0 0 0

����������
;

�3 =

����������
0 0 0 0 �i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
�i 0 0 0 0

����������
(2)

 � = ( ��)�
=

�
'�; '�0;�'�1;�'�2;�'�3

�
;

� = 2 (�0)
2
� 1;

 � =
�
'; '0; '1; '2; '3

�
: (3)

Starting from equation (1) we can de�ne the momenta

p� =
@L

@: �
= i ( ��0)� ; p

�
� =

@L

@: ��
= 0; (4)

p� =
@L

@: ��
= 0; p�� =

@L

@: ��
= 0; (5)

for � = 1; 2; 3 � i. The initial Hamiltonian H is equal

to:

H =

Z
d3x fp� : � + p��: �� �Lg

=

Z
d3x

�
�i �kD

k +  m � e �0A
0 
�

=

Z
d3x

�
�i �k@

k +m  � e ��A
� 
�
;(6)

where k = 1; 2; 3. Here we write down all the 1st stage

and the 2st stage constraints and Lagrangian multipli-

ers in matrix form, omitting calculations: - 1st stage

constraints 4

�� = p� � i
�
 �0

�
�

(7)

��� = p�� (8)

- 2nd stage constraints

��2 =
h�
1� (�0)

2
� �
i�kD

k �m
�
 
i�

���2 =

�
 

�
i�k
 �
D�

k

+m

��
1� (�0)

2
���

9>=>; (9)

- Lagrangian multipliers�
�20�

�
�

=
�
i�0

�
i�kD

k �m
�
 
�
�
;�

���20
�
�

= �

�
 

�
i�k
 �
D
�k

+m

�
�0

�
�

; (10)

h�
1� (�0)

2
��
m� i�kD

k
�
�
i
��
�� = 0;

���
�
�

�
i�k
 �
D
�k

+m

��
1� (�0)

2
��

��

= 0:(11)

4We follow the terminology of the book [12]. Quantization of theories with the 2nd- class constraints devoted many papers, beginning
with the classical work of Dirac [14], see also [15, 16].
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For generating functional in external EM �eld we get

the following expression [13]

Z (I; I) = Z�10

Z
D D �

Æ
��

1� (�0)
2
��
i�kD

k �m
�
 
�

�Æ

�
 

�
i�k
 �
D�

k

+m

��
1� (�0)

2
��

� exp

�
i

Z
d4x

�
 (i��D

� �m) 

+ I +  I
�	
: (12)

Introducing the auxiliary �elds C and C instead func-

tional Æ� function in equation (12) we get

Z (I; I) = Z�10

Z
D D DCD C �

exp

�
i

Z
d4x

�
 (i��D

� �m) 

+ C
�
1� (�0)

2
�
(i��D

� �m) 

 

�
i��
 �
D�

�

+m

��
1� (�0)

2
�
C+

I +  I
�	
; (13)

where one used that �0

�
1� (�0)

2
�
= 0. Integrating

over all �elds  ,  , C and C we �nally obtain:

Z (I; I) = exp

�
�i

Z
d4xd4yI (x) (S (x; y; A)

+
1

m

�
1� (�0)

2
�
Æ4 (x� y)

�
I (y)

�
; (14)

where we have introduced the total GF of DK particle

in external EM �eld A�:

S (x; y; A) = (i��D
� �m)�1 Æ4 (x� y) (15)

One can make some important comments about ex-

pression (15). 1) When we integrate over  ,  , C

and C divergences appear and in�nite expression for

det (i��D
� �m)�1. All this multipliers also arise in

Z0 and disappear from the �nal equation (14) . 2) The

nonrelativistic invariant term �
�
1� (�0)

2
�
in equa-

tion (14) arises at excluding nonphysical component  ,

due to the second stage constraints (�2i , �
�2
i in equa-

tion (9)). One can show that this term (which does

not depend on charge) does not contribute to physical

matrix elements of S-matrix [13]. 3)If one generalizes

equations (12) to (15) to the case of interaction of DK

particles with quantized EM �elds we get the following

expression for generating functional for all GF of the

theory (in � -gauge):

Z (I; I;J�) = Z�10

Z
DA� exp

�
�i

Z
d4x��

Tr ln
S (x; x;A)

S (x; x; 0)
�

1

4
F��F

��

�J�A
� �

1

2�
(@�A

�)2

�

Z
d4y I (x) (S (x; y; A)

+
1

m

�
1� (�0)

2
�
Æ4 (x� y)

�
I (y)

��
; (16)

Here we insert in denominator and in Z0 in�nity con-

stant (detS (x; x; 0))
�1
. As it is well known, the term

� Tr lnS (x; x;A) in equation (16) is responsible for

appearance of all vacuum polarizations diagrams. 4)

Starting from (16) it is easy to prove that many photons

GF coincide in DKP and KG theories. The generating

functional of GF in KG theory has the form:

Z (J �;J ;J�) = Z�10

Z
DA� exp

�
�i

Z
d4x�

Tr

�
ln
G (x; x;A)

G (x; x; 0)
�

1

4
F��F

��

�
1

2�
(@�A

�)
2
+ J�A

�

�

Z
d4yJ � (x)G (x; y; A)J (y)

��
: (17)

Here

G (x; y) =
�
D�D

� +m2
��1

Æ4 (x� y) : (18)

To get the generating functional of GF only for pho-

tons we have to put J � = J = 0 in equation (17)

and I = I = 0 in equation (16). Equality of these

equations will be established if we prove that

ZA � det
S (x; y; A)

S (x; y; 0)
= expTr ln

S (x; x;A)

S (x; x; 0)

= det
G (x; y; A)

G (x; y; 0)
: (19)

On the other hand

ZA = Z�10

Z
D D �

exp

�
i

Z
d4x (i ^D �m) 

�
; (20)

where

Z0 =

Z
D D exp

�
i

Z
d4x (i ^@ �m) 

�
: (21)
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In component form expression (20) equals to:

ZA = Z�10

Z
D'D'�D'�D'�� �

exp

�
i

Z
d4x('��D�'� '

�D�'
�

�m ('�'+ '��'�))g ;

After integration over '�� and '� we get

ZA = eZ�10

Z
D'D'� �

exp

�
�
i

m

Z
d4x'�

�
D�D� +m2

�
'

�
; (22)

where now

eZ�10 =

Z
D'D'� �

exp

�
�
i

m

Z
d4x'�

�
@�@� +m2

�
'

�
: (23)

Doing substitution the 'p
m
! ' we see that the deter-

minant (22) is equal to the right hand side of equation

(19). The equivalence was proved.

III Equivalence between phys-

ical matrix elements of S-

matrix in DKP and KG

equations

We use LSZ reduction formulas [11] for proof of the

equivalence between both theories. The main goal of

LSZ approach is to express the matrix elements of S-

matrix through total many particles GF, making min-

imal assumptions as possible. To apply this approach

to DKP theory we must write down the operator's so-

lutions of the free DKP equations. Taking into account

that in DKP theory there are only two linearly inde-

pendent solutions [5] of the free equation one can write

^ in;out =
1

(2�)
3=2

Z
d3p��

u� (p) ^a�in;out (p) e
�ipx

+u+ (p) ^b+in;out (p) e
ipx
	
; (24)

and

^ in;out =
1

(2�)3=2

Z
d3p�

�
u+ (p) ^a+in;out (p) e

ipx

+u� (p) ^b�in;out (p) e
�ipx	 : (25)

Here

( ^p�m)u� (p) = 0; u� (p) ( ^p�m) = 0 = 0;bp � ��p�; p0 = �
p2 +m2

�1=2
= ! (p) = !; (26)

operators a�in;out and b
�
in;out satisfy to the usual commu-

tation relations; and the solutions in component form

are

u�� =

r
m

2!

�
1;�

i!

m
;�

ip1

m
;�

ip2

m
;�

ip3

m

�
: (27)

It is easy to check that the scalar products are

u�� (p)�0u
� (p) = u�� (p)�0u

� (p) = �1

u� (p)�0u
� (p) = 0: (28)

the operators a�in;out and b�in;out are those of creation

and annihilation with positive and negative charges ac-

cordingly. From equations (24) and (25) one also have

^a�in;out (p) =
Z
d3xe�ipxu� (p)�0 ^ in;out (x) ;

(29)

^b+in;out (p) =

Z
d3xeipxu+ (p)�0 ^ in;out (x) ; (30)

and

a+in;out (p) =
�
a�in;out (p)

��
;

b�in;out (p)
�
b+in;out (p)

��
: (31)

Vacuum and S-matrix are de�ned as usual as

a�in;out (p) j0iin;out = b�in;out (p) j0iin;out = 0;

S j0iin;out = j0iin;out ; (32)

a+out = a+inS: (33)

For any physical matrix element of S-matrix one has

hn0;m0; outj n;m; ini = hn0;m0; injS jn;m; ini ; (34)

where: n +m = n0 +m0 is the conservation of charge

and

c

��n;m;inout
�
= i = 1 nuj = 1 mua inout + (pi) b inout

+ (qj) j0i : (35)
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Now we can formulate the main assumption of LSZ approach5. For any matrix elements of Heisenberg operators

^ (x) and ^ (x) the following asymptotic relations are implemented

x0 ! �1lim


n0;m0;inout

�� ^ (x) ��n;m;inout
�
=

=


n0;m0;inout

�� ^ in (36)

out (x)
��n;m;inout

�
(37)

and the same relation for ^ (x). In order to do not complicate the proof of the equivalence between DKP and

KGF theories we are restricted by consideration of the matrix elements of S-matrix for particles with the same

(positive) charges and one utilizes LSZ reduction formula. We have

h0j i = 1 kua�out (pi) j = 1 kua+in (qj) j0i =

= h0j i = 1 k � 1ua�out (pi) a
�
out (pk) j = 1 kua+in (qj) j0i

= c hn1; :::; nk�1; outj �Z
d4xeipxu� (p)

�
i��
�!
@
�

x �m

�
^ (x)�

jm1; :::;mk; ini ; (38)

d

where p0 = ! (p) and c is a not essential constant. Uti-

lizing equations (3) and (27) we can rewrite equation

(38) in component form

c hn1; :::; nk�1; outj ��
�
1

m
eipx

�
�!
2

�

x +m2
�
^' (x)+

+
@

@x�

�
eipx

�
1

m
@�x ^' (x)� ^'

� (x)

���
� :

jn1; :::; nk; ini (39)

The main idea of the proof is to show that the second

term under total derivative in equation (39) is equal

zero. We have for the second term, omitting jini and

houtj states,Z
d4x

@

@x�

�
eipx

�
1

m
@�x ^' (x)� ^'

� (x)

��
=

=

Z
d��e

ipx

�
1

m
@�x ^' (x)� ^'

� (x)

�
: (40)

One can choose the surface �� so that

�� : f�T � x0 � T ; �L � xi � L;�= 1; 2; 3g : (41)

The �rst term, � = 0, equalsZ
d3x

�
ei!T+ipx

�
1

m

@

@T
^' (x; T )

� ^'0 (x; T )
�
� e�i!T+ipx

�
1

m

@

@T
^' (x;�T )

� ^'0 (x;�T )
��
: (42)

Since

T !1lim
@

@T
^' (x;�T ) =

@

@T
^'out (43)

in (x;�T )

= ^'out (44)

in0 (x;�T ) (45)

the �rst term in (40) disappears in the limit T ! �1.

More delicate situation arises at the proof of disappear-

ance of contribution of terms d�i (see equation (41))

when L! �1 at �xed T . Mathematically strictly it is

possible to do proves only introducing the wave packets

instead of plane waves with given momentum. We do

not have a place to go in details of the proof. If one

introduces total set of orthonormalizing packets fn (p)

the contribution will be equal to

I1 (L) �

Z
dx0dx?

Z
dpfn (p) e

i!x0�ip?x? �(
e�ip1x1

�
1

m
@1x ^' (x) � ^'

1 (x)

�
x1=L1

� (46)

�e�ip1x1
�
1

m
@1x ^' (x)� ^'

1 (x)

�
x1=�L1

)
;(47)

where p? = (p1; p2), x? = (x1; x2) and fn (p) is a wave

packet. For Gaussian type of packets

fn (p) = exp

��
�

p2

2m2

�
i = 1 3uHn

�pi
m

��
; (48)

5This assumption can be proved in the case of microcausality theories, when commutator
�
^ (x) ; ^ (y)

�
= 0, (x� y)2 < 0.
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where Hn (x) denotes a Hermite polynomial of de-

gree n, it is possible to prove that I1 (L) decreases

� exp
�
� (Lm)

2
�
. Thus, all the Ii (L), i = 1; 2; 3 are

equal zero in limit L! �1. If we repeat the LSZ pro-

cedure for the second operators a+out (p2) in equation

(38) we get

hk; inj k; outi = c hk � 2; inj

Z
d4x1d

4x2 �

eip1x1

0@�!� 1 +m2

m

1A8<:eip2x2
0@�!� 2 +m2

m

1A
T ( ^' (x1) ^' (x2))+

+@x2�
�
eip2x2

�
@x2� T ( ^' (x1) ^' (x2))

�T ( ^' (x1) ^'
� (x2)))]g jk; ini : (49)

Again one can prove that the last term under total

derivative equals zero (if introduced packets). Contin-

uing this inductive procedure we go to conclusion that

all physical matrix elements of S-matrix in DKP the-

ory coincide with those of KGF theory independent of

character interaction (renormalizable type) if in both

theories the LSZ asymptotic conditions (37) are imple-

mented.

IV Conclusions

1) Starting from canonical approach to DKP theory in-

teracting with quantized EM �eld and constructing the

generating functional for GF of the theory we strictly

proved total equivalence between physical matrix ele-

ments of S -matrix in DKP and KG theories and be-

tween many photons GF in both theories. The proof

of equivalence between both theories have been carried

out utilizing the Lehmann, Symanzik and Zimmermann

reduction formalism [11].

We also proved the equivalence of the both theories,

starting from Lagrangian approach to generating func-

tional in DKP theory (see equation ( 16) without last

term) and forgetting about constraints. 2) In principle,

the DKP as well as KG theories are nonrenormalizable

ones even for scalar particles due to the logarithmical

divergence of one loop diagrams of scattering two par-

ticles with exchange of two photons [5]. As it is well

known that KG theory becomes renormalizable if we

introduce a self interaction term� � ('�')2. This prob-
lem can be solved in DKP theory in the same way: it

is necessary to add to L in equation (1) terms

�
�
 P 

�2
= � ('�')2 ; (50)

where P = �u (��)
2
is the projector on the scalar part

of  -function; P is pseudoscalar . 3) In the framework

the same method (Sections II and III) formally it is

possible to prove equivalence between DKP and Proca

equation for spin one particles, destructing from non-

renormalizability of these theories. 4) We would like to

stress that DKP theory until now did not �nd wider

application although this theory has some advantages

just due to the degeneration of �� matrices (one very

simple to calculate trace that of) and due to minimal

character of interaction with EM �elds. One compares

expressions for S-matrix in both theories:

SDKP = T exp

�
i

Z
e ��A

� d4x

�
; (51)

SKG = T exp

�
i

Z
ie ('�@�'� @�'�'

�e'�A�')A
�d4x

	
: (52)

In the last case the interaction contains proportional

terms to e and e2. Due to this in higher (two and more

loops) approximations combinatorial coeÆcients given

to order e2 before having a complicated form.

5) About equivalence of DKP and KG for descrip-

tion of unstable particles we would like to note that if

we can apply conception of asymptotic states to some

such particle and utilize for physical matrix elements of

S-matrix the same method which has been used in Sec-

tions II and III, then the proof of equivalence is obvious:

for instance, for decay of Kl �mesons we can calculate

the imaginary part of the GF of Kl� meson and get

equivalence with exactness rede�ning the ' component

of DKP  function: i'KG = 'DKP =m, see equation

(49).
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