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Accurate Gaussian Basis Sets for the Ground State of the CS Molecule

M. T. Barreto, E. P. Muniz, F. E. Jorge, and R. Centoducatte
Departamento de F́ısica, Universidade Federal do Espı́rito Santo, 29060-900 Vitória, ES
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Sequences of increasing size atom centered basis sets of Gaussian-type functions for the ground state of the
CS molecule are generated with the molecular improved generator coordinate Hartree-Fock (HF) method. At the
HF level, total and orbital energies and electric dipole moment and, at the second-order Mφller-Plesset (MP2)
level, correlation and dissociation energies and electric dipole moment were calculated and compared with the
results obtained with other Gaussian basis sets reported in the literature. Considering our largest basis set, the
HF energy is in error by 56.2µhartree and the second order correlation energy corresponds to∼ 80% of an
estimate of the limiting value. At the MP2 level, the dipole moment and the dissociation energy computed with
our largest basis set are in good agreement with the corresponding experimental values. The CS molecule is
considered a prototype for systems containing atoms from different rows of the periodic table.

I. INTRODUCTION

In the vast majority of contemporary quantum chemical cal-
culations, basis set truncation is a significant, and frequently
dominant, source of error. Early many-body perturbation the-
ory calculations on molecules [1, 2] pointed to basis set trun-
cation as the largest source of error in accurate electronic
structure calculations. This observation has been confirmed
by configuration interaction studies [3, 4]. There has, there-
fore, been considerable interest in the construction of basis
sets for precision calculation [5, 6]. The growth of central
processing power, in uniprocessor and multiprocessor envi-
ronments, and memory in high-performance computers facil-
itates the use of increasingly large and flexible basis sets in
molecular electronic structure calculations which in turn al-
lows calculations of increasing accuracy by reducing the error
associated with basis set truncation.
There are procedures for approaching the complete basis set
limit by systematically enlarging a basis set (e.g. even-
tempered basis set [7]). In 1979, Schmidt and Ruedenberg [8]
proposed a practical scheme for systematically extending ba-
sis sets of even-tempered Gaussian functions so as to approach
the complete basis set limit. Wilson et al. have used with suc-
cess the even-tempered formula, where the parameter values
of the formula were determined through the empirical formula
of the Ref. [8], to generate Gaussian basis sets (GBSs) for var-
ious diatomic systems [9, 10]. For the CS molecule [9], these
authors, using a distributed basis set centered not only on the
atomic nuclei but also on the C-S center, claim to have ob-
tained a total HF energy below any value previously reported
in the literature. The idea of using bond functions in molecular
structure calculations is an old one [11]. Such functions were
introduced to provide the same effects as the addition of a set
of polarization functions but at a lower cost [12]. More re-
cently the correlation-consistent polarized valance (cc-pVXZ,
X = D, T, Q, 5) and augmented cc-pVXZ (aug-cc-pVXZ, X
= D, T, Q, 5) basis sets developed by Dunning et al. [13, 14]
have been employed extensively as hierarchical basis sets for
systematically reducing the basis set truncation error. Some
successful recent applications of these basis sets can be found
in Refs. [15, 16]. The cc-pVXZ basis sets have been devel-
oped for calculating the valence correlation energy in a sys-

tematic fashion. On the basis of a suitable number of s and p
functions, the number and types of higher angular momentum
functions, as well as their exponents, are selected from corre-
lated calculations on atoms.
An other procedure to select basis sets, where the one electron
functions are written as integral transform, arose from the gen-
erator coordinate Hartree-Fock (GCHF) method [17]. In the
last seventeen years, this method has been applied with suc-
cess in the generation of basis sets for atomic and molecular
systems [18–23].
Da Costa et al. [24] developed the molecular GCHF
(MGCHF) method and it was used to calculate some prop-
erties of diatomic molecules [24, 25].
In 1999, Jorge and de Castro [26] presented the improved
GCHF (IGCHF) method, and it was applied in the genera-
tion of GBSs for the first-row atoms [26] and for second-row
atoms and ions [27].
Recently, Jorge et al. [28] extended the IGCHF method
for molecular systems and it was called molecular IGCHF
(MIGCHF) method. Previous paper [29] examined the ac-
curacy with which ground state HF energies of diatomic
molecules containing first-row atoms can be calculated with
the MIGCHF method by using atom centered basis sets of
primitive Gaussian-type functions (GTFs). In Ref. [28], it
was demonstrated that accuracy of 1µhartree or less can be
achieved forH2, HLi, andLi2 molecules. In Ref. [29], it was
shown that accuracy smaller than 77µhartree can be achieved
for the total HF energies of fourteen electron diatomic sys-
tems.
When a molecule contains atoms from different rows of the
periodic table the importance of using a balanced basis set has
been recognized for many years [30]. In this work, we con-
sider the CS molecule as a prototype system containing atoms
from different rows of the periodic table. In particular, at the
HF and Mφller-Plesset second order (MP2) levels, the accu-
rate atom centered GBSs generated with the MIGCHF [28]
method were used to calculate energies, electric dipole mo-
ment, and dissociation energy for the ground state of the CS
molecule. A comparison with results obtained with other ap-
proaches [9, 13, 14] and with experimental values [31, 32] is
done.



966 M. T. Barreto et al.

II. MOLECULAR IMPROVED GENERATOR
COORDINATE HARTREE-FOCK METHOD

In the MGCHF method [24] the molecular orbitals (MO)
are integral transform, i.e.,

ψi(γ) =
N

∑
n

P

∑
p

Z
f inp(αnp)φp(αnp;~rγ− ~Rn)dαnp, (1)

where the index n runs for N atomic nuclei and p for the vari-
ous s, p, d, ... symmetries of the atomic functionsφp; ~rγ is the
coordinate of the electronγ and~Rn of nucleus n. The indexes
for αnp admit the possibility of different generator coordinates
for different atomic species and symmetries. For the case of
equal atoms or universal basis set one could writeαp only.
The variation of the total energy expectation value with re-
spect to the weight functionf inp leads to the molecular Griffin-
Hill-Wheeler-HF (GHWHF) equations [24]

N

∑
n

P

∑
p

Z
Fnp,n′p′(αnp,αn′p′)− εiSnp,n′p′(αnp,αn′p′)

× f inp(αnp)dαnp = 0, i = 1, ..., I , (2)

where theεi are the orbital energies and the explicit forms of
Fnp,n′p′ andSnp,n′p′ are given in Ref. [24].
The Eqs. (2) are solved through integral discretization (ID)
technique [33], in such case Eq. (1) becomes

ψi(γ,T) = ∑
n

∑
p

∑
t

f inp(αnpt)φp(αnpt;~rγ− ~Rn)∆αnpt (3)

and one can interpret

Cinpt = ∆αnptf inp(αnpt) (4)

as the atomic linear combination coefficient in a MO. In order
to make numerical integration through discretization efficient,
a relabelling of the generator coordinate space was introduced
[33] according to

Ω = ln(α/A), A > 1, (5)

where A is a scaling parameter determined numerically. Thus,
the coefficient that appear in Eq. (4) becomes

Cinpt = A∆Ωnptf inp(Ωnpt)exp(AΩnpt).

The new generator coordinate space,Ω, is discretized for each
s, p, d, ... symmetry of each atom in an equally spaced mesh
{Ωk

np} so that:

Ωk
np = Ωmin

np +(k−1)∆Ωnp, k = 1, . . . ,Nnp. (7)

In Eq. (6)Nnp is the number of discretization points for atom
n and symmetry p,Ωmin

np and∆Ωnp are respectively the lowest
value and the constant increment for the generator coordinate.
The values ofΩmin

np andNnp are chosen to embrace adequate
integration range for the weight functionf inp. From Eq. (6) we
can see that the original MGCHF method [24] uses only one

arithmetic sequence of equally spaced points{Ωk
np} to gener-

ate basis sets.
One may wonder whether the results obtained with the Eqs.
(5) and (6) can be improved within the framework of the
MGCHF method without adding more functions (GTFs in our
case). We did this in analogy with the IGCHF method [26] by
proposing a simple modification that may produce improve-
ments in the HF wave functions. The idea is to use (when
necessary) three arithmetic sequences with the same principal
quantum number. This allows form different distributions for
small, intermediate, and large exponents of GTFs.
In this new approach the generator coordinate space,Ω, is dis-
cretized for each s, p, d, f, ... symmetry in three independent
arithmetic sequences:

Ωk
np =





Ωmin
np +(k−1)∆Ωnp, k = 1, . . . ,Knp

Ω′min
np +(k−1)∆Ω′

np, k = Knp+1, . . . ,Mnp

Ω′′min
np +(k−1)∆Ω′′

np, k = Mnp, . . . ,Nnp.

(8)

For a given value ofNnp, the number of parameters to be op-
timized for each symmetry of each atom is three times that of
the original MGCHF method [see Eq. (6)].
Here, we call attention to the fact that when one uses Eq. (7),
one does not have equally spaced points{Ωk

np} anymore as
occur in Eq. (6), because now three independent arithmetic
sequences are used to generate the basis functions exponents
for each symmetry of each atom. This methodology to gen-
erate primitive GTF exponents in molecular environment was
called MIGCHF method [28].
At each iteration of the self-consistent field procedure the in-
tegrations are implemented numerically. This approach leads
formally to the HF Roothaan (HFR) equations, with the ad-
vantage of allowing the use of available HFR codes. Nonethe-
less, the discretization points (exponents) are chosen to pre-
serve the integral character of the molecular GHWHF equa-
tions (2).

III. ATOM CENTERED BASIS SETS OF PRIMITIVE
GAUSSIAN-TYPE FUNCTIONS

As start point to construct accurate basis sets for CS, the
GBSs generated by Librelon and Jorge [34] with the IGCHF
method [26] for C(23s14p) and S(26s18p) were used. To im-
prove the molecular HF energy, two and three functions of s
symmetry for C and S, respectively, were added and, then, all
s and p exponents were reoptimized through the Eq. (7). Next,
7d polarization functions for each atom were included in the
basis set and, then, optimized in the molecular environment
using only one arithmetic sequence of the Eq. (7), since the
number of exponents of d symmetry is small. The last step
was repeated for higher angular momentum functions and se-
quences of optimized larger basis sets were constructed (see
Table I). It is important to say that only the additional basis
functions with respect to the previous entry were optimized
using the minimum energy criterion. Besides this, all basis
functions were centered on the nuclei, and only the spherical
components of the polarization functions were used. For all
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FIG. 1: The 2p and 3p Gaussian weight functions for C and S atoms,
respectively.

calculations, the scaling parameter of the Eq. (5) has the same
value (6.0).

Since the GHWHF equations were obtained from the min-
imization of the energy functional with respect to the weight
functions (f i), the description of thef i governs the quest for the
total energies for any atomic or molecular system. Achieving
the best HF energy for an atomic or molecular system means
obtain the best description off i . Gaussian 2p and 3p weight
functions for C(23s14p) and S(26s18p) atoms have been plot-
ted in Fig. 1. The forms of the 2p weight functions of fluorine
(see Ref. [21]) and carbon (this work), which were obtained
respectively from the GCHF [17] and IGCHF [26] methods,
are very similar.

IV. RESULTS AND DISCUSSION

Using the MIGCHF method presented above, GBSs for the
CS molecule (for an internuclear separation of 2.89964 a.u.)
were constructed. The majority of the calculations reported in
this work were carried out with the GAUSSIAN 94 program
[35], and the correlation calculations include all electrons. It
is known that the computational linear dependence can be
measured by the smallest eigenvalue of the overlap matrix. As
all the basis sets generated in this work have overlap matrix
with smallest eigenvalues in the range 3x10−5-8x10−6,
this suggests that the difference between the total energies is
attributed to basis set truncation errors and not to problems
associated with computational near linear dependence.
Table I displays the ground state total HF energies (in
hartree) evaluated with our GBSs, with the basis sets [9]
of even-tempered GTFs centered not only on the atomic
nuclei but also on the C-S bond centered (bc), with the
aug-cc-pV5Z basis sets of Dunning et al. [13, 14], and with a
NHF method [9]. The second-order correlation energies (E2)
were also calculated and compared with the result obtained
with the aug-cc-pV5Z basis sets [13, 14]. Besides this, the
PSI3 code [36] was used for the MP2 perturbation theory

calculations with linear terms r12 (MP2-R12/A) [37, 38]. For
the MP2-R12/A calculations, the cc-pV6Z basis set of Wilson
et al. [39] in a fully uncontracted form, denoted in the present
work as cc-pV6Z(uc), was used to estimate a ’limiting’ value
of the second-order correlation energy of -0.925936 hartree
(see the last row of Table I).
From Table I, one can see that the total HF energies calcu-
lated with the MIGCHF method [28] decrease monotonically
with increasing size of basis set, that is, the energy is
found to decrease monotonically on adding the higher
harmonic basis functions with the largest decrease of∼ 69
mhartree resulting from the addition of the atom centered
d functions. Besides this, one can observe that the energy
obtained with the C(44s22p);S(44s22p);bc(44s) basis set [9]
is better and worse than those computed with our smaller
C(25s14p);S(29s18p) and C(25s14p7d);S(29s18p7d) basis
sets, respectively. For the basis sets designated aug-cc-pV5Z
(372 primitive GTFs contracted to 258 functions) and
C(25s14p7d1f);S(29s18p7d1f) (234 GTFs) the HF energies
are -435.3618841 and -435.3619846 hartree, respectively.
These results show that our basis set give better result at a
lower cost than the widely used correlation consistent basis
sets of Dunning et al. [13, 14]. The main difference between
these two approaches is that the aug-cc-pV5Z basis sets are
atom specific, whereas the exponents of our basis set are
optimized in the molecular environment with the MIGCHF
method. The C(44s22p22d);S(44s22p22d);bc(44s22p) basis
set [9] and the smaller C(25s14p7d4f);S(29s18p7d4f) and
C(25s14p7d4f2g);S(29s18p7d4f2g) basis sets generated
with the MIGCHF method [28] have associated errors
of 80.4, 254.6, and 69.4µhartree, respectively. From
these results, it is clear that the GBS of the Ref. [9]
needs twice more GTFs than that constructed by us to
provide better energy. The HF energy obtained with our
largest basis set C(25s14p7d4f2g1h);S(29s18p7d4f2g1h)
is in error by 56.2µhartree, whereas the larger basis sets
C(32s16p16d16f);S(32s16p16d16f);bc(28s12p13d) and
C(44s22p22d22f);S(44s22p22d22f);bc(39s18p19d17f) [9],
which include functions centered on both the atomic and bond
centers, are in errors by 46.5 and 2.1µhartree, respectively.
Again, these two GBSs of the Ref. [9] have at least twice
more GTFs than our largest basis set. Kobus et al. [9] claim
to have obtained the lowest matrix HF energy (-435.3624177
hartree) reported in the literature, whose difference is only
54.1µhartree of the best result obtained here (-435.3623636
hartree) at a much reduced cost (our largest basis set contain
334 GTFs vs the 1055 GTFs contained in the basis set of the
Ref. [9]). We recall that the number of two electron integrals,
which consumes a major part of the time needed in a SCF
molecular orbital calculation, increases as(Nnp)4.
The first two E2 results presented in Table I show clearly that
the addition of d-type polarization functions yields the largest
energy decrease in the correlation energy. The next two stud-
ies summarized in this Table indicate that the second-order
correlation energy evaluated with the MIGCHF method [28]
is ∼ 0.15 hartree lower than the result obtained with the
larger aug-cc-pV5Z basis set [13, 14]. We recall that all the
GTF exponents of our C(25s14p7d1f);S(29s18p7d1f) basis
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TABLE I: Ground state total HF energies (EHF ) and second-order correlation energies (E2) for the CS molecule. All energies are in hartree.

Basis set Number of GTFs -EHF -E2 Reference
C(25s14p);S(29s18p) 150 435.2902407 0.370830 this work

C(44s22p);S(44s22p);bc(44s) 264 435.3192503 - [9]
C(25s14p7d);S(29s18p7d) 220 435.3592617 0.674629 this work

aug-cc-pV5Z 258 435.3618841 0.543462 calculated in this work
C(25s14p7d1f);S(29s18p7d1f) 234 435.3619846 0.695092 this work
C(25s14p7d4f);S(29s18p7d4f) 276 435.3621652 0.721751 this work

C(44s22p22d);S(44s22p22d);bc(44s22p) 550 435.3623394 - [9]
C(25s14p7d4f2g);S(29s18p7d4f2g) 312 435.3623504 0.734334 this work

C(25s14p7d4f2g1h);S(29s18p7d4f2g1h) 334 435.3623636 0.737929 this work
C(32s16p16d16f);S(32s16p16d16f);bc(28s12p13d) 673 435.3623733 - [9]

C(44s22p22d22f);S(44s22p22d22f);bc(39s18p19d17f) 1055 435.3624177 - [9]
HF limit - 435.3624198 - [9]

MP2-R12/A cc-pV6Z(uc) 339 - 0.925936 calculated in this work

set were optimized at the HF level, and that the aug-cc-pV5Z
basis set (which contains up to h functions) is designed for
valence correlation calculations. Even so, it is notable that
the basis set generated with the MIGCHF method reproduces
all electron correlation energy better than aug-cc-pV5Z.
Helgaker et al. [40] investigating the basis set convergence of
the correlation energy in the water molecule verified that the
correlation-consistent polarized core-valence (cc-pCVXZ)
basis sets [41] give all electron correlation energies closer to
the MP2-R12 results than the corresponding values calculated
with the cc-pVXZ basis sets. One knows that for calculations
of electron correlation effects it is necessary to include
functions of higher angular symmetry in the basis set. The
best E2 value (-0.737929 hartree) presented in Table I is
obtained with our C(25s14p7d4f2g1h);S(29s18p7d4f2g1h)
atom centered basis set, which corresponds to∼ 80% of the
limiting value. The results of the second order correlation
energies confirm the good accuracy that can be achieved with
the MIGCHF method [28] in the generation of total wave
functions for diatomic molecules containing atoms from
different rows of the periodic table.
Table II shows the convergence pattern for the ground
state CS molecule. From this Table, one can see that in-
creasing the number of points in each s and p symmetries
rapidly favor the convergence of the total HF to the value
of -435.2902407 hartree, and that the difference between
the C(24s14p);S(28s18p) and C(25s14p);S(29s18p) ener-
gies is very small (12.1µhartree). Even if we go beyond
the C(25s14p);S(29s18p) basis set, there is no substantial
improvement in the HF energy.

A comparison of the occupied MO energies calculated with
the largest basis set reported in this work with the correspond-
ing ones obtained with the largest basis set and a NHF method
of the Ref. [9] is made in Table III. When compared with the
corresponding NHF results, the MO energies obtained with
our basis set are slightly worse than those computed with the
very large basis set of Kobus et al. [9].

The main differences between the MIGCHF method [28]
and the algebraic approximation used in Ref. [9] are:
(i) The MIGCHF method has three independent arithmetic se-

TABLE II: Convergence pattern for the ground state of the CS mole-
cule (in hartree). EHF represents the total HF energy.

Basis set EHF
C(22s11p);S(26s15p) -434.8516794
C(22s12p);S(26s16p) -435.2306421
C(23s12p);S(27s16p) -435.2535167
C(23s13p);S(27s17p) -435.2881600
C(24s13p);S(28s17p) -435.2889832
C(24s14p);S(28s18p) -435.2902286
C(25s14p);S(29s18p) -435.2902407

TABLE III: Comparison of the occupied molecular orbital (MO) en-
ergies (in hartree) calculated with Gaussian basis sets (GBSs) and
with a numerical HF (NHF) method.

Orbital -ε(GBS)a -ε(GBS)b -ε(NHF)c

1σ 92.00112 92.00114 92.00114
2σ 11.35392 11.35391 11.35391
3σ 9.00704 9.00705 9.00705
4σ 6.68728 6.68732 6.68733
5σ 1.10033 1.10032 1.10032
6σ 0.69250 0.69252 0.69253
7σ 0.47052 0.47052 0.47052
1π 6.68657 6.68657 6.68657
2π 0.46309 0.46309 0.46309

aMO energies obtained with our largest GBS
C(25s14p7d4f2g1h);S(29s18p7d4f2g1h).

bMO energies obtained with the largest GBS of the Ref. [9]
C(44s22p22d22f);S(44s22p22d22f);bc(39s18p19d17f).

cMO energies obtained with the NHF method of the Ref. [9].

quences [see Eq.(7)] to describe each occupied atomic orbital
(s and p in our case) of the ground state of each atom present
in the molecule. Thus, one can describe independently the
inner, intermediate, and outer electrons of these orbitals. We
recall that the electrons of these subshells give the largest con-
tribution to the total HF energy. On the other hand, the even-
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TABLE IV: Electric dipole moment (µ) and dissociation energy (De) for the ground state of the CS molecule. The correlation calculations
include all electrons.

Method Basis set Na -µb(Debye) De
c(kJ/mol) Reference

Expt. - - 1.958 714.1±1.2 [31, 32]
HF aug-cc-pV5Z 258 1.631 435.1 calculated in this work

C(25s14p7d4f2g1h);S(29s18p7d4f2g1h) 334 1.631 436.3 this work
MP2 aug-cc-pV5Z 258 2.272 752.7 calculated in this work

C(25s14p7d4f2g1h);S(29s18p7d4f2g1h) 334 2.195 748.3 this work

aNumber of GTFs.
bThe dipole moments were calculated using the experimental nuclear dis-

tance (2.89964 a.u.).
cThe dissociation energies were calculated using the experimental nuclear

distance (2.89964 a.u.).

tempered formula [7] has only one geometric sequence to de-
scribe the three different regions of s and p orbitals. This is
one of the reasons why our smaller atom centered basis sets
are more accurate than the corresponding ones of the Ref. [9].
(ii)For each s, p, d, f , g, and h symmetry of the C and S atoms,
we have optimized the primitive GTF exponents in the molec-
ular environment (CS molecule), using the MIGCHF method
[28], whereas Kobus et al. [9] have used a universal basis set
developed previously for the N2 ground state [10]. Thus, it is
another reason that our atom centered basis sets for CS to be
more accurate than the corresponding ones of the Ref. [9].
(iii) As discussed above, Kobus et al. [9] developed a univer-
sal sequence of GBSs which can be easily extended to include
more functions of each symmetry type and more symmetry
types, and also an extended distribution of expansion centers.
In our case, if it is desired to add a new set of exponents of
a given symmetry, it is necessary to optimize this set in the
molecular environment with the MIGCHF method [28].
At the HF level, ourµ andDe results, when compared with the
corresponding experimental values [31, 32], are respectively
as good as and better than those evaluated with the aug-cc-
pV5Z basis set (see Table IV). As is widely recognized, HF
theory with any basis set gives poor results for direct calcu-
lation of the energy of a homolytic dissociation process A-B
→ A+B. The correlation energy correction for the electron
forming the bond is a significant fraction of the total bond en-
ergy. If correlation is omitted, the error will be greater for the
bonded system A-B than for separated A and B, and calcu-
lated dissociation energies will be too small. From Table IV,
one can verify that when the electron correlation is taken into
account (MP2 calculations), the dissociation energies evalu-
ated with both basis sets improve significantly. Besides this,
at this level of approximation, ourµ andDe results are closer
to the experimental values than those obtained with the aug-
cc-pV5Z basis set, and they are in good agreement with the
corresponding experimental values.

V. CONCLUSIONS

We used the MIGCHF method to generate accurate GBSs
of atom centered GTFs for the CS molecule. In this method,

the GHWHF equations are integrated through the ID tech-
nique.

Previous HF calculations realized with the MIGCHF
method showed that accuracies smaller than 1.1 and 77
µhartree can be achieved for the H2, LiH, and Li2 molecules
and for diatomic systems containing first-row atoms, respec-
tively. For the carbon monosulphide molecule, which we con-
sider as a prototype system containing atoms from different
rows of the periodic table, we have estimated the accuracy of
the present energy calculations to be 56.2µhartree. Besides
this, from the results presented in Tables I and III, one can
observe that in general the basis sets constructed by Kobus et
al. [9] need at least twice more GTFs than those generated by
us to provide better total HF energies, and that the differences
among the occupied MO energies evaluated with the largest
GBSs reported here and in Ref. [9] are in the last figure.

At the MP2 level, the correlation energy obtained by us
with the C(25s14p7d1f);S(29s18p7d1f) basis set is better than
the result obtained with the widely used larger aug-cc-pV5Z
basis sets [13, 14], and the E2 computed with our largest ba-
sis set (-0.737929 hartree) accounts for∼ 80% of the limiting
value.
Thus, employing only atom centered basis sets of GTFs, we
believe that it is the first time that this level of accuracy has
been achieved at the HF and MP2 levels for the ground state
of the CS molecule.

Finally, at the MP2 level, calculated
C(25s14p7d4f2g1h);S(29s18p7d4f2g1h) electric dipole
moment and dissociation energy are in good agreement with
the experimental data.

It is in progress studies of electronic structures of small
polyatomic molecules with the MIGCHF method [28].
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